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HEREDITARY ARTINIAN RINGS OF FINITE REPRESENTATION TYPE

P.Dowbor, C.M.Ringel, D.Simson

Recall [11,6] that a hereditary finite dimensional algebra is
of finite type if and only if a corresponding diagram is a disjoint

E E_, F

6’ ~7* "8’ "4' "2
occouring in Lie theory. Here, we will consider the general case

union of the Dynkin diagrams A . B, Che O, E G

of a hereditary artinian ring A and associate to it a diagram [(A).
It turns out that A is of finite type if and only if IM'(A) is the

disjoint union of the Coxeter diagrams A_, B (= Cn)' D

nt Eer Bz
Egr Fas Gy Hzy Hy, Iz(p) which classify the irreducible Coxeter

nl

groups [3] . However, the existence of rings of type Hg, Hy and
I2(p) with p = 5 or p2 7 remains open: it depends on rather
difficult questions concerning division rings. On the other hand,
we define for any Coxeter diagram “branch system" which generalize
the root systems of the Dynkin diagrams. The dimension types
of a hereditary artinian ring of finite representation type just
form such a branch system.

The results of sections 1, 2 and 5 were obtained by P.Dowbor
and D.Simson who announced part of them in the papers [9, 10]
and at the Ottawa Conference 1979. The results were obtained
independently by C.M.Ringel who announced them at the Oberwolfach

meeting on division rings in 1978.

1. Bimodules of finite repregentation type

Let F and G be division rings, and FMG a bimodule. Denote by
Jﬁ(FMG) the category of finite dimensional representations of Mg,
a representation being of the form V = (XF, Yoo PiXp® Mg —>YG)
with dimension type dipV = (dim XF, dim YG)' Given FMG' let
MY = Homg( eMasBg) s M- = Homg (Mg, Fg) , and MRULHL) . (qRER

M) o (MR)L, wien RO = M = MEO, Note that if dim M, is Finite,
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LR

MRL? M, whereas if dimFM is finite , then M & M, We say that M

is a bimodule with finite dualisation if all bimodules MY and
Li

M are finite dimensional on either side.

Proposition 1. Assume FMG is of finite representation type, with

indecomposable representations P1"""Pm' Let din Pi = (xi, yi),

and assume we have choosen an orderig with xi/yi < xi+1/yi+1. Then

this ordering is unique, and there are Auslander-Reiten sequences

ML(i—l) ® P, s, > 0

0 — P 1

i=-1

The bimodule M has finite dualisation; MLl is one~dimensional
Lm

as a right vector space, for some i, and the bimodules ™ and ™

are (semilinear) isomorphic.

Let outline the main steps of the proof:

If dim M, is finite, we define a functor C;:J(FMG) —9‘l(ML)
as usual [2,7]: given (X &t LA YG), let Ag = ker¥ . Using
K@M = Hom(ML, XF)' we get from the kernel map Ay — Hom(ML, Xg)

as adjoint a map of the form AG ® HL-—>XF. Clearly, under CI,
the full subcategory ,ﬁl(FMG) of °Z(FMG) of objects without
simple projective direct summands is equivalent te the full sub-
category JCZ(ML) of oﬁ(ML) of objects without simple injective
direct summands. In particular, of(ML) and JZL(4) have the same
representation type.

Similary, if dim(MR)F is finite, define c;:.ﬁ(FmG) —>,z’(mR)
mapping (XF®FMG -—\ﬂ}* YG) onto the cokernel of the adjoint map
Xg = Homg (Mg, YG) =Y, ® MR, and thus establishing an equivalance

between L (M) and .,ClCMR).

