### Vlastimil Dlab and Claus Michael Ringel

The present paper generalizes a recent result of I.M. Gelfand and V.A. Ponomarev [4] reported at the Conference by V.A. Rojter.

A modulated graph  $\mathcal{M} = (F_i, i_j^M, \epsilon_i^j)_{i,j \in I}$  is given by division rings  $F_i$  for all  $i \in I$ , by bimodules  $F_i(i_j^M)_{F_j}$  for all  $i \neq j$  in I finitely generated on both sides and by non-degenerate bilinear forms  $\epsilon_i^j : i_j^M \otimes j_i^M \to F_i$ ; here, I is a finite index set. Note that the forms  $\epsilon_i^j$  give rise to canonical elements  $c_j^i \in j_i^M \otimes i_j^M \otimes$ 

Define the ring  $\Pi(M)$  as follows. Let T(M) be the tensor ring of  $M: T(M) = \bigoplus_{t \in \mathbb{N}} T_t$ , where  $T_0 = \prod_i F_i$ ,  $T_1 = \bigoplus_i M_i$  and  $T_{t+1} = T_1 \otimes T_t$  with the multiplication given by the tensor product. Then, by definition,  $\Pi(M) = T(M)/\langle c \rangle$ , where  $\langle c \rangle$  is the principal ideal of T(M) generated by the element  $c = \sum_{i,j} c_i^j$ .

Let  $\Omega$  be an (admissible) orientation of  $\mathcal{M}$ ; thus, for every pair i,j with  $\mathbf{i}^{M}\mathbf{j}\neq 0$ , we prescribe an order indicated by an arrow  $\mathbf{i}\longrightarrow\mathbf{j}$ , or  $\mathbf{i}\longleftarrow\mathbf{j}$  in such a way that no oriented cycles occur. Let  $\mathbf{R}(\mathcal{M},\Omega)$  be the corresponding tensor ring of  $(\mathcal{M},\Omega): \mathbf{R}(\mathcal{M},\Omega)=\bigoplus_{\mathbf{i}\in\mathbb{N}}\mathbf{R}_{\mathbf{i}}$  with  $\mathbf{R}_{\mathbf{0}}=\prod_{\mathbf{i}}\mathbf{F}_{\mathbf{i}}$ ,  $\mathbf{R}_{\mathbf{1}}=\bigoplus_{\mathbf{i}\to\mathbf{j}}\mathbf{M}_{\mathbf{j}}$  and  $\mathbf{R}_{\mathbf{t}+\mathbf{1}}=\mathbf{R}_{\mathbf{1}}\otimes\mathbf{R}_{\mathbf{k}}$ . For the representation theory of  $\mathbf{R}(\mathcal{M},\Omega)$  we refer to [3].

THEOREM. For each orientation  $\Omega$  of  $\mathcal{M}$ ,  $R(\mathcal{M},\Omega)$  is a subring of  $\Pi(\mathcal{M})$  and, as a (right)  $R(\mathcal{M},\Omega)$  -module,  $\Pi(\mathcal{M})$  is the direct sum of all indecomposable preprojective  $R(\mathcal{M},\Omega)$ -modules (each occurring with multiplicity one).

This theorem suggests to call  $\Pi(M)$  the preprojective algebra of M. Recall that an indecomposable  $R(M,\Omega)$ -module P is preprojective if and only if there is only a finite number of indecomposable modules X with  $Hom(X,P) \neq 0$ .

COROLLARY. The ring II (78) is artinian if and only if the modulated graph is a disjoint union of Dynkin graphs.

Observe that if m is a K-modulation (where K is a commutative field), then  $\mathbb{R}(m)$  is a K-algebra. In this case, the corollary may be reformulated as follows: The algebra  $\mathbb{R}(m)$  is finite-dimensional if and only if m is a disjoint union of Dynkin graphs.

Consider, in particular, the case when  $(x), \Omega$  is given by a quiver; thus,  $F_i = K$  for all i and  $M_i$  is a direct sum of a finite number of copies of  $K_i$ . For every arrow  $K_i$  of the quiver, define an "inverse" arrow  $K_i$  whose end is the origin of  $K_i$  and whose origin is the end of  $K_i$ . Then  $K_i$  is the path algebra generated by all arrows  $K_i$  and  $K_i$  and  $K_i$  is the quotient of  $K_i$  by the ideal generated by the element  $K_i$  all  $K_i$ 

COROLLARY. If  $(\mathbf{A},\Omega)$  is given by a quiver, then  $\mathbb{I}(\mathbf{A})$  is finite-dimensional if and only if the quiver is of finite type.

For a quiver which is a tree, the last result has been announced by A.V. Rojter [6] in his report on the paper [4]. In contrast to the proofs in [4], our approach avoids use of reflection functors and is based on the explicite description of the category

 $P(\mathbf{M},\Omega)$  of all preprojective  $R(\mathbf{M},\Omega)$ -modules. The authors are indebted to P. Gabriel for pointing out that the theorem is, in the case when  $(\mathbf{M},\Omega)$  is given by a quiver, also due to  $\mathfrak{Ch}$ . Riedtmann [7].

# 1. Preliminaries on dualization

Given a finite-dimensional vector space  $_F^M$ , denote by  $^*M$  its (left) dual space  $_F^MM$ ,  $_F^FF_F$ ). If  $_F^MG$  is a bimodule and  $_G^X$ ,  $_F^Y$  vector spaces, the adjoint map  $_F^MM$ :  $_F^MM$   $_F^MM$   $_F^MM$   $_F^MM$  is given by  $_F^MM$ :  $_F^MM$ :

Now, given bimodules  $_FM_G$ ,  $_GN_F$  such that  $_FM$  and  $_NF$  are finite dimensional, let  $_E$ : M  $\otimes$  N  $\to$  F be a non-degenerate bilinear form. Thus, the adjoint  $_E$  is an isomorphism  $_E$ : N  $\to$  \*M; let  $\{n_1,n_2,\ldots,n_d\}$  be a basis of  $_NF$  and  $\{\phi_1,\phi_2,\ldots,\phi_d\}$  the basis of  $_NF$  such that  $_NF$  such that  $_NF$  for all  $_NF$  such that  $_NF$  be the dual basis of  $_NF$  . Thus,

$$\varepsilon \, (\mathfrak{m}_{p} \, \otimes \, \mathfrak{n}_{q}) \, = \, (\mathfrak{m}_{p}) \, [\overline{\varepsilon} \, (\mathfrak{n}_{q}) \,] \, = \, (\mathfrak{m}_{p}) \, \, \varphi_{q} \, = \, \delta_{pq} \, \, .$$

$$c_{\varepsilon} = \sum_{p=1}^{d} n_{p} \otimes m_{p}.$$

Lemma 1.1. The element  $\,c_{\,_{\textstyle\xi}}\,$  does not depend on the choice of a basis.

 $\underline{\text{Proof.}}$  Let  $\{n_1',n_2',\ldots,n_d'\}$  and  $\{m_1',m_2',\ldots,m_d'\}$  be another bases of N  $_F$  and  $_F^M$  , respectively, so that

$$\varepsilon(\mathbf{m}_{\mathbf{p}}' \otimes \mathbf{n}_{\mathbf{q}}') = \delta_{\mathbf{pq}}.$$

Then  $n_q' = \sum_j n_j b_{jq}$  and  $m_p' = \sum_i a_{pi} m_i$  with  $b_{jq}$  and  $a_{pi}$  from F. Since  $\delta_{pq} = \epsilon(m_p' \otimes n_q') = \sum_i a_{pi} \epsilon(m_i \otimes n_j) b_{jq} = \sum_i a_{pi} b_{iq}$ ,

we have also  $\sum_{p} b_{pi} = \delta_{ji}$ .

Thus,

If we take, in particular,  ${}_{G}N_{F} = {}^{\star}({}_{F}M_{G})$  and the evaluation map  $\chi : M \otimes N \to F$  defined by

$$\chi(m \otimes \varphi) = (m) \varphi$$
,

we obtain, for every bimodule  $\,\,{\rm M}$  , the canonical element  $\,\,{\rm c}\,({\rm M})\,=\,{\rm c}_{_{_{\rm V}}}$  .

Given a bimodule  ${}_{F}^{M}{}_{G}$  , define the higher dual spaces  ${}^{(t)}{}_{F}{}^{M}{}_{G}$ inductively by

$$(t+1)_{F}M_{G} = *(t)_{F}M_{G}$$
.

 $^{(t)}$ M is an F-G-bimodule for t even and a G-F-bimodule for t odd.

<u>Lemma 1.2</u>. Let  $_{F}^{M}{}_{G}$  and  $_{G}^{N}{}_{F}$  be bimodules and  $\epsilon:_{F}^{M}\underset{G}{\otimes}N_{F}\rightarrow_{F}^{F}_{F}$ and  $\delta: {}_{\mathbf{c}} \mathbb{N} \overset{\otimes}{\otimes} \mathbb{M}_{\mathbf{c}} \xrightarrow{} {}_{\mathbf{c}} G_{\mathbf{c}}$  non-degenerate bilinear forms. Define the maps t η *inductively as follows:* 

$$\begin{array}{c} {}^{0}\eta = 1_{M} : {}_{F}{}^{M}{}_{G} \rightarrow {}^{(0)}{}_{M} = M ; \\ {}^{1}\eta = \overline{\epsilon} : {}_{G}{}^{N}{}_{F} \rightarrow {}^{(1)}{}_{M} = {}^{*}{}_{M} ; \\ \\ {}^{2r}\eta = \overline{\delta[({}^{2r-1}\eta)^{-1} \otimes 1_{M}]} : {}_{F}{}^{M}{}_{G} \rightarrow {}^{(2r)}{}_{M} \text{ and} \\ {}^{2r+1}\eta = \overline{\epsilon[({}^{2r}\eta)^{-1} \otimes 1_{N}]} : {}_{G}{}^{N}{}_{F} \rightarrow {}^{(2r+1)}{}_{M} . \end{array}$$

Then

$$\left[\begin{smallmatrix} 2r+1 \\ \eta \end{smallmatrix} \otimes \begin{smallmatrix} 2r+2 \\ \eta \end{smallmatrix}\right] \ (\mathtt{c}_{\underline{\varepsilon}}) \ = \ \mathtt{c}(\begin{smallmatrix} (2r) \\ M \end{smallmatrix}) \quad \text{and} \quad \left[\begin{smallmatrix} 2r \\ \eta \end{smallmatrix} \otimes \begin{smallmatrix} 2r+1 \\ \eta \end{smallmatrix}\right] \ (\mathtt{c}_{\underline{\delta}}) \ = \ \mathtt{c}(\begin{smallmatrix} (2r+1) \\ M \end{smallmatrix}).$$

<u>Proof.</u> Recall that  $c_{\varepsilon} = \sum_{p} n_{p} \otimes m_{p}$ , where  $\{m_{1}, m_{2}, \dots, m_{d}\}$ is a basis of  $_{F}^{M}$  and  $\{n_{1},n_{2},\ldots,n_{d}^{}\}$  the dual basis of  $N_{F}$  with respect to  $\epsilon$  . Hence, in order to prove the first equality, it is sufficient to show that, for  $\mbox{ m } \epsilon \mbox{ M }$  and  $\mbox{ n } \epsilon \mbox{ N }$  ,

$$\delta(n \otimes m) = (2r+1\eta(n))[2r+2\eta(m)].$$

But, 
$$(2^{r+1}\eta(n))[2^{r+2}\eta(m)] = (2^{r+1}\eta(n))[\delta[(2^{r+1}\eta)^{-1} \otimes 1_M](m)] =$$

$$= \delta[(2^{r+1}\eta)^{-1} \otimes 1_M](2^{r+1}\eta(n)) = \delta[(2^{r+1}\eta)^{-1} 2^{r+1}\eta(n) \otimes m] =$$

$$= \delta(n \otimes m).$$

Similarly, since

$$(^{2r}\eta(m))[^{2r+1}\eta(n)] = (^{2r}\eta(m))[\epsilon[(^{2r}\eta)^{-1} \otimes 1_{N}](n)] =$$

$$= \epsilon[(^{2r}\eta)^{-1} \otimes 1_{N}](^{2r}\eta(m)) = \epsilon[(^{2r}\eta)^{-1} e^{2r}\eta(m) \otimes n] =$$

$$= \epsilon(m \otimes n) ,$$

we can derive the second equality for  $c(^{(2r+1)}M)$ .

