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OF THE PREPROJECTIVE ALGEBRAS
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AssTRACT. The spectral radius of a Coxeter transformation is shown to be an
eigenvalue which can be expressed in terms of lengths of certain positive roots of
the corresponding valued graph. This result is used to determine the Gelfand-Kiril-
lovdimensionofthcpreprojecﬁvcalgebras:ﬁisdimenﬁonisequdtoo, loroo
according to whether the underlying graph is Dynkin, Euclidean or otherwise.

Let C = (c;) be an n X n Cartan matrix, that is ¢, = 2 for 1 <i<nc;#0if
and only if ¢; # 0, and ¢, < 0 is integral for all i % ;. Throughout the paper, C is
assumed to be indecomposable and its graph not to be Dynkin. Recall that the
associated (in general, not symmetrizable) valued graph is given by n vertices and
edges i e—e j with valuation (¢;» —¢) for i # j and ¢, # 0 (and with no loops); see
3}

DEFINITION. The reflections 7, € GL(C"), 1 < 5 < n, are defined by 7, x =y =
(1), where y, = x, for i # s and y, = —x, — 5, ¢,x, The element ¢ = r, - - - ryr, i
called a Coxeter transformation.

Note that with a ¢, also ¢™ is a Coxeter transformation (corresponding to a
Cartan matrix obtained from C by a permutation of rows and columns). Recall
that the spectral radius of a linear transformation ¢ is the maximal [A| of all

eigenvalues A of c. The degree d(}) of an eigenvalue A of ¢ is the maximal size of the
Jordan A-blocks of c.

PROPOSITION 1. The spectral radius p of ¢ is an eigenvalue of c and d(p) > d(\) for
all eigenvalues A of ¢ with |\| = p.

The proof of Proposition 1 follows from Theorem 3.1 of J. S. Vandergraft [8], as
Soon as we construct a (closed) cone with nonempty interior in R” which is mapped
by c into itself. In fact, we shall consider ¢~ instead of c. The authors are indebted
to L. Elsner for helpful discussions concerning eigenvalues of linear transforma-
tions.

REMARK. Applying Proposition 1 to ¢!, we conclude that there is an eigenvalue
1/0" of ¢ with the least absolute value and &1/¢p’) > d(}) for all eigenvalues A of ¢
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with [A| = 1/p'. If the Cartan matrix is symmetrizable, then p’ = p. For, then a
quadratic form is defined which is c-invariant. For nonsymmetric Cartan matrices,
in general p’ # p, If C defines a Euclidean graph, then p’ = p = 1[3] and therefore
all eigenvalues lie on the unit circle. This is, of course, also trivially true when C
defines a Dynkin graph (for, c is of finite order). In the case that C defines a tree,
sharper results on the cigenvalues of the corresponding Coxeter transformations
were obtained by N. A’ Campo [1] and V. F. Subbotin and R. B, Stekolstik [7);
however, they do not generalize to the general situation of nonsymmetrizable
matrices.

Define the preprojective vectors (ot “preprojective roots™) p(s, 1), 1 <s <n,
t 20, of Cby

PAs, 1) = cryry-cor,_8,
where s = (§,),. For x = (x,) € C", we write x| = Z,|x,.

The fact that the graph defined by C is not Dynkin is equivalent to the statement
that all p(s, 7) are distinct. This, in turn, is equivalent to the statement that all
P(s, 1) are positive; see [3].

Now, define the (preprojective) closed cone K as the closed convex hull of all
P(s, 1). Clearly, c”'K C K. Moreover, since the projective vectors {p(s, 0) | I < s <
n} form a basis of C", the interior K° of X is nonempty.

PROPOSITION 2. For any p = p(s, t), we have
o= Jim, Vie™yl.
REMARK. The limit

lim V|c™x|
m-»o0

clearly measures the growth of the vector x with respect to ¢ and can be called the
“growth number” of x; or, if x = dim X for some module X, the growth number of
X. (In general, one may consider dim(Tr D)X instead of ¢™ dim X and call

Tim y{dim(Tr D)"X|

the growth number of X [7])

COROLLARY. All preprojective vectors have equal growth rumber. If the graph
defined by C is Euclidean, this number is equal to 1. If the graph is neither Dynkin
nor Euclidean, it is greater than 1.

Puoorovaorosmouz.Letev, 1<i<gq 1 <j<n,bea Jordan basis of C*
with respect to which ¢ is the product of ¢ Jordan n, X n, matrices of the form

(A A
N A 0
0 A A
&d
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moreover, in view of Proposition 1, we assume that p = A, > [A| for all eigenvalues
Ay 1< i <gq. Thus
¢ —lei,j =Me;,; +e,_ )
heree,, =0forr < 0.Letp = X, a; j¢, ;; consequently,
m
cp = Z_"‘i,ﬂ\im[eu + ( 1 )ei.j-l t-e+ (’:)CU-, +- ]
ij

Now, take d = max d(\) and s, = (7); thus, for large m, 1/s_- (") < 1 for all
e, ;—, * 0. Consequently, since

Jim Vs =1
Jim Vic™pl = A, lim Ve ™pl/s A7

= A lim \/EI%IP\./MI" d=\ =p.
Lj

m—o0

As an application of the previous results, we are going to determine the
Gelfand-Kirillov dimension of the preprojective algebra II(9R) of a modulated
graph 9 (see [4]).

THEOREM. The Gelfand-Kirillov dimension Dim TI(SR) