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The notions of a quiver and its representations were introduced by P. Gabriel 
[6] in order to formalize certain matrix calculations and subspace arguments 
and in order to investigate algebras of finite representation type. Recall that a 
quiver F is given by a set F 0 of "points" and a set F~ of "arrows" such that for 
every arrow eeF1, there is assigned its source c(eF 0 and its sink c( 'eF o. 

Let k be a field. A representation V=(V~,cp~) of F is given by finite 
dimensional vector spaces V~, for ieF 0, and linear maps q~: V,--~ V~,,, for ~eF~. 
(Maps will be written on the right of the argument, thus fg  denotes the 
composition of first f then g.) If V~ is of dimension di, then we call d=(d3i the 
dimension type of V, and usually we will assume that V~ = U'. If we fix a', the set 
of all representations of F of dimension type d forms the affine space 

A IF, d] = l-[ H ~  kd'', ke~") �9 
ct~F1 

The ring of regular functions on &[F,d]  is 

k[F, d] =k[X~st]~eF~, 1 <=s<=d,, 1 <=t<d~,,], 

the corresponding ring of rational functions will be denoted by k(F, d). There is a 
canonical group action on A IF, d], and correspondingly on k[F, d], and k(F, d), 
by the algebraic group 

G(d) = 1-/Gl(di, k), 
ieFo 

such that the orbits of A IF, d] under G(d) correspond bijectively to the isomor- 
phism classes of representations of F of dimension type d. Assume F has no 
oriented cycle. In this case, the zero element (0)~sr of A IF, d] belongs to the 
closure of any orbit under G(d), thus it is clear that there do not exist non-trivial 
polynomial invariants, in this paper, we are concerned with the determination of 
rational invariants. There also will be no non-trivial rational invariants in case F 
if of finite representation type and we recall that Gabriel [6] has shown that this 
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happens if and only if F is a disjoint union of Dynkin diagrams A,, D,, E6, ET, 
E 8 �9 

Our aim, in this paper, is to consider the so-called tame cases .~,, 1),, ~26, ~27, 
~28 of extended Dynkin diagrams. In these cases, it is rather easy to see that the 
field I(F, d) of rational invariants is a purely transcendental extension of k, and 
we will give an explicit formula for generators of l(F, d). We will use the known 
classification of the indecomposable representations of the tame quivers due to 
Donovan-Freislich [5] and Nazarova [13], several special cases being known 
for some time: the case .~1, the socalled matrix pencils, was solved by Kronecker 
[11] in 1890, the four subspace situation 1)4 was treated by Nazarova 1-12] and 
Gelfand-Ponomarev [9]. Note that a rational invariant is of the form f/g with ./; 
g semi-invariants with same weight. In case F is tame, we will construct semi- 
invariants )Co .. . .  ,fp for a fixed weight 0 such that the elements 

Yl L 
- -  . . . , L  

Yo' Yo 

form a transcendence basis of I(F,d). It is of interest that this c~ is just the 
(normalized) defect, a concept which played a fundamental role in one of the 
proofs of the classification theorem for the indecomposable representations 
([5, 4]). Also, the regular representations in the sense of [2] turn out to be 
precisely those elements of A[F ,d ]  in which the rational map (Jo:-.-:f~): 
A [F, d] ~ IPp is regular. 

We should mention that one particular rational invariant, namely for the 
four subspace quiver (of type 1)4) and the dimension type d=(1, 1, 1, 1, 2), is 
well-known to everyone: the cross ratio of the corresponding points on the 
projective line IP 1. Our investigation gives, in particular, a complete set of 
rational invariants for the position of four arbitrary subspaces in an arbitrary 
projective space. We believe that this should be of interest to classical geometers. 
In the same way, we also obtain complete sets of rational invariants for the 
other subspace situations given by the diagrams ~26, ~27, ~2 s. 

The investigations of this paper have their origin in the joint work with V. 
Dlab on the representation theory of tame species, in particular the de- 
termination of conditions which force a representation to be homogeneous, see 
the tables of [4]. In fact, it turns out that in this way certain semi-invariants had 
been calculated. The problem of computing the invariants and the orbit struc- 
ture in the tame case was suggested by V. Kac. The author is indebted to Dlab, 
Kac, and also C. Procesi for many helpful discussions concerning these ques- 
tions. He also thanks the referee for pointing out the short proof of Lemma 2.5 
given here. 

1. Review on the Representation Theory of Quivers 

We always will assume that F is a quiver with n points and without oriented 
cycles. In this case, the indecomposable projective representations are finite 
dimensional. 
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Given a representation V=(V> q~) of F, we have introduced its dimension 
type d=(di) i, where di=dim Vi, and write d = d i m  V. This is an element of N n, 
and we will consider it sometimes as an element of the rational vector space 
= II~ n. We denote by ~* the dual space. 

On ~, there is given a quadratic form q as follows: 

q(x)= Z x, E 
ieFo o~eFl 

This quadratic form is positiv definite if and only if F is a disjoint union of 
Dynkin diagrams A,, D,, E6, ET, Es, and it is semi-definite for ~t ,  17), ~26, ~27, 
~28. In these cases, there is a one-dimensional subspace of ~ on which q 
vanishes, and this subspace contains vectors with positive integral components, 
the minimal one will be denoted by h. 

Our main working tool will be Coxeter functors as introduced by Bernstein, 
Gelfand and Ponomarev [2]. In fact, it will be more convenient to use the 
twisted analogues considered by Auslander, Platzek and Reiten, thus let C § 
=DTr, and C-  = TrD, see [1]. These functors coincide with the original Coxeter 
functors of [2] up to a categorial equivalence (see [1] and also [8]). Note that 
for an indecomposable representation V, either V is projective and then C § V 
=0, or else C+V is indecomposable again, V ~ C  C+V, and d i m C + V  
= c dim V, where c is a linear transformation on :D, called the Coxeter transfor- 
mation. The functor C + can be used in order to calculate the dimension of Ext- 
groups. (Since we deal with a hereditary category, we just write Ext for Extl.) 
Given two representations V, W, the vectorspaces Ext(V, W)* and 
Horn(W; C + V) are naturally isomorphic [13, in particular, we have 

dim Ext(V, W)=dim Horn(W, C + V). 