## 2. Irreducible maps

Recall the definition of an irreducible map [2]: a map  $f: X \rightarrow Y$  is called irreducible if f is neither a split monomorphism nor a split epimorphism and if, for every factorization f = f'f'', either f" is a split monomorphism or f' is a split epimorphism. Also, recall the definition of the radical of a module category. If X and Y are indecomposable modules, let rad (X,Y) be the set of all non-invertible homomorphisms. If  $X=\bigoplus_p X$  and  $Y=\bigoplus_q Y$  with indecomposable modules  $X_p$  and  $Y_q$ , define rad  $(X,Y)=\bigoplus_{p,q} p$ , rad  $(X_p, Y_q)$  , using the identification  $\text{Hom}(X, Y) = \bigoplus_{p,q} \text{Hom}(X_p, Y_q)$ . The square  $rad^2(X,Y)$  of the radical is thus the set of all homomorphisms  $f: X \to Y$  such that f = f'f'', where  $f'' \in rad(X,Z)$  and f'  $\varepsilon$  rad(Z,Y) for some module Z. Note that both rad and rad<sup>2</sup> are ideals in our module category; in particular, rad (X,Y) and  $rad^{2}(X,Y)$  are End Y - End X - submodules of the bimodule  $\operatorname{End} Y \xrightarrow{\operatorname{Hom}(X,Y)} \operatorname{End} X$ . For indecomposable X and Y, the elements in rad  $(X,Y) \setminus \text{rad}^2(X,Y)$  are just the irreducible maps. In this case, we write  $Irr(X,Y) = rad(X,Y)/rad^{2}(X,Y)$ , and call Irr(X,Y) the bimodule of irreducible maps (see [5]). In what follows, our main objective is to select a direct complement of rad 2(X,Y) in rad(X,Y) which is an EndY-EndX-submodule, and realize in this way

Irr(X,Y) as a subset of Hom(X,Y) rather than just as a factor group. We shall select such complements inductively, using Auslander-Reiten sequences.

Recall that an exact sequence  $0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0$  is called an Auslander-Reiten sequence if both maps f and g are irreducible. This implies that both modules X and Z are indecomposable, X is not injective and Z is not projective. Conversely, given an indecomposable non-injective module X, there exists an Auslander-Reiten sequence starting with X, and also dually, given an indecomposable non-projective Z, there is an Auslander-Reiten sequence ending with Z. Moreover, if  $0 \to X \xrightarrow{f} Y \to Z \to 0$  is an Auslander-Reiten sequence and  $h: X \to X'$  is a map which is not a split monomorphism, then there exists  $\alpha: Y \to X'$  such that  $h = \alpha f$ . (For all these properties, we refer to [2]).

In the sequel, we will consider direct sums of the form  $\oplus$  U(Y), where U(Y) is an abelian group depending on Y, with YY ranging over "all" indecomposable modules. Here, of course, we choose first fixed representatives Y of all isomorphism classes of indecomposable modules and then index the direct sum by these representatives. In fact, all direct sum which will occur in this way will have even only a finite number of non-zero summands.

End 
$$X = G \oplus rad End X$$
.

Assume that, for every indecomposable module  $\,Y$  , there is given a direct complement  $\,M(X,Y)\,$  of  $\,{\rm rad}^2(X,Y)\,$  in  $\,$  End  $\,Y\,$  rad $(X,Y)_{\,\,G}$  . Let

$$0 \longrightarrow x \xrightarrow{(\overline{\chi}_{M(X,Y)})_{Y}} \oplus {\star_{M(X,Y)}} \otimes x \xrightarrow{\pi} z \longrightarrow 0$$

be exact. Then, this is an Auslander-Reiten sequence. Moreover, G embeds into the endomorphism ring End Z of Z as a radical complement, and for every Y, there is an embedding  $\sigma$  of M(X,Y) onto a complement of  $rad^2(Y,Z)$  in  $G^{rad}(Y,Z)$  End Y such that

$$\chi_{\sigma^*M(X,Y)} = \pi \mid {}^*M(X,Y) \otimes Y$$
.

Proof. Let

$$0 \longrightarrow x \xrightarrow{(f'_{Y,p})_{Y,p}} \bigoplus_{Y p=1}^{d_{Y}} Y \longrightarrow z' \longrightarrow 0$$

be an Auslander-Reiten sequence starting with X, where  $f'_{Y,p}: X \to Y$  for  $1 \le p \le d_Y$ . Then the residue classes of the elements  $f'_{Y,1}$ ,  $f'_{Y,2},\ldots,f'_{Y,d_Y}$  form a basis of the G-vector space  $\mathrm{rad}(X,Y)_G/\mathrm{rad}^2(X,Y)_G$  (see Lemma 2.5 of [5]). Let  $f_{Y,1}, f_{Y,2},\ldots, f_{Y,d_Y}$  be a G-basis of M(X,Y). By the factorization property of Auslander-Reiten sequences, there is a map

$$\alpha : \bigoplus_{\mathbf{Y}} \mathbf{d}_{\mathbf{Y}} \mathbf{Y} \longrightarrow \bigoplus_{\mathbf{P}=\mathbf{1}} \mathbf{d}_{\mathbf{Y}} \mathbf{Y}$$

such that  $\alpha \circ (f_{Y,p}')_{Y,p} = (f_{Y,p})_{Y,p}$ . It follows that  $\alpha$  is an automorphism. For, let  $E = End (\bigoplus \bigoplus Y)$  and consider the residue  $\alpha = 0$  of  $\alpha$  in E/rad E. Also, consider the factor group

$$M = rad(X, \bigoplus_{Y} \bigoplus_{P=1}^{d_{Y}} Y)/rad^{2}(X, \bigoplus_{Y} \bigoplus_{P=1}^{d_{Y}} Y) ,$$

and let  $\overline{f}$  and  $\overline{f}'$  be the residue classes of  $f=(f_{Y,p})_{Y,p}$  and  $f'=(f_{Y,p}')_{Y,p}$ , respectively. Then rad E annihilates M, and the equality  $\overline{\alpha}$   $\overline{f}'=\overline{f}$  shows that  $\overline{\alpha}$  induces base changes between the bases  $(\overline{f}_{Y,p})_p$  and  $(f_{Y,p}')_p$  of Irr(X,Y). This implies that  $\overline{\alpha}$  is invertible. Since rad E is nilpotent,  $\alpha$  is invertible, as well. Thus, we can form the following commutative diagram

$$0 \longrightarrow x \xrightarrow{f'} \bigoplus \bigoplus^{d}_{Y} Y \longrightarrow z' \longrightarrow 0$$

$$\parallel \qquad \qquad \downarrow^{\alpha} \qquad \qquad \downarrow^{\beta}$$

$$0 \longrightarrow x \xrightarrow{f} \bigoplus \bigoplus^{d}_{Y} Y \xrightarrow{\pi} z \longrightarrow 0 ,$$

where both  $\,\alpha\,$  and  $\,\beta\,$  are isomorphisms. As a consequence, also the lower sequence is an Auslander-Reiten sequence.