If dimgM or dim My is infinite, then clearly Z(#M) cannot

G
. .+ e
be of bounded representation type. Thus, the functors C; and C;

show that M has to be a bimodule with finite dualisation if fKM)

is of finite representation type.
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The functors C; , C; have nice properties: If (XF, Yoo ?) is
indecomposable in £(M) , then its image in Z(R) is either zero,
in which case (X, YG,‘i)=(FF, 0, ©) is simple injective, or else
dim C7(X, Y, ¥) = (y, yb=x), where dim (X,Y,%) = (x, y) and
b = dim(MR)F. In particular, there is a unique reprasentation in
Z{M) of type (x,y) # (1,0) if and only if there is a unique one in

L) of type (y, yb=x) # (0,1).

Let C;:i(M) M».Z(ML5 . C;:JXM)-—A AZMRi) be the iterated

functors call (X, Y, ¥)  in £(M) preprojective provided

CI(X,Y,?) = O for some i, and preinjective provided CZ(X,Y,?) =0
for some i, Obviously, these modules are characterized by their
dimension types. Let P, be the indecomposable module (if it exists)

+ ., P. # 0. Being determined by their

+ _
with Li Pi = 0 and Ci-l i

dimension types, Pi' Pj can be ismorphic only for i=j. Let Pm be
the last such module which exists (assuming L(M) of finite

representation type). Then all P, with 1 < i ¢ m exist, and P .,

Pm have to be injective. Since the set of preprojective modules is
closed under indecomposable submodules of direct sums, and contains
the indecomposable injective modules, it contains all indecomposable
modules, Similary, all indecomposable modules are also preinjective.

Next, one proves that HOm(P1'P2) = gMgs and therefore
= ML(i‘l)

Hom(Pi,P . Also, there is an obvious exact secuence

i+l

0 — P, 4, — Hom (P,

L
1 i-1+P3) ® Py —> Py > 0,

and it is left almost split [1] (prove it by induction using the

functors C7).

Similary, let I; be the indecomposable module with C; I,=0
- =M 2 i = =
and Cj_, I; # 0. Then Hom(I,,I,) = M2, since Poca = Ipv Pp o= I,
we conclude that ML<m'2) = MRZ, thus mbm M.

Finally, if the right dimension of all bt would be > 2, then
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one proves by induction on i, that Py exists (for any i > 1) and
that  dim P, =(x;, y;) with 0 ¢ x; <y; . This produces a

countable number of isomorphism classes of indecomposable modules.

2. Dimension seguences

A sequence a = (al,....,am) of length |{al =m 2 2 with

a; € IN is called a dimension sequence provided there exists

X;0y; €N (1 €4 ¢m), with

il

1Yy T Yimg * Vi (1 €1 <)

Xy = -1, X4 ; o, Xg = 1, and Yo = o, Yy = 1, Yo = 0. The set of
vectors yl) , with 1 £ i < m, is called the branch system
defined by a. Note that it is uniquely determined by a, and

conversly, it determines a. This generalizes the positive part

of the usual rank 2 root systems: for the dimension sequences
(o0,0), (2,1,1), (2,2,1,2) and (1,3,1,3,1,3) the branch systems
are just the positive roots of Ay X Al' A2, 82 and GZ’ respecti=
vely,

Proposition 2., The branch system in !Rz can be constructed as

follows: {(1,0), (0,1)} is a branch system. If B is a branch

system, and p,q are neighbors in B , then B u{p+ql is a branch

system.

Here, in a Tinite subset ABoof IR2 consisting of pairwise
linearly intependent elements, we call two elements neighbors in
case the lines through these elements are neighbors in the set of
all lines through elements of 8 , G. Bergman has pointed out that
the branch systems {(xi, yi)l 1< 1ig<m i ¢orrespond just to the
Farey sequences ;i (see [16]). In particular, the numbers

Xi0 Y4 always are without common divisor.

The proposition above can be reformulated as follows.



236

Proposition 2. The set & of dimension sequences can be obtained

as follows: (0,0)e¢s , and if (al,...,am) e, then all the
sequences (al""'ai-i' ag+l , 1, a; ,+1, ai+2,...,am) for
1 ¢ i ¢m belong toJ .