The direct sums of representations of the form C "P, with P indecompos- 
able projective and neN,  are called preprojective. Similarly, the direct sums of 
representations of the form C+"I, with 1 indecomposable injective, and neN,  
are called preinjective. 

In case F is a disjoint union of Dynkin diagrams, and only in this case, all 
representations are both preprojective and preinjective; this is just the case when 
F is of finite representation type. If F is not of finite representation type, there 
will be indecomposable representations which are neither preprojective, nor 
preinjective; they are called regular. More generally, an arbitrary representation 
is called regular [2] if it has no non-zero preprojective or preinjective direct 
summand. We denote by :I) r the subset of ~ consisting of the dimension types 
dim V, with V regular. 

Now assume that F is tame (and connected), thus the underlying graph is of 
the form k,,, 17),, E6, ~27, or ~28. In this case, there exists an element de~* ,  the 
defect, such that for an indecomposable representation X, we have (?(dim X)<0,  
=0, or >0, if and only if, X is preprojective, regular, or preinjective, re- 
spectively. We will always choose 0 "normalized" (that is, 0(x)e7Z, for x integral, 
and there exists x integral with •(x)= l), and we will denote 0i=0(bi) where b i 
= (0, ..., 0, 1, 0, ..., 0) is the i-th canonical basis vector. 
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Since regular modules are of defect 0, we see that ~ is contained in the 
hyperplane of I) defined by the equation c~(x)=0. However, not every positive 
integral vector in this hyperplane belongs to ~ , ,  for example in A .. . .  with 
u_> v_> 2, dimension types x given by 

~Yl--~ Y2 ...---~ Y, 1.....z 
X X 

Z1  ~ Z2  "" " ~ Zv  1 

all satisfy O(x)=0, however there exists a regular representation V of dimension 
type x only in case x < rain y~+ min z i. In the tame case, a complete classifi- 

t ~i<=u l <i<:v  

cation of the regular representations is known. Namely, the regular repre- 
sentations form an abelian category ~,  thus we may speak of regular com- 
position series, simple regular objects, etc referring to composition series, simple 
objects, etc inside the category ~ .  Now ~ is a serial category: any indecompos- 
able regular representation has a unique regular composition series, thus it is 
uniquely determined by its regular socle and its regular length. 

A simple regular module E will be called homogeneous, provided dim E is a 
multiple of h, or, equivalently, provided dim E is fixed under the Coxeter 
transformation c. In fact, for any simple regular module E, the orbit of dim E 
under c is always finite, and there are at most three orbits which contain more 
than one element. Let E i, iE1, be the non-homogeneous simple regular repre- 
sentations, and let e i=dim E~. Note that E~ completely is determined by e~. We 
call a subset J ~_I linear (in contrast to circular), provided the set {ej[j~J} does 
not contain a complete c-orbit. Then it follows that the elements h, e j, j~J, are 
linearly independent in 3 .  

Recall that ~r  denotes the dimension types of regular representations. It is 
clear that in the tame case, any d E ~  is of the form d = p h + ~  p~ei, with 

i e l  

p, piEIN. Since the sum of all elements e i in one c-orbit is just h, we can assume 
that d = p h +  ~ p~el, satisfies the following conditions: all p, p~s]N, and for every 

i ~ l  

c-orbit I', there exists e~I ' ,  such that p~=O. In this case, we call this the 
canonical decomposition of d ~  r. Note that for d ~ ,  the canonical decom- 
position is unique. 

Finally, we note that we get a decomposition of ~ as the direct sum of 
categories ~r t ~ ,  where as index set "IF we may take the set obtained from the 
set of irreducible monic polynomials over k by adjoining one additional element 
~ .  (Thus, if k is algebraically closed, ~=IP~(k).) In all but at most three 
categories ~ ,  say except perhaps for t~{0, 1, oo}, there is just one simple object, 
and this then has to be homogeneous. In any one of the exceptional categories 
~, ,  one simple regular representation will be of interest to us, and we will denote 
it by E, (see Sect. 5). In particular, we will assume that the index set I of the 
nonhomogeneous simple regular representations contains these values t. We 
denote by n t the number of simple regular representations in ~t- 

We will also have to consider the special quiver A = o ~  (which has an 
oriented cycle). Note that the representations of A of dimension type p are just 
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the p x p matrices, and isomorphism of representations means just equivalence 
of matrices. Besides this, the special case of the quiver X=- , ,~ .  of type A1 
(which was studied by Kronecker) will be of importance. 

2. The Open Sheet 

If an algebraic group G acts on the affine space A",  the stabilizer dimension is 
semi-continuous on Am; in particular, the set of points V~A" with minimal 
stabilizer dimension is an open (and therefore also dense) set, called the open 
sheet of A"  under G. (In general, the sheets are the irreducible components of 
the various sets {VeA"l stabilizer dimension of V is i}, with i~N.). 

In our case A m = A  [F, d], G = G(d), the stabilizer of any V = (q)~st) is precisely 
the automorphism group of the reprentation V, thus its dimension is equal to 
the dimension of the endomorphism ring End(V) of V. In determining conditions 
for representations to belong to the open sheet, the following lemma is useful. 

Lemma2.1. Let O - * U ~ V  ~ ,W---,O be a non-split exact sequence. Then 
dim End(V) <dim End(UOW). 

Proof. We may suppose that/~ is an inclusion. Let 

H0=  {~6End(V)l V ~  U, U~=0},  

H 1 = {eeEnd(V)] U a ~  U}. 