Note that we can rewrite  $\begin{array}{c} d_Y \\ \theta^Y \end{array} Y$  as  $^*M(X,Y) \underset{End}{\otimes} Y$ , and y = 1  $\stackrel{d}{=} 1$   $\stackrel{d$ 

and

$$\overline{\overline{X}}_{M(X,Y)}(x) = \sum_{p=1}^{d_{Y}} \phi_{Y,p} \otimes f_{Y,p}(x)$$

is identified with  $(f_{Y,p}(x))_p$ .

Now, M(X,Y) is a left G-module, and

$$\overline{\chi}_{M(X,Y)}$$
 :  $X \longrightarrow {}^{\star}_{M(X,Y)} \otimes Y$ 
End  $Y$ 

is a G-module homomorphism. Hence, under  $(\stackrel{-}{\chi}_{M(X,Y)})_Y$ , the module X becomes a G-submodule of  $\bigoplus$  \*M(X,Y)  $\otimes$  Y, and therefore also the Y End Y factor module Z has a left G-module structure. Thus, G embeds canonically into End Z and in this way, G becomes a radical

End X/rad End X 
$$\approx$$
 End Z/rad End Z ,

which is always valid for the outer terms of an Auslander-Reiten sequence.

complement. This follows from the canonical isomorphism

The restriction of  $\pi$  to  ${}^*M(X,Y) \otimes Y$  defines a map  $\sigma$  of  ${}^*M(X,Y)$  into Hom(Y,Z) which is a G-End Y-homomorphism. If we denote again by  $\varphi_{Y,1}, \ \varphi_{Y,2}, \ldots, \ \varphi_{Y,d_Y}$  an End Y/rad End Y-basis of  ${}^*M(X,Y)$ , then  $\pi \mid {}^*M(X,Y) \otimes Y \longrightarrow Z$  can be identified with End Y

$$(\phi_{Y,p})_p \ : \ \ \overset{d}{\underset{p=1}{\bigoplus}}^Y \ Y \ \stackrel{\circ}{\sim} \ \ \overset{d}{\underset{p=1}{\bigoplus}}^Y \quad \phi_{Y,p} \ \otimes \ Y \ \longrightarrow \ z \ .$$

Again, using Lemma 2.5 of [5], we see that the residue classes of  ${}^{\varphi}_{Y,1}, {}^{\varphi}_{Y,2}, {}^{\varphi}_{Y,0}, {}^{\varphi}_{Y,0}$  in Irr(Y,Z) form an End Y/rad End Y-basis and that  ${}^{\star}_{M}(X,Y)$  is therefore mapped injectively onto a complement of rad ${}^{2}_{M}(Y,Z)$  in  ${}_{G}^{rad}(Y,Z)$  End Y. This completes the proof.

Now, assume that X is an indecomposable, non-injective module and that G is a radical complement in End X. If there are given direct complements M(X,Y) of  $\operatorname{rad}^2(X,Y)$  in  $\operatorname{End} Y\operatorname{rad}(X,Y)_G$ , then the  $\sigma^*M(X,Y)$  are direct complements of  $\operatorname{rad}^2(Y,Z)$  in  $\operatorname{Grad}(Y,Z)_{\operatorname{End} Y}$ , and the Auslander-Reiten sequence starting with X is of the form

$$0 \longrightarrow x \xrightarrow{(\overline{\chi}_{M}(X,Y))_{Y}} \oplus {}^{\star}_{M}(X,Y) \otimes Y \xrightarrow{(\chi_{\sigma}{}^{\star}_{M}(X,Y))_{Y}} z \longrightarrow 0 .$$

Denote by c(M(X,Y)) the canonical element in  ${}^*M(X,Y) \otimes M(X,Y)$ . Now 1:  $M(X,Y) \longrightarrow Hom(X,Y)$  and  $\sigma: {}^*M(X,Y) \longrightarrow Hom(Y,Z)$ , and thus we have a canonical map

$$*_{M(X,Y)} \otimes M(X,Y) \longrightarrow \text{Hom}(X,Z)$$
,

namely  $\sigma \otimes \iota$  followed by the composition map  $\mu$  .

PROPOSITION 2.2. Under the map

Observe that, for a fixed module X, there is only a finite number of modules Y such that  $M(X,Y) \stackrel{\approx}{\sim} Irr(X,Y) \neq 0$ ; therefore, we may form the sum  $\sum\limits_{Y} c(M(X,Y))$ .

Proof of Proposition 2.2. First, we are going to show that c(M(X,Y)) maps onto  $\chi_{O^*M(X,Y)} \circ \overline{\chi}_{M(X,Y)}$ . Let  $f_1, f_2, \ldots, f_d$  be an End Y/rad End Y-basis of End Y/rad End Y = M(X,Y), and  $\phi_1, \phi_2, \ldots, \phi_d$  the corresponding dual basis in  $\phi_1, \phi_2, \ldots, \phi_d$  Then, for  $\chi \in X$ , we have

$$\overline{\chi}_{M}(x) = \sum_{p} \phi_{p} \otimes f_{p}(x)$$
,

and for  $\phi \epsilon^* M$ ,  $y \epsilon Y$ ,

$$\chi_{\sigma^*_{\mathbf{M}}}(\phi \otimes y) = \sigma(\phi)(y)$$
.

Thus,

$$\chi_{\sigma^{\bigstar}_{M}} \, \, \overline{\chi}_{M}(\mathbf{x}) \, = \, \chi_{\sigma^{\bigstar}_{M}} \, \, (\overset{\Sigma}{p} \, \, \varphi_{p} \, \otimes \, f_{p}(\mathbf{x})) \, = \, \overset{\Sigma}{p} \, \, \sigma(\varphi_{p}) \, (f_{p}(\mathbf{x})) \, \, .$$

This shows that  $\chi_{\sigma^*M}$   $\stackrel{\longleftarrow}{\chi_M}$  is equal to  $\stackrel{\longleftarrow}{\Sigma} \sigma(\varphi_p) f_p$ , and this is the image of  $\stackrel{\longleftarrow}{\Sigma} \varphi_p \otimes f_p = c(M(X,Y))$  under  $\mu(\sigma \otimes 1)$ . As a consequence, we conclude that under the map  $\bigoplus_Y^* M(X,Y) \otimes M(X,Y) \stackrel{\bigoplus(\sigma \otimes 1)}{\longrightarrow} Y$   $\bigoplus_Y^* Hom(Y,Z) \otimes Hom(X,Y) \stackrel{\longleftarrow}{\longrightarrow} Hom(X,Z)$ , the element  $\stackrel{\longleftarrow}{\Sigma} c(M(X,Y))$  goes Y to  $\stackrel{\longleftarrow}{\Sigma} \chi_{\sigma^*M}(X,Y)$   $\stackrel{\longleftarrow}{\chi}_{M}(X,Y)$ , which is the composite of the two maps in the corresponding Auslander-Reiten sequence and thus zero. The proof is completed.