Note that for any other dimension sequence a, we have ay =1

for some i > 2. An easy consequence is the following

Corollary, The set «9; of dimension sequences is closed under

cyclic permutations.

< . . +
Given a dimension sequence a = (al,....am), let a =

= (am'al""'am-l)’ Let us give the list of all dimension sequences

of length < 7, up to the cyclic permutations and reversion:

(0,0); (1,1,1); (1,2,1,2); (1,2,2,1,3);
1,2,2,2,1,4), (1,2,3,1,2,3), (21,3,1,3,1,3);
(1,2,2,2,2,1,5), (1,2,2,3,1,2,4), (1,2,3,2,1,3,3),
(1.,4,1,2,3,1,3).

3, Coxeter diagqrams

Let " = {1,...,n } and assume there is given a set map
d: '~ M —.9 . Note that d defines on | the structure of an
oriented graph, if we draw an arrow i —> j in case d(i,j) # (0,0).
with (I",d) we also will consider the unoriented graph given by
(" ,Id1), where two different points are connected by at most two
edges, and any edge has assigned a number > 3. If i is a sink for
d(j.1)%,
Qﬁid) (i.i) = (0,0), and (Jid ) (3.k) = d(3,k) for all j, k # i.

For any sink i, define on R"  a linear transformation Gi = c(d)i

]

(the orientation defined by) d, define (J;d)(i,3)

as follows: if x = (xj) e R", let
(Gix)j = %y for j # i, and (G;x); = -x +2§:d(i,j)1 Jr
If i,,...,i, is a (+)-admissible sequence {thus i, is a sink

for ﬁg_i...ﬁid, for all 1 & s < t), define
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G .= G _,...0,d). G, .
it...l1 t=1 1 i, ipq000iy

We call y ¢ N preprojective provided there exists a (+)~admissib-

le sequence igseaariy such that Gy .4 (x) is one of the
canonical base vectors (O,...,l,O,...,O). We say that (f',d) is of
finite type provided there are only finitely many preprojective
vectors, and then we call the set of preprojective vectors the

branch_system of (I",d).

Thegrem 1. (I',d) is of finite type if and only if (", \d!) is the

disjoint union of Coxeter diagrams A_, B (=C ), D, Eg, E,, Eg, Fy,

Gys Hzy Hyy Io(p) (p=5 or p > 7). If (T ,1dl) is one of the

Coxeter diagrams of rank n and with Coxeter number h, then the

branch system for (P,d) has precisely .é nh elements.
Of course, the branch systems for the diagrams Agr B Egs B
EB' F4, 62 are precisely the positive roots of the corresponding
root systemj there are two possible branch systems for B namely
the positive roots of Bngor Cn. The branch systems of the type
Iz(p), Hy.and H, have p, 15, and 60 elements, respectively.
As an example, let us write down the branch system for
s —— -EL» + , with second dimension sequence (2,1,3,1,2). It

contains the following 15 vectors

(100), (020), (001), (1120), (011),
(111), (012), (021), 212), 121),
(122),(221), (132), (133), (142),

and is dependent on the orientation and the given dimension
sequence.

The proof of the theorem is rather technical. First, one
constructs explicity for every pair (T7,d) with (I",|dl) & Coxeter

diagram the corresponding branch system. For the converse,one only
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has to consider the pairs (V,d) for wich all proper subdiagrams
of (r‘,ldl) are Coxeter diagrams, and again an explicit calculation
shows that in these cases there are infinitely many preprojective

vectors.

4, Hereditary artinian rings

. s . . . . o]
Given an artinian ring A, let A° be its basic ring, A°/radA =

n n
= T F., , and radAo/(radAo)2 = & .M, as [T F.-bimodule. Then
i=g * 1,5 %1 i=g *

5= (Fi,iMj) is called the species of A, Let d{(i,j) be the
dimension sequence of the bimodule iMj , thus we have associated to

A a pair (I",d) and we denote by ['(A) the pair (I,ldl).