Then Horn(W, U ) ~ H  o under fl~-~nflg, and End(V)/H~-~Hom(U,  W) under 
a~--~/zan. Also H1/H o embeds into End(U)x  End(W) under a~--~(av, awl where 
for c~eH1, the endomorphisms ev of U and c~ w of W are defined by p~=c~v#, c~n 
= h a  w. Altogether, this shows that dim End(V)<dim End(UG W). Now assume 
we have equality, then the constructed inclusion both have to be surjective. In 
particular, the last one: thus, there is c~cH 1 with c~v= 1 and C~w=0. Clearly, this 
gives a splitting of/~, since C~w=0 means that ~ maps into U, and c~v= i. 

Note that the lemma also could be proved using some elementary arguments 
from the theory of operations of algebraic groups. 

Corollary 2.2. Let V belong to the open sheet of A [F, d] under G(d). Then, for 
any decomposition V= V'QV",  we have Ext(V', V")=0. 

Proof. Any non-trivial exact sequence 

0--~ V " ~  W ~  V'-~0 

would produce a representation W belonging to A [ F , d ]  but with smaller 
endomorphism ring dimension. 

Recall from [14] that there exists a (non-symmetric) bilinear form b on Q" 
which induces the usual quadratic form q and such that for any two repre- 
sentations V, W, we have 

b(dim V, dim W)=dim Horn(V, W ) - d i m  Ext(V, W). 
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The usual quadratic form satisfies 

q(d) = dim G(d)- dim A IF, d] 

for d~lN". Thus, if V is a representation of F with dim V =d, and with orbit 5'(V) 
in A I-F, d], then 

dim G(d) = dim (_9(V) + dim End(V), 
thus 

dim Ext(V, V)=dim End(V)-q(d) 

=dim End(V)- dim G(d) + dimA IF, d] 

=d imA IF, d] - d i m  (fi(V). 

This proves the following lemma which seems to be due to M. Artin and D. 
Voigt [7]. 

Lemma 2.3. Let V be a representation with dim V= d. Then the codimension of the 
orbit (9(V) of V in A IF, d] is equal to dim Ext(V, V). 

In particular, we have the following 

Corollary 2.4. Let V be a representation with dim V=d. Then the orbit ~(V) is 
dense in A IF, fl] i f  and only i f  Ext(V, V)=0. 

Lemma 2.5. Let U, V be representations in A IF, d]. Assume U has no non-zero 
preprojective direct summand, and assume that for any direct decomposition V 
= V 'OV" ,  we have Ext(V', V")=0. Then V has no non-zero preprojective direct 
summand. 

Proof. Assume V = P |  for some indecomposable preprojective module P, say 
with flimP=p. Since U has no non-zero preprojective direct summand, 
Horn(U, P)=0, thus 

b(fl, p) =dim Horn(U, P ) -  dim Ext(U, P)= - d i m  Ext(U, P)<0. 

By assumption, Ext(M, P)=0. Together with Ext(P, P)=0, this implies that 
Ext(V, P)=0. Thus, we also calculate 

b(d, p) = dim Hom(V, P ) - d i m  Ext(V, P) =dim Hom(V, P)~ 1, 

a contradiction. 

Of course, we also have the dual assertion: 

Lemma 2.5*. Let U, V be representations in A IF, d]. Assume U has no non-zero 
preinjective direct summand, and assume that Jot any direct decomposition V 
= V 'GV" ,  we have Ext(V', V")=0. Then V has no non-zero preinjective direct 
summand. 

Theorem 2.6. Let F be a quiver, and assume there exists a regular representation 
of  F of  dimension type d. Then all representations in the open sheet o f  A [F, d] 
are regular. 

Proof. This is an immediate consequence of 2.5, 2.5*, and 2.2. 



Rational Invariants of the Tame Quivers 223 

3. The Tame Case 

We assume now that F is tame. 

Lemma 3.1. Let V = R O U  be representations of F, with R regular, and Ext(R, U) 
= 0 = Ext(U, R). Let dim R = p h + ~ Pi ei be the canonical decomposition. Then 

iEl 

either p = 0  or else U is also regular. 

Proof. Assume U has an indecomposable preprojective direct summand, say of 
the form C - iP ,  for some indecomposable projective module P. Note that the 
dimension type of C +(i+ 11R is p h + ~ p~,~ e i for some permutation cr of I. Now 
if p> 0 ,  then i~t 

0=l=Hom(P, C+~i+~R)~Hom(C-I  P, C + R), 
and therefore 

0=l=dim Horn(U, C + R)=dam Ext(R, U), 

contrary to our assumption. The dual argument shows that for p>0 ,  the 
representation U cannot have an indecomposable preinjective direct summand. 

Recall that we have denoted by ~r  the set of dimension types of regular 
representations. 

Theorem 3.2. Let F be a tame quiver, and dr r. Then there is an open orbit in 
A It,  a]. 

Proo]\ Let V be a representation of F belonging to the open sheet of A [F, d]. 
Let V = P |  with P preprojective, Q preinjective and R regular. Since 
d ~ , ,  we know that P@Q,t:O. By 2.2, Ext(PGQ, R)=0 =Ex t (R ,  P@Q). Thus, if 
we use the canonical decomposition dim R =ph  + ~ Pi e~, then p =0  according to 

i e l  

3.1. As a consequence, R cannot have a non-zero homogeneous direct summand. 
But there is only a finite number of possible representations of F of dimension 
type d without non-zero homogeneous direct summand. Thus. the open sheet is 
the union of a finite number of orbits, and therefore one of these orbits has to be 
open (and, in fact, is the whole open sheet). 

Remark. If F is wild, the assertion is no longer true. Consider for example the 
quiver 

and the dimension type d=( l ,  1,2,1). It is clear that d r  since c2d--(1,1,0,  
-1) .  On the other hand, the open sheet o f A  [F, d] consists of a one-parameter 
family (of decomposable modules). 

Next, we consider ae~, w e  want to give a complete description of the 
representations in the open sheet of A IF, d]. 