Let us point out that, in what follows, we shall not specify any longer the embedding  $\sigma$  of  ${}^*M(X,Y)$  into Hom(Y,Z), but shall simply consider  ${}^*M(X,Y)$  to be a subset of Hom(Y,Z).

<u>REMARK.</u> Let us underline the use of the two distinct tensor products  $M(X,Y) \otimes {}^*M(X,Y)$  and  ${}^*M(X,Y) \otimes M(X,Y)$ . Whereas the first one is used for the ordinary evaluation map

$$\chi : M(X,Y) \otimes {}^*M(X,Y) \longrightarrow End Y/rad End Y$$

given by  $\chi(f\otimes \phi)=f(\phi)$ , it is the second one which has to be used for the composition map  $\mu$ . Namely, using the above embedding  $^*M(X,Y) \longrightarrow Hom(Y,Z)$ , we can consider

 ${}^{\star}M(X,Y) \otimes M(X,Y) \xrightarrow{\longleftarrow} Hom(Y,Z) \otimes Hom(X,Y) \xrightarrow{\mu} Hom(X,Z) \ ,$  and  $\mu(\varphi \otimes f) = \varphi \circ f$  .

## 3. The preprojective modules

Now, let us consider the particular case of the irreducible maps between indecomposable preprojective  $R(200,\Omega)$ -modules. First, recall the way in which these modules can be inductively obtained from the indecomposable projective ones.

For each i  $\epsilon$  I , there is an indecomposable projective  $R(\mathbb{Z},\Omega)$ -module P(i). Indeed, denoting by  $e_i$  the primitive idempotent of  $R(\mathbb{Z},\Omega)$  corresponding to the identity element of the i

factor  $F_i$  in  $R_0 = \prod_i F_i$ ,  $P(i) = e_i R(\mathbf{Z},\Omega)$ . Note that P(i)/rad P(i) is the simple  $R(\mathbf{Z},\Omega)$ -module corresponding to the vertex i which defines P(i) uniquely up to an isomorphism. Moreover, note that End  $P(i) = F_i$ , and thus it is a division ring. The irreducible maps between projective modules are always rather easy to determine. Here, for  $R(\mathbf{Z},\Omega)$ , there are irreducible maps from P(j) to P(i) if and only if  $i \to j$  in  $\Omega$ . In fact,  $i \to j$  can be easily embedded in Hom P(j), P(i) in such a way that

$$i^{M}_{j} \oplus rad^{2}(P(j), P(i)) = rad(P(j), P(i))$$

as  $F_i$ - $F_j$ -bimodules. This follows either from the explicit description of the modules P(i) given in [3], or from the fact that  $\Theta_iM_j$  is a direct complement of  $\operatorname{rad}^2R(\mathcal{U},\Omega)$  in  $\operatorname{rad}R(\mathcal{U},\Omega)$ . As a result, given two indecomposable projective  $R(\mathcal{U},\Omega)$ -modules P and P', we can always choose a direct complement M(P,P') of  $\operatorname{rad}^2(P,P')$  in  $\operatorname{End}P'$   $\operatorname{rad}(P,P')$  and we can identify these M(P,P') with the given bimodules  $P_iM_j$ , where  $P_i$  is  $P_i$ .

Now, the indecomposable preprojective modules can be derived from the projective ones by using powers of the Coxeter functor  $C^-$  (as defined in [3]) or of the Auslander-Reiten translation  $A^-$  = Tr D ("transpose of dual" of [2], and also [1]). Thus, we denote by P(i,r) the module obtained from P(i) by applying the  $r^{th}$  power of one of the mentioned constructions. (It is clear from the uniqueness result in [3] that  $C^{-r}$  P(i)  $\approx A^{-r}$  P(i).)

<u>LEMMA 3.1.</u> Assume that X and Y are indecomposable modules and that there exists an irreducible map  $X \to Y$ . If one of the modules X, Y is preprojective, then both are. Furthermore, if X = P(i,r) and Y = P(j,s), then either s = r and i + j, or s = r+1 and  $i \to j$ .

<u>Proof.</u> This lemma is well-known, so let us just outline a proof. Using shifts by powers of the Coxeter functors  $C^+$  and  $C^-$  (see [3]) or of the Auslander-Reiten translations A = D Tr and  $A^- = Tr$  D (see [2] and [1]), we can assume that X is projective. If Y is not projective, then we get from the Auslander-Reiten sequence ending with Y, an irreducible map from AY to X.

Since X is projective, this map cannot be an epimorphism and thus it has to be a monomorphism. Consequently, AY is projective.

Now, in view of Proposition 2.1, we obtain by induction on the "layer" r of the indecomposable preprojective  $R(M,\Omega)$ -modules P(i,r) the following result.

PROPOSITION 3.2. a) If we choose, for any two indecomposable projective modules P and P', a direct complement M(P,P') of rad $^2(P,P')$  in  $_{End\ P}$  rad $^2(P,P')$  in  $_{End\ P}$  rad $^2(P,P')$  in rad  $^2(P,P')$  in rad  $^2(P,P')$  for any indecomposable preprojective modules P, P'.

 $b) \quad \textit{If we identify, for any arrow} \quad i \to j \\ \textit{the bimodule} \quad \texttt{M(P(j), P(i))} \quad \textit{with} \quad \underset{i}{\overset{M}{\text{i}}} \quad , \text{ then this yields an} \\ \textit{identification of any} \quad \texttt{M(P(j,r), P(i,r))} \quad \textit{with} \quad \underset{i}{\overset{(2r)}{\text{i}}} \quad \underset{j}{\overset{M}{\text{i}}} \quad \textit{and any} \\ \texttt{M(P(i,r), P(j,r+1)} \quad \textit{with} \quad \underset{i}{\overset{(2r+1)}{\text{i}}} \quad \textit{for} \quad i \to j \ . \\ \end{aligned}$ 

PROPOSITION 3.3. Every map between two indecomposable preprojective modules is a sum of composites of maps from the various M(P,P').

<u>Proof.</u> Let Y be an indecomposable preprojective module, say Y = P(i,r). Then the radical of the endomorphism ring E of

 $\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath}\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremat$ 

by an arbitrary complement of  $Rad^2E$  in Rad E. So we may choose as a complement the direct sum of M(P(j,s), P(j',s')).