Theorem 2. The hereditary artinian ring A is of finite represen-

tation type if and only if {(A) 4is disjoint union of Coxeter dias

grams A, B, (=C_.), D, Eg, E,, Eg, F,, Gp, Hyy My, Io(p) (p=5 or

p > 7). In this case, the dimension types of the indecomposable

A~modules form the branch system for (}“,d).

As in the case of an algebra [6], one sees that for a hereditary
artinian ring A of finite representation type, the basic ring A°

always is the tensor ring over its species.,

5, Problems on division rings

The main problem which arises and which we are not able to
answer is the question about the possible dimension sequences a of
bimodules FMG of finite representation type, We may assume that
a, = 1 (using a cyclic permutation of a, thus replacing M by
some MLi). Then there is given a division ring inclusion G<— F,
and M, = gFg » Since M- = Fe » the dimension sequence of fg

starts as follows:

= dim F =1, az = dim .F .

81 6 ' % G
Thus, immediatly, we are confronted with the question of differrent

left or right index of a division subring G of F ,(see [4J}
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Of particular interest is the question whether there exists a
bimodule with the dimension sequence of type I,(5), say
(2,1,3,1,2), since it would give rise to rings of type H3 and H4.
In fact, it is easy to see that the only dimension sequence starting
with (2,1,3,1,...) is (2,1,3,1,2)., Thus, we would need G CF
with dim F, = 2 , dim

F =3, and dimFHom(GFF,GG) = =1.

G G 84
Let us point out certain consequences of these conditions. Since the
length of (2,1,3,1,2) is 5, it follows from M™> S M that F , G
have to be isomorphic. Also F contains a division subring H

again isomorphic to F with dim FH =3, dimHF = 2 , since

(FFG)Ls has the dimension sequence (3,1,2,2,1).

Bimodules with suitable dimension sequences would produce intere
esting examples of artinian rings. For example, we may ask whether
there exists a bimodule FMG of finite representation type with
dimM = 2 = dim M, , thus dimension sequence (2,2,85,+.-,28,) « Of
course, according to {13] such a bimodule has to be simple es a
bimodule (this also follows from proposition 1, since dualisation
leads to a bimodule which is one-dimensional on one side). Note that
in case of odd m, the division rings F , G have to be isomorphic,
so that we also can form the triviel ring extension R = F X M,
and this then would be a local ring with (radR)2 = 0 , left length
3 , right length 3 , and with precisely m-1 indecomposable modules.
In particular, the dimension sequences of type 12(5) would give a
local ring R with (radR)Z = 0 , left length 3 , right length 3 ,
and precisely 4 indecomposable modules.

Similary, a bimodule with dimension sequence (81""'au+v+1)

where a, =u, a, = 1, a =3, a =1, a = v , and the

u+l u+v+1

remaining a 2 would be of local-colocal representation type

i
(any indecomposable modules has a unique minimal submodule or unique
maximal submodule). In contrast, the finite dimensional algebras

with this property all have been classified in {15].
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This shows very clearly the dependence of the representation
theory of artinian rings on questions concerning division rings, a
fact which to have been exhibited for the first time in [14].

In particular, under the assumption that there are no pairs of
division rings F 2 G with dimGF =2 , and dim FG = 2 , but
finite , the Coxeter diagrams H3, H4, and Iz(p) cannot be realized
as I'(A) for any artinian ring A , so they could be excluded from
theorenm 2.

Of course, in case we assume that the division rings F are
finitely generated over their centers, then we exclude immediataély

the cases H3,H4, and IZ(P). thus one has the following (see also
[81):

Theorem 3. The hereditary artinian ring A with A/radA

finitely generated over its center is of finite representation type

if and only if TI'(A) is the disjoint union of Coxeter diagrams

Aqe By (=CL)s Dye Egy Eju Egy Fyy Gy
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