Let I be the index set of the simple regular representations, and J a linear 
subset of I (that is {ejljeJ} does not contain a complete c-orbit). We make J 
into a quiver by attaching an arrow i--,j  in case ej=c(e~). Since we assume that 
J is linear, this quiver is a disjoint union of various A~. Let ~ ( J )  be the full 
subcategory of regular representations with regular composition factors of the 
form Ej, j eJ .  Clearly ~(J )  is an abelian and extension closed subcategory, and is 
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equivalent to the category of representations of the quiver J. Note that an object 
V of ,~(J) of dimension type ~, pjej corresponds to a representation P of J of 
dimension type (pj)j~j. J~J 

Let us consider for a moment representations of J. If p=(pj)j~j is a 
dimension type, we define a representation/~(p) inductively as follows: We call 
{j6J [pj > 0} the support of p (or also of any representation of dimension type p). 
Assume the support J '  of p has precisely s connected components. Let /~(J') 
be the (unique) representation of J with support J' which is the direct sum 
of s indecomposable representations, and let /~(P)=/~(J')O/~(P'), where 
p'i=max(pi-l,O). The indecomposable summands of iff(J') (and isomorphic 
ones) will be called the large summands of/~(p). 

Lemma3.3. The representation R=R(p)  of d satisfies Ext(/~,/~)=0, thus it 
belongs to the open orbit of A[d ,  p]. 

Proof. We may assume that J is the support of /~(p). Then /~(J) is both 
projective and injective in the category of representations of J. Thus Ext(/~(J), 
/~(p)) = 0 =  Ext(/~(p), /~(J)). By induction, it follows that Ext(R, R)=0.  

The representation in ~i'(J) corresponding to /~(p) will be denoted by R(p), 
thus again we have Ext(R(p), R(p))=0. Thus we have shown the first part of the 
following result: 

Lemma 3.4, Let d =  ~ Piei be a dimension type with linear support. Then there 
i ~ f  

exists a representation R = R ( d )  of F with dim R = d  and Ext(R, R)=0,  and any S 
of dimension type d such that S=S'@S" implies Ext(S', S")=0 is isomorphic to R. 

Proof. Assume S is of dimension d and satisfies the extension condition. By 2.5, 
2.5* we know that S is regular. However, any indecomposable representation S' 
in ~'(J) for J a linear set satisfies Ext(S', S')=0, thus it follows that Ext(S, S)=0, 
and therefore the isomorphism S ~ R  follows from 2.4. 

The indecomposable summands of R which correspond to large summands 
of/~, again will be called large. Recall that any regular representation V of F 
can be decomposed V= @ V, with V, eN,. 

t6"IF 

Theorem 3.5, Let F be a tame quiver. Let deD r, say with canonical decomposition 
d = p h + ~  p~ei. Let R =R(~.  p~ e~). Then, for a representation V of F with dim V 

i ~ I  i ~ l  

=d, the following conditions are equivalent: 

(i) V belongs to the open sheet. 
(ii) I f  V= V'|  then Ext(V', V")=0. 

(iii) V is regular, and the decomposition V= @ V, has the .following properties: 
tEqF 

either V~ is obtained from R t by replacing a large summand of R, by an 
indecomposable summand, or V~ = W~OR, where W t is indecomposable of dimension 
type a multiple of h, and neither its regular socle nor its regular top appears as a 
regular composition factor of R t. 

Note. In condition (iii), assume Rt= R'~| with R; a large summand, and V~ 
= V/OR;' with V t' indecomposable. Then, since dim Vt -d imR t is a multiple of h, 
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it is clear that R I embeds into V,' with quotient being an indecomposable 
representation in ~ ,  of dimension type a multiple of h. 

Proof. (i)~(ii)  is always true, according to 2.2. (ii)~(iii): We know that V is 
regular from 2.5 and 2.5*. Clearly, we now may suppose that V= V, for some 
tell" with t~{0,1, oo} and R=R,=I=O, since for any two representations of 
dimension type a multiple of h in the same ~, ,  there are non-trivial homomor-  
phisms, thus non-trivial extensions. 

Let n, be the number of simple regular representations in ~ , .  Let V 
= V ~ | 1 7 4  ~ be a direct sum decomposition with V i indecomposable. If all V i 
have regular length <n,,  then it is rather easy to see that we must have V ~ R ,  
Thus, assume the regular length of V t is >n,,  and let S be its regular socle, and 
T its regular top, both being simple regular. We claim that neither C + S nor 
C-  T can occur as regular composition factor of any V i with i>  2. For, assume 
C + S appears as regular composition factor of some V i, with i>2 ,  say V ~ has 
regular submodules U c U ' c _ V  i with U ' / U ~ C  + S. If we choose U as large as 
possible, then V~/U has regular length < n~ and therefore can be embedded into 
C+(V 1) (which also has C+S as regular socle). Thus 

0:4= dim Hom(V i, C + (V1)) = dim Ext(V 1, V i) 

gives a contradiction. Similarly, if C T ~ U / U '  for some regular submodules 
U ' c U c _ V  i for some i>2,  then choosing U minimal, and applying C +, we see 
that there exists an epimorphism Vt-~ C + U, thus 

0 4:dim Hom(V 1, C+(Vi))=dim Ext(V i, V1), 

a contradiction. 
As a consequence, we see that all Vk with i > 2  have regular composition 

length < n , -  1. Also, if the regular length of V 1 is a multiple of n,, then C + S 
= T, thus we get just the condition that neither S nor T can occur as regular 
composition factor of V z o . . . |  r. Of course, since V 2 0 . . . O V  r has linear 
support, and dim V2(~... @ V r = dim R, we conclude from 3.4 that 
V 2 | 1 7 4  Finally, assume dim V 1 = p h +  ~ e~ for some linear set J, and 

j e J  

let W be the regular submodule of V ~ of dimension type ~ e~. Now also W has 
j c J  

regular socle S and regular top T, and does not contain C + S or C -  T as regular 
composition factor. It is clear that W @ V 2 | 1 7 4  ~ is of dimension type dim R, 
and since it has linear support, it follows again from 3.4 that 
R ~ W | 1 7 4  Also, since C+S  and C-  T do not occur as composition 
factors, we see that the support of W is a connected component  of the support of 
R, thus W is a large summand of R. 