# 4. Abstract definition of the full subcategory of the preprojective modules

First, let us introduce the following notation indicating the operation of the division rings  $\,F_{\,\underline{i}}\,$  and  $\,F_{\,\underline{j}}\,$  : For  $\,\underline{i}\,\, \rightarrow \,\underline{j}$  , put

$${}^{2r}_{i}M_{j} = {}^{(2r)}_{i}({}_{i}M_{j})$$
 and  ${}^{2r+1}_{j}M_{i} = {}^{(2r+1)}_{i}({}_{i}M_{j})$ .

Now, define the category  $P(\mathcal{R},\Omega)$  as follows: The objects of  $P(\mathcal{R},\Omega)$  are pairs (i,r),  $i \in I$ ,  $r \geq 0$  with the endomorphism rings  $F_i$ . For  $i \Rightarrow j$ ,

$$M((j,r),(i,r)) = {2r \atop i}M_{i}$$

and

$$M((i,r),(j,r+1)) = {2r+1 \atop j}M_i$$
.

Denote by  $F(R,\Omega)$  the free category generated by these morphisms using the tensor products over  $F_i$ . Furthermore, for every (j,r), take

$$\begin{split} c(j,r) &= \sum\limits_{\substack{i \rightarrow j}} c\binom{2r}{i}M_{j} + \sum\limits_{\substack{j \rightarrow k}} c\binom{2r+1}{k}M_{j} ) \in \\ & \bigoplus\limits_{\substack{i \rightarrow j}} \binom{2r+1}{j}M_{i} \otimes \frac{2r}{i}M_{j} ) \oplus \bigoplus\limits_{\substack{j \rightarrow k}} \binom{2r+2}{j}M_{k} \otimes \frac{2r+1}{k}M_{j} ) \ , \end{split}$$

and denote by J the category ideal generated by all elements c(j,r). The category  $P(\partial_r,\Omega)$  is then defined as the factor category of  $F(\partial_r,\Omega)$  by the ideal J.

Observe that the definition of  $P(M,\Omega)$  requires only the knowledge of the bimodules  $i_j^M$  for  $i \to j$  (and neither the corresponding bimodules  $i_j^M$ , nor the bilinear forms  $\epsilon_i^j$  and  $\epsilon_j^i$ ).

PROPOSITION 4.1. The full subcategory of the preprojective modules of the category of all T( $\mathbf{p}_{i},\Omega$ )-modules is equivalent to  $P(\mathbf{p}_{i},\Omega)$ .

<u>Proof.</u> Using Proposition 3.2, there is a canonical functor  $\Gamma$  from  $F(0,\Omega)$  to the subcategory of preprojective  $T(0,\Omega)$ -modules given by the choice of M(P(i),P(j))=M for projective modules P(i),P(j) where  $j \to i$ . Also by Proposition 3.3,  $\Gamma$  is surjective. Moreover, according to Proposition 2.2, the elements C(j,r) are mapped to zero.

Conversely, let a morphism  $f:(j,r) \to (j',r')$  from  $F(\pmb{u},\Omega)$  be mapped under  $\Gamma$  to zero. We are going to show that f must lie in the ideal J. This is clear if r=r'; for, then f=0. Thus, assume that  $f \neq 0$  and proceed by induction on r'-r. Now j and r are fixed; let  $\{\ldots g_p\ldots\}$  be the union of bases of all vector spaces  $\{ \begin{pmatrix} 2r \\ i \end{pmatrix} \}$  for all i with  $i \to j$  and  $\{ \begin{pmatrix} 2r+1 \\ k \end{pmatrix} \}$  for all k with  $j \to k$ , and let  $\{\ldots g_p',\ldots\}$  be the union of the corresponding dual bases of  $\{ \begin{pmatrix} 2r+1 \\ j \end{pmatrix} \}$  and  $\{ \begin{pmatrix} 2r+2 \\ j \end{pmatrix} \}$  for  $\{ k \}$   $\{ k \}$ .

Thus,  $c(j,r) = \sum\limits_{p} g_p' \otimes g_p$ . Now,  $f = \sum\limits_{p} h_p \otimes g_p$ , where  $h_p$  is a morphism of  $F(\mathcal{M},\Omega)$  either from (i,r) or (k,r+1) to (j',r'). Since there is an Auslander-Reiten sequence

$$0 \longrightarrow P(j,r) \xrightarrow{(\Gamma(g_p))_p} Q \xrightarrow{(\Gamma(g_p'))_p} P(j,r+1) \longrightarrow 0$$

and since

$$0 = \Gamma(f) = \sum_{p} \Gamma(h_{p}) \Gamma(g_{p}) ,$$

we can factor  $(\Gamma(h_p))_p:Q\to P(j',r')$  through  $(\Gamma(g'_p))_p$ . Hence, there is a homomorphism  $\tilde{u}:P(j,r+1)\to P(j',r')$  such that

$$\Gamma(h_p) = \tilde{u} \Gamma(g_p')$$
.

And, since  $\Gamma$  is surjective, we can find  $u:(j,r+1)\to (j',r')$  in  $F(\mathcal{W},\Omega)$  such that  $\Gamma(u)=\tilde{u}$ . Obviously, the elements  $h_p-u\otimes g_p'$  lie in the kernel of  $\Gamma$ , and therefore, by induction, they belong to J. Consequently,

$$f = \sum_{p} h_{p} \otimes g_{p} = \sum_{p} (h_{p} - u \otimes g_{p}') \otimes g_{p} + \sum_{p} u \otimes g_{p}' \otimes g_{p}$$

also belongs to J ; for,  $\sum u \otimes g_p' \otimes g_p = u \otimes c(j,r)$  .

# 5. Proof of the theorem

The proof of the theorem consists in identifying the additive structure of  $\Pi(\mathbf{M})$  with a factor of a subcategory of  $F(\mathbf{M},\Omega)$ . Indeed, we may consider both  $F(\mathbf{M},\Omega)$  and  $P(\mathbf{M},\Omega)$  defined in section 4 as abelian groups forming the direct sum of all  $\operatorname{Hom}((i,r),(j,s))$ . Denote by  $\Phi(\mathbf{M},\Omega)$  and  $\Pi(\mathbf{M},\Omega)$  the respective subgroups of all  $\operatorname{Hom}((i,0),(j,s))$ . Then, both  $\Phi(\mathbf{M},\Omega)$  and  $\Pi(\mathbf{M},\Omega)$  contain a subring  $R = \bigoplus_{i,j} \operatorname{Hom}((i,0),(j,0))$  which is obviously isomorphic to (i,j). Furthermore, under the composition in  $\Pi(\mathbf{M},\Omega)$ ,  $\Pi(\mathbf{M},\Omega)$  is a right  $R(\mathbf{M},\Omega)$ -module; for, if  $f:(i,0)\to(j,s)$  and  $a:(k,0)\to(i,0)$  from R, then  $fa:(k,0)\to(j,s)$  in  $\Pi(\mathbf{M},\Omega)$ .

PROPOSITION 5.1. If  $(\mathbf{A},\Omega)$  R  $(\mathbf{A},\Omega)$  is isomorphic to the direct sum of all  $\mathbf{A}$  preprojective R  $(\mathbf{A},\Omega)$  -modules (each occurring with multiplicity one).

Y = indecomposable

<u>Proof.</u> Using the notation of section 3, the indecomposable preprojective R-modules are P(j,s) , j  $\epsilon$  I , s  $\geq$  0. In particular, P(j,0) are the indecomposable projective R-modules and thus  $R_{R} = \bigoplus_{i \; \epsilon \; I} P(i,0). \quad \text{For every R-module} \quad X_{R} \; ,$ 

$$X_{R} \approx \text{Hom}(_{R}^{R}R_{R}, X_{R}) = \text{Hom}(_{R}^{[\bigoplus P(i,0)]}, X_{R}) =$$

$$= \left[ \operatorname{Hom}(\bigoplus_{i} P(i,0)_{R}, X_{R}) \right]_{R} = \left[ \bigoplus_{i} \operatorname{Hom}(P(i,0)_{R}, X_{R}) \right]_{R}.$$

Hence,

$$P(j,s) = \left[ \bigoplus_{i} Hom(P(i,0), P(j,s)) \right]_{R}$$

and thus under the identification of P(j,s) with (j,s) and Hom(P(i,0), P(j,s)) with the maps in  $\Pi(\pmb{\eta},\Omega)$ , we get the statement.

Now, define the map  $\Delta: \mathcal{T}(\mathbf{M}) \to F(\mathbf{M},\Omega)$  as follows. First, the morphisms in  $F(\mathbf{M},\Omega)$  can be described in the following way: For an (unoriented path)  $\mathbf{w} = \mathbf{i}_{n+1} - \mathbf{i}_n - \ldots - \mathbf{i}_2 - \mathbf{i}_1$  of  $\mathcal{M}$ , call the number of arrows  $\mathbf{i}_{t+1} \leftarrow \mathbf{i}_t$ ,  $1 \leq t \leq n$ , in  $\Omega$  the layer  $\lambda(\mathbf{w})$  of  $\mathbf{w}$ . Then, the morphisms in  $F(\mathbf{M},\Omega)$  are the elements of the tensor products

$$\begin{smallmatrix}r_n\\i_{n+1}i_n\end{smallmatrix}\otimes\ldots\otimes\begin{smallmatrix}r_2\\i_3i_2\end{smallmatrix}\otimes\begin{smallmatrix}r_1\\i_2i_1\end{smallmatrix},$$

where 
$$r_t = 2\lambda(i_t - i_{t-1} - \dots - i_2 - i_1) + \begin{cases} 0 & \text{if } i_{t+1} \to i_t \\ 1 & \text{if } i_{t+1} \leftarrow i_t \end{cases}$$
.