(iii) ~( i ) :  First, we note that dim End(V)=p  + d i m  End(R) for V in the open 
sheet. For, consider the representations H O R ,  where H is the direct sum of p 
homogeneous simple regular modules which are pairwise non-isomorphic. Then 
clearly dim Ext (HQR,  H |  Thus we have a p-parameter family of orbits 
of codimension p in A IF, d], so some, and hence all, of these representations 
belong to the open sheet. But again we see immediately that End (H |  has 
dimension p + dim End(R). 
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But an easy calculation shows that for the representations in (iii), the 
dimension of the endomorphism ring is precisely p + dim End(R). 

Corollary 3.6. Let  F be a tame quiver. Let  dim V= d. Then V belongs to the open 
sheet in A IF, d] if and only if  .['or any direct decomposition V =  V ' O V " ,  we have 
Ext(V', V")=0. 

Proof. According to 2.2, one implication is true for any F. Now assume, V 
satisfies this extension condition. Let V = P O Q O R  with P preprojective, Q 
preinjective and R regular. Let dim R = p h +  ~ piei be the canonical decom- 

i e l  

position. If P |  then according to 3.1, we have p=0.  But for any inde- 
composable module U which is preprojective, or preinjective, or regular without 
having a complete C+-orbit of simple regular modules as regular composition 
factors, we have Ext(U, U)=0. Thus, if we write V as direct sum of indecompos- 
able representations, we immediately see that Ext(V, V)=0, and therefore V 
belongs to an open orbit (2.4), thus to the open sheet. 

Thus, we may assume V is regular. But then de~3r, and we can apply 3.5. 

Remark. If F is wild, the corresponding assertion is no longer true. Consider for 
example the quiver 

.F>. 

and the dimension type d=(2, 2). Then the representations V 

(; 0) 

k 2 . . . .  *k 2 with a, b e k  

are indecomposable and therefore satisfy the property. Ext(V', V")=0 for V 
= V ' • V " ,  trivially. However, they do not belong to the open sheet, since 
dim End(V)=2, whereas there are representations W of dimension type (2,2) 
with End(W) = k. 

It can be shown quite easily that the equivalence given in the corollary 
characterises the quivers of finite and tame representation type. 

4. The Construction Process of the Invariants 

Recall that for any de' t3=Q", the characters of the group G(d)= 1] GL(di) are 
of the form 24, i= 

X~ : g = (gi) ~ 1-[ (det gi) x', 
i 
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with 2=(2~)e(TZ")* c ~*. Also recall that a regular function f~k [F, d] is called a 
semi-invariant of weight 2 provided 

g* J = 7~,(g)" f 

and that we denote by k [F, d]; the set of regular semi-invariants of weight 2. 
We assume now that d e ~  r. In particular, •d=0. We want to consider a 

certain matrix with coefficients in the polynomial ring k [F, d] [S, T] in the m + 2 
variables X~s ,, S, T. This matrix will be a square matrix precisely because of 
the condition ~3d=0, so that we can compute its determinant F(X~s,S, T) 
~k[T,d]  [S, T]. By construction, this will be a homogeneous polynomial in the 
variables S, T, and it will belong to the weight space k[F,d]e[S, T]. 

Also, the polynomials F = Fd~k [F, d] [S, T] will have the following multipli- 
cative property: Assume there is given a representation (q~,s,)eA IF, d] which is 
reducible, say d = d ' + d " ,  and for every arrow i ~ ,j, we have q~st=0 for 
1 <_ s -< d'~ and d} < t __< d~. + d 7 = d;. Let ~o; st = q0~ ~t for 1 < s =< d'i, 1 < t __< d}, and q~"st 
=q~,,e,,+~.d;+~, for l<s<-di', l<t<d~, where i ~ ,.j. In this way we get repre- 
sentations (~o',~,)eA [F, d'], (q~'~,)eA IF, d"], and a short exact sequence 

The multiplicative property of the polynomials F d asserts that then 

(,) Fd(q0=~,, S, T)= Fd,(q~;,,, S, T). rd,,(q0;',,, S, T). 

In particular, given ((p'~,)eA [F, d'] and (~0~',,)eA IF, d"], we see that for the 
direct sum representation ((p=,r174 in A [ F , d ' + d " ] ,  we have the 
equality (,). 

Besides this, we will construct an affine embedding 

A [A, p] -~ A [ r ,  d], 

where d = p h +  ~ ple~ is the canonical decomposition old, such that the union of 
i e l  

the orbits containing elements in the image contains a dense open subset. 
In fact, we will define first an affine embedding 

M: A [X, (p, p)] ~ A IF, p h] 

such that the image contains representatives of all homogeneous representations 
of dimension type ph. Now fix a regular representation R of dimension type 
XPie ~ with Ext(R, R)=0, such a representation exists according to 3.4 and is 
unique up to isomorphism. The affine embedding A [Z', (p, p ) ] -+A [F, d] then 
will be given by (@, ~)~--,M(~, ~)OR.  Calculating dimensions, it is easy to see 
that the image of the regular map 

A [Z, (p, p)] • G ( d ) ~ A  [ r ,  d], 

given by (cb, 70 x g~--~g,(M(~, ~U)| is dense in A IF, d]. For, we see that the 
image contains the p-parameter family of all representations of the form H@R, 
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with H the direct sum of p homogeneous, simple regular, and pairwise non- 
isomorphic modules, and the orbit dimension of any such H G R  is just 
d imA I-F, d] - p  (see 3.5). 

We want to show that 
(**) F(M(cb, 7Q@R)=SP~ p' T p* det(Scb+TTQ, for some choice of the 
representation R. In order to see this, it will be sufficient to show that 

F(M(~,  ~)) = det (Sob + T 7Q, 

F(Eo)=S, F ( E 1 ) = S -  T, F(E~)= T, 

F(Ei)= 1 for i d \ { O ,  1, c~}, 

using the multiplicative property of the polynomials F, where E 0, E~, E~ are 
suitable simple regular representations which have to be choosen in each case 
separately. 

Note that it follows from (**) that for a representation ((G.,) isomorphic to 
m(q~, 7Q@R, say (~G~t)=g*(M(~, 7*)| some g~G(d), we have 

F(q),~,, S, T)= l-I(det g~)O' F(M(4), 7')| S, T) 

= [ I  (det gi)'~' SP~ - T) p* T p~ det(S~b + TT'). 

This shows that on a dense subset of A I-F, d], the polynomial F(X,st, S, T) is 
divisible by Se~ T) p' T p~, thus 

P 

F(X~s,), S, T ) = S P ~  T) ~' T p~ ~ f~(X~s,) S ~ T p ' 
i = 0  

for some polynomials fi(X~,st)ek [F, d], and, in fact, in k [F, d]~. And it follows 
from (**) that 

P 

~, f~(M(cb, 7QOR) S' TP-~=det(Sq~+ TTQ. 
i = O  

We will always denote by I the p x p identity matrix. For cbeA [A, p], let 
M(@)=M(q~,/)cA [F, ph]. In this way, we obtain an embedding cl)v--~M(dP)| 

A [A, p] ~ A  It, a]. 

For S = 1, the equality 

P 

~. f~(M(cl))@R) T P - i = d e t ( ~ +  T) 
i = 0  

shows that the rational functions 

JI(M(O)@R) 

fo(M(q))OR)'  
l<_i<p 

are (up to the sign) the coefficients of the characteristic polynomial det(~b- T) of 
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4~. In particular, they are algebraically independent. 
Thus, consider the rational functions 

l < i < p  
X ' fo( ~,,) 

on A [F, d]. Note that they belong to the field I (F, d) of rational invariants of 
A [/-', d] under G(d), since all .f~(X~,,) belong to the same weight space k [X~st] o. 
Clearly, they are algebraically independent. Since the representations isomor- 
phic to representations of the form M(cb)OR, with 4~eA[A,p] are dense in 
A IF, d], it follows that these rational functions also generate I(F, d). 

Theorem 4.1. Let d~ 7~r, with canonical decomposition d =p h + ~ pi e i. Then there 
i ~ I  

exist semi-invariants fo .... ,./'p~k[F, die such that the elements f l  fP form a 
transcendence basis of I(F, d). fo' " "  fo 

5. The Different Tame  Cases 

In dealing with the different tame quivers, we will restrict our attention to one 
particular orientation. Note that we can obtain any other orientation by a 
sequence of elementary changes of orientation with corresponding reflection 
functors [2], and one can determine the change of semi-invariants under such a 
change of orientation, see V. Kac  [10]. 

For a given orientation, we also list the defect 0 by writing down c~ i at the 
i-th position. Also, we denote by I the p x p identity matrix. 

Case A ..... u > v > 1. This is the following quiver 

0(2 0~u - I 

al /n 
:/ 

�9 ~2 ~" "'" /~- 

where the ai, fii both are names of the arrows, and, for a given representation, 
will also denote the corresponding linear map. The defect is given by 

. . . 0  

1 - 1 .  

0. . .0  

If d is a dimension type with (?(d)= 0, let 

Fa(X~t,S, T): = det(S~l . . .%+ Till ...fi~), 
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where %.. .% stands for the composition of maps (or matrices). Since cg(d)=0, 
the two matrices c~ 1...% and fl~...fl, (which always are of the same size) are 
square matrices. Note that F d is homogeneous in S, T, but it is not homogeneous 
in the other variables, except in the case u = v. 

( 1 '"1 l )  we define the affine For the dimension type d=ph ,  where h=  1 1 ..1 ' 

embedding M: A [ Z , ( p , p ) ] - * & [ F ,  ph] by the rule that (q~, 7 0 ~ k , [ Z , ( p , p ) ]  is sent 
to 

k i, 

kp ~ , kp. . .k  p t -~ kV 

kP ~ k P . . . k P ~  k p 

k p. 

Then F(M(q~, ~), S, T) = det(Sq~ + T'/'), and for 

Eo=  k 

k {x) ,k . . .k  
( 1 ) /  

0 ,0 . . .0  

(1) ) k 

J 
~0 

k, 

E ~ =  k 

0 , 0...0 , 0  

k ,k . . .k  - .k  
(1) (1) 

we have F(E o, S, T) = S, F(E~ ,  S, T) = T. 

Case D,, n=>4. This is the quiver: 

k, 

\ 

j ,  
J ~ , 2  

Pt 
�9 - - - - - ) .  �9 

f12 f i n -  4 
/ 

its defect is given by 

_ , 0  

- 1  

- 1  
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Denote ~:=~1"''~n--4, and for d with ~(d)=O, let 

We define M: N [Z , ( p , p ) ] - ,A[F ,  ph] by the rule that M(O, 7 ~) is 

k p k p 

" ~ o )  , , o  ( - ~  
k 2p3~ o) k 2 P . . . k Z P - ~  k :p 

Then F(M(O, 7~),S, T)=de t (SO+ T7 0. 
For the representations 

k k 

(1) ~ 
Eo= k -  ) k...k , 

0 0 

E ~ =  

k 0 

"" k ( ~  k...k 

0 k 

and 

k k 

(1) / 
E l =  k -~ k...k , 

J ~ l  ) ( 1 )-"-~ 
k k 

we have F(Eo, S, T) = S, F(E~, S, T) = T, F(E1, S, T) = S - T. 
Let us pause for a moment and consider also another orientation in the case 

of type f)4, namely 

/ 

In this case, the representations without simple projective direct summands are 
given by a vector space with four subspaces, thus one speaks of the four 
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subspace problem [t2, 9]. For this case, the notion of defect was introduced in 
[9] by Gelfand and Ponomarev; it is given by 

1 

l J / ,  

1 

Given d with c3(d)= 0, the polynomial 

Fa(X~ ,, S, T): = det / ~ 

\ d3 "~3 / 
0 c~ 4 

gives us p + 1 semi-invariants fo,-..,fpek[F, d]o[S, T], where d = p h + S,p~et is the 
canonical decomposition. 