Now, the map  $\Delta$  is defined by

$$\underset{\overset{1}{i_{n+1}}\overset{1}{i_{n}}}{\overset{M}}\otimes\ldots\otimes\underset{\overset{1}{i_{3}}\overset{M}{i_{2}}}{\overset{1}{\otimes}}\underset{\overset{1}{i_{2}}\overset{M}{i_{1}}}{\overset{r}{\otimes}}\underset{\overset{1}{i_{1}}\overset{r}{\otimes}\ldots\otimes\overset{r_{1}}{i_{1}}\overset{r}{\otimes}}\underset{\overset{1}{i_{1}}\overset{r}{\otimes}}{\overset{r_{1}}{\otimes}}\underset{\overset{1}{i_{1}}\overset{r}{\otimes}}{\overset{r_{1}}{\otimes}}\underset{\overset{1}{i_{2}}\overset{r}{\otimes}\overset{r_{1}}{\otimes}}\underset{\overset{1}{i_{1}}\overset{r}{\otimes}}{\overset{r_{1}}{\otimes}}\underset{\overset{1}{i_{1}}\overset{r}{\otimes}}{\overset{r_{1}}{\otimes}}\underset{\overset{1}{i_{2}}\overset{r}{\otimes}}{\overset{r_{1}}{\otimes}}\underset{\overset{1}{i_{1}}\overset{r}{\otimes}}{\overset{r_{1}}{\otimes}}\underset{\overset{1}{i_{2}}\overset{r}{\otimes}}{\overset{r_{1}}{\otimes}}\underset{\overset{1}{i_{2}}\overset{r}{\otimes}}{\overset{r_{1}}{\otimes}}\underset{\overset{1}{i_{2}}\overset{r}{\otimes}}{\overset{r_{1}}{\otimes}}\underset{\overset{1}{i_{2}}\overset{r}{\otimes}}{\overset{r_{1}}{\otimes}}\underset{\overset{1}{i_{2}}\overset{r}{\otimes}}{\overset{r_{1}}{\otimes}}\underset{\overset{1}{i_{2}}\overset{r}{\otimes}}{\overset{r_{1}}{\otimes}}\underset{\overset{1}{i_{2}}\overset{r}{\otimes}}{\overset{r_{1}}{\otimes}}\underset{\overset{1}{i_{2}}\overset{r}{\otimes}}{\overset{r_{1}}{\otimes}}\underset{\overset{1}{i_{2}}\overset{r}{\otimes}}{\overset{r_{1}}{\otimes}}\underset{\overset{1}{i_{2}}\overset{r}{\otimes}}{\overset{r_{1}}{\otimes}}\underset{\overset{1}{i_{2}}\overset{r}{\otimes}}{\overset{r_{1}}{\otimes}}\underset{\overset{1}{i_{2}}\overset{r}{\otimes}}{\overset{r_{1}}{\otimes}}\underset{\overset{1}{i_{2}}\overset{r}{\otimes}}{\overset{r_{1}}{\otimes}}\underset{\overset{1}{i_{2}}\overset{r}{\otimes}}{\overset{r_{1}}{\otimes}}\underset{\overset{1}{i_{2}}\overset{r}{\otimes}}{\overset{r_{1}}{\otimes}}\underset{\overset{1}{i_{2}}\overset{r}{\otimes}}{\overset{r_{1}}{\otimes}}\underset{\overset{1}{i_{2}}\overset{r}{\otimes}}{\overset{r_{1}}{\otimes}}\underset{\overset{1}{i_{2}}\overset{r}{\otimes}}{\overset{r_{1}}{\otimes}}\underset{\overset{1}{i_{2}}\overset{r}{\otimes}}{\overset{r_{1}}{\otimes}}\underset{\overset{1}{i_{2}}\overset{r}{\otimes}}{\overset{r_{1}}{\otimes}}\underset{\overset{1}{i_{2}}\overset{r}{\otimes}}{\overset{r_{1}}{\otimes}}\underset{\overset{1}{i_{2}}\overset{r}{\otimes}}{\overset{r_{1}}{\otimes}}\underset{\overset{1}{i_{2}}\overset{r}{\otimes}}\overset{r_{1}}{\otimes}\underset{\overset{1}{i_{2}}\overset{r}{\otimes}}\overset{r_{1}}{\otimes}\underset{\overset{1}{i_{2}}\overset{r}{\otimes}}\overset{r_{1}}{\overset{r_{1}}\overset{r}{\otimes}}\underset{\overset{1}{i_{2}}\overset{r}{\otimes}}\overset{r_{1}}{\overset{r_{1}}\overset{r}{\otimes}}\underset{\overset{1}{i_{2}}\overset{r}{\otimes}}\overset{r_{1}}{\overset{r_{1}}\overset{r}{\otimes}}\underset{\overset{1}{i_{2}}\overset{r}{\otimes}}\overset{r_{1}}{\overset{r_{1}}\overset{r}{\otimes}}\overset{r_{1}}{\overset{r_{1}}\overset{r}{\overset{r}{\otimes}}}\overset{r_{1}}{\overset{r_{1}}\overset{r}{\otimes}}\overset{r_{1}}{\overset{r_{1}}\overset{r}{\otimes}}\overset{r_{1}}{\overset{r_{1}}\overset{r}{\otimes}}\overset{r_{1}}{\overset{r_{1}}\overset{r}{\otimes}}\overset{r_{1}}{\overset{r_{1}}\overset{r_{1}}{\overset{r_{1}}\overset{r}{\otimes}}\overset{r_{1}}{\overset{r_{1}}\overset{r}{\otimes}}\overset{r_{1}}{\overset{r_{1}}\overset{r_{1}}{\overset{r_{1}}\overset{r}{\otimes}}}\overset{r_{1}}{\overset{r_{1}}\overset{r_{1}}{\overset{r_{1}}\overset{r}{\otimes}}\overset{r_{1}}{\overset{r_{1}}\overset{r_{1}}{\overset{r_{1}}\overset{r_{1}}{\overset{r_{1}}\overset{r_{1}}{\overset{r_{1}}\overset{r_{1}}{\overset{r_{1}}\overset{r_{1}}{\overset{r_{1}}\overset{r_{1}}{\overset{r_{1}}\overset{r_{1}}{\overset{r_{1}}\overset{r_{1}}{\overset{r_{1}}}\overset{r_{1}}{\overset{r_{1}}\overset{r_{1}}{\overset{r_{1}}\overset{r_{1}}{\overset{r_{1}}\overset{r_{1}}{\overset{r_{1}}\overset{r_{1}}{\overset{r_{1}}\overset{r_{1}}{\overset{r_{1}}\overset{r_{1}}{\overset{r_{1}}\overset{r_{1}}{\overset{r_{1}}\overset{r_{1}}{\overset{r_{1}}\overset{r_{1}}{\overset{r_{1}}\overset{r_{1}}{\overset{r_{1}}\overset{r_{1}}{\overset{r_{1}}}\overset{r_{1}}{\overset{r_{1}}\overset{r_$$

where  $r_{\eta}$  are the maps of Lemma 1.2 for  $M = M_{\eta}$  and  $N = M_{\eta}$ .

From the definition of  $\Phi(\mathbf{M},\Omega)$  , it is clear that  $\Phi(\mathbf{M},\Omega)$  is just the image of  $T(\mathbf{M})$  under  $\Delta$ . Also,  $\Delta$  is obviously  $R(\mathbf{M},\Omega)$  - linear.

LEMMA 5.2. 
$$\Delta(\langle c \rangle) = J \cap \Phi(\Omega, \Omega)$$
.

<u>Proof.</u> By definition,  $c = \sum_{j} (\sum_{j} c_{j}^{i}) = \sum_{j} c_{j}(j)$ ; note that  $c(j) = e_{j} c_{j} e_{j}$ , where  $e_{j}$  is the idempotent of  $T_{\bullet\bullet}$  corresponding

to the identity of  $F_j$ ; thus <c> is the ideal generated by all c(j)'s. Hence, the statement follows from Lemma 1.2 taking into account that, by definition,

 $\Delta(1 \otimes 1 \otimes \ldots \otimes c(j) \otimes \ldots \otimes 1) = 1 \otimes 1 \otimes \ldots \otimes c(^{r}M) \otimes \ldots \otimes 1$ .

Now, from Lemma 5.2, it follows that  $\Delta$  defines an isomorphism of  $\Pi(\mathbf{M}) = T(\mathbf{M})/\langle c \rangle$  onto  $\Pi(\mathbf{M},\Omega) = \Phi(\mathbf{M},\Omega)/J \cap \Phi(\mathbf{M},\Omega)$ . This completes the proof of the theorem.

The corollaries follow from the results in [2].

#### REFERENCES

- [1] Auslander, M., Platzeck, M.I. and Reiten, I.: Coxeter functors without diagrams. Trans. Amer. Math. Soc. 250 (1979), 1-46.
- [2] Auslander, M. and Reiten, I.: Representation theory of artin algebras III. Comm. Algebra 3 (1975), 239-294; V. Comm. Algebra 5 (1977), 519-554.
- [3] Dlab, V. and Ringel, C.M.: Indecomposable representations of graphs and algebras. Memoirs Amer. Math. Soc. No.173 (Providence, 1976).
- [4] Gelfand, I.M. and Ponomarev, V.A.: Model algebras and representations of graphs. Funkc. anal. i prilož. 13 (1979), 1-12.
- [5] Ringel, C.M.: Report on the Brauer-Thrall conjectures: Rojter's theorem and the theorem of Nazarova and Rojter. These Lecture Notes.
- [6] Rojter, A.V.: Gelfand-Ponomarev algebra of a quiver. Abstract, 2nd ICRA (Ottawa, 1979).
- [7] Riedtmann, Ch.: Algebren, Darstellungsköcher, Überlagerungen und zurück. Comment. Math. Helv., to appear.

Department of Mathematics Carleton University Ottawa, Ontario K1S 5B6 Canada

Fakultät für Mathematik Universität D-4800 Bielefeld West Germany