In particular, consider d =  , and let 7i=(xi,Yi) with coordinate func- 

tions X,, Yi for 1_<i~<4. Then Fa=foT+f~S, with 

fo=X1X2 Y3 Y4--X1 Y2X3 Yd.-- YIX2 Y3X4 -~ Y1 Y2 X3X4 

f~ =X~ Y2X3 Y4- X~ Y2 Y3X4 - Y, X2X3 Y4 + Y~ X2 Y3X,* �9 

Given an element (xl,yi),l<_i<4~A[F,d ] with (xl,yl)4=(O,O) for all i, this de- 

termines a quadrupel of points P/= (xi, Yi) in the projective line IP l, and fl  (xi, Yi) 
is just (the negative of) the cross ratio J~ y~) 

of the four points P~,..., P4- 

X1 X 2 X 3 X 2 

Yl Yz.Y3 Yz 
X 1 X 4 X 3 X 4 

Y~ Ya Y3 P4 

The regular representations of F all are given by a vector space with four 
subspaces, and our construction of rational invariants in this case means that we 
compute a full set of rational invariants for the position of four subspaces in an 
arbitrary projective space. 

Case E~. We consider the quiver F with the following orientation 
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1/1 

72/~ 

�9 ) �9 

the corresponding defect 0 being 

1 ,1 

1 ~1 -, - 3 .  

1 -~1 ~ 

For d with O(d), let 

F,l(X ~s ,, S, T): = det 

0( 2 0 

2 0 fl 2 
f12 

~7;72 7172 
0 72  / 

We define M: A [ S , ( p , p ) ] - ~ A [ F ,  ph]  by the rule that M(~, ~) is 

k p (,~ ~,), k2 p (~ o o) 

kp - (x I) ~ kZp (o I O-~ ,), k3p, 

k~ J ~  k2p i i  

Then F(M(cb ,  70, S, T) = det(S~ + T~U). 
For the representations 

k -  (1) ~ k 

Eo=  0 ~ 0 -  ~k, 

0 -,k 

k (1) __~ k 

E ~ =  O- ~k -~l~ *k, 

O- -*0 

and 
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El 

k (1) ~ k 
"----~ o(1 o) 

= k (~) ~k ( ~  2, 

k - ( t )  ~ k ~ 

we have F(Eo, S, T )= S, F(Eoo,S, T )=  T, F(E1,S , T )= S -  T. 

Case 27. We consider the quiver F with the following orientation 

Oll tI 2 �9 ) �9 

fll f12 �9 ) �9 

the corresponding defect ? being 

). �9 

1 ~ 1  

1 '1  

,1 

~1 , - 4 .  

2 

For any dimension type d with ~(d)= 0, let 

Tel c~2c%\ 
0 0 

~;~3 ~3 0 

Fa(X~t,S, T ) : = d e t  [ f i l f l 2 f l 3  f i l f l 2 f i 3  0 

0 0 13 3 
0 0 

7 Y 

We define M: A[Z, (p ,p )J - - .A[F ,  ph] by the rule that M(cb, tp) is 

k p ('f" ~) ~ k 2p _ _  

kp (0 I) ~ k2p 

o o) 

(~ 'o o) 

,oo!) 
(~ ), k 3 p  - . ~ _ ~ . _  

k 3p o o o 4 p  
)" )" k �9 

(I  o i %..  

k 2 p ~  

Then F(M(cI), tP),S, T) = det(S(b + T~), and for 

k (1) ~k (1) ~k 

Eo= 0 ~0 )k  ( 1)'~, 

0 

k, 
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k " '  -. k- .o,  , k~ "-4(~ o) 

E~ = 0 , k ___!1) ~ k ow~c2G k 2, 
~ - ~  
0 

k (1)__~ k (a)_~ k 
~ o ~  

E l =  k (I)-----~ k ( 1 )  k (~ 1)--~ k2. 

k 

We have F(Eo,S, T)=S,  F(E~,S, T ) =  T, F(EI ,S  , T ) = S -  T. 

Case Es. We consider the quiver F with the following orientation 

�9 ) �9 0~2 - - ~  o 

�9 _ _ - - - - ) .  �9 �9 

the corresponding defect being given by 

1 ~1 ,1  - , 1  -* 1 

2 , 2 -  , - 6 .  

3 

For  any fl will O(d)= 0, let Fd(X=~ t, S, T) be the determinant  of the following 
matrix 

0 0 0 S0~12345 0 T0(12345 \ 

0 0 0 0(2345 0(2345 0(2345 

0(345 0 0 0 0 0 

0 :~45 0 0 0 0 

0 0 ~5 0 0 0 

]~12 ill2 0 0 0 0 

0 0 O ill.2 0 312 

0 0 0 f12 0 0 

0 0 0 0 fi2 0 

? 0 0 0 ? 0 j 

0 7 7 7 0 0 / 
0 0 0 7 0 7 

where 0(i...s = 0(i" 0(i+ 1...c~s, fl12 = ill"/~2" 
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We define M: A [ Z , ( p , p ) ] - - ~ A [ F ,  ph] by the rule that M(4h 70 is 

(!oo !) 
kp (ve-,~) kZ v (i o o) k 3p o , ,k4P 

(' ~ (~ ~) ~ ~176 ~ ~176 o~ '~176176176 o~ 
o ~ o  , k ~  ~ 1 7 6 1 7 6 1 7 6 1 7 6  

(i k 2~ ( ~ o ~ )  k"  ~ 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6  - - . - -  ) * k 6 p  

(!oooo}~ 
0 0 0 0 

k 3 p  - -  J 

Then it follows that F ( M ( q h ~ P ) , S , T ) = d e t ( S ~ + T q J ) .  For the simple regular 
representations 

E l =  

Eoo = 

1 0 
(1) k (t ~ k 2 (~ ~ ) k  z (1~ o o ) k  3 , o o 

o o) 

k (o ~ , .  k ~ (o ~ o)~k~ ' 

k (" , k  (1) , k (~ O~,k  z (~ o),u 

0 , k (o t )  --~ k 2, and 

.// 
k 

k (~) , k  (~) , k (1) , k 

E l =  k 

(1) + k 
" ' ~ 0 )  

O) , k (o 1)_~k 2, 

/ 

we have F(E o, S, T) = S, F (E~ ,  S, T) = T, and F(E 1, S, T) = S - T. 

6. The Quotient Map 

Now, let k be an algebraically closed field. We assume throughout this section 
that F is a tame quiver and d~3)r, say with canonical decomposition d = p h  
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+~p le l .  We have constructed in the previous sections polynomial semi-in- 
i e I  

variants fo , . . . , fp  which form a basis of k[F,d]e, where ~3 is the defect. Let us 
consider the corresponding rational map 

f = (f0 :... : f  v): A IF, d] ~ IP w 

where IP, is the p-dimensional projective space. It is clear that this map f is 
constant on G(d)-orbits and we will see that we may consider f as a quotient 
map. 

Theorem 6.1. 7he rational map f: A IF, d ] ~  IP e is regular precisely in those points 
((p, , )eA[F,  d] which are regular representations. 

In particular, the set of regular representations is open; it is the complement of 
the zero set V(fo,...,fp). 

Proof By definition, 
p 

F(~o ~,, S, T )  = S~~ V) p~ T~  ~ L(~o~,~)s' TP-', 
i=o 

thus (q)~t)s V(fo,. .  ",fv) if and only if F((0~r S, T)=0.  If (q)=~) is not regular, then 
it has a non-zero direct summand of non-zero defect. But this means that for 
some base change geG(d), the polynomial F(g*(q0~r), S, T) is the determinant of 
a matrix which is (up to permutations of rows and columns) of the form 

(; 0,) 
with non-square diagonal blocks. This shows that F(g*(~o~),S,T)=O, and 
therefore also F(q)~ t, S, T) = 0. 

On the other hand, let (q0~t) be regular. Using the multiplicative property of 
determinants on extensions, one sees that one can restrict to ((o~,) being simple 
regular. But then case by case inspection as in Section5 shows that always 
F(tp ..... S, T) 4= O. 

In particular, the map f is regular on the open sheet, since this consists 
entirely of regular modules. Let us denote the open sheet by A [F, d] ~ and let us 
consider the restriction of/" to A[F ,d ]  ~ 

Theorem6.2. The regular map f: A[F,d]  ~ -§ is surjective, It is injective on the 
set of G-orbits except perhaps on the set of G-orbits contained in the intersection 

of A[F,d]  ~ with the three hyperplanes V(.[I) ), V(fv) and V f. . 
i _  

Proof Let us first prove the surjectivity o f f :  A IF, d]--* lPp. Define an embedding 

by 
N: (A2\{(O,O)}) p -~A[X,(p,p)] 

i[a~ O~ [b~ 0 ~  
N((al,bl), .... tap, b ; ) =  [ [ O \ a / ,  [O~bo]] ,  

for (al, bi)eA a \  {(O, O)} and note that all the representations MN((a i, bi)i)OR are 
regular. It is clear that the composition with f factors over (~)v, say 
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(A2\{(0,0)}),, N ,A[Z,(p,p)] ~ ,Al-r',ph] | 

1 1 

and that the image o f f '  is dense in IPp. Since (IP0P is a projective variety, the 
image of f '  has to be closed, and therefore equal to IPp. This shows that f is 
surjective. 

Using again the multiplicativity of F on extensions, one sees immediately, 
that for any regular representation ((p~.,,) we find a representation (~ . , )  in 
A [F ,d ]  ~ with f ( q ~ , ) = f ( ~ t ) .  Thus, also the restriction of f to AEF, d] ~ is 
surjective. Next, we note that a representation (~o~t) belongs to V(,/o) if and only 
if S p~ is a factor of F(q),~,,S,T) and this happens if and only if in a 
composition series of (~O~st), the simple regular representation E o appears with 
multiplicity at least Po+ 1. SimiIarly, (%~,) belongs to V(f,~,) if and only if T p'~+ 
is a factor of F(~p~,, S, T), if and only if E~ appears with multiplicity at least p~ 

+ 1, and finally (~0~,) belongs to V f~ if and only if T ~'~ +1 is a factor of 

F(~o~st,S, T), if and only if E t appears with multiplicity at least p~ + 1. Thus, if 

(~o~s,) does not belong to V(fo)~ V(fp)~ V Jl , and belongs to the regular 
i _  

sheet, we see that (~o~) is of the form H@R(Sp~e~), with H homogeneous, and 
uniquely determined by its regular composition factors, according to Theo- 
rem3.5. But it ~s clear that the regular composition factors which are homo- 
geneous, are determined by the value of f(~o~,). This shows that the restriction 

o f f  to the complement of V ( J o ) w V ( f p ) u V ( ~ f ~  ) in A [F ,d ]  ~ is injective on 
the set of G-orbits. ~- \ _ 0  1 

Remark. It is easy to derive from Theorem 3.5 the precise number of orbits in 
any fibre of f 

For brevity, let V0= V(Jo) , V = V(fp), V l = V i �9 Recall that n~ is the 
i 

number of simple regular representations in ~,~, and for our given d = p h  
+~Pie i ,  let m~ be the number of different tel  with pi~O and E i ~ .  Then the 

i t !  

number of orbits in A[F ,d ]  ~ which map to the same point in Vo\(V ~ u V~,) is 
just n o - m  o, similarly, the number of orbits in A[F ,d ]  ~ which map to a point in 
Vl\(Vou V~) or V~,\(Vow VI) is n I -m~ or n~ - m ~ ,  respectively. 

For p>2 ,  the number of orbits in A[F ,d ]  ~ which map to the same point in 
(Voc~Vt)\V ~ is (no- too) (nL-mO,  etc, and for p>3 ,  the number of orbits in 
A [ F , d ]  ~ which map to the same point in Voc'~ V~ c~ V~ is (no-too) (n~-m~) (n~ 
- -  m o o ) ,  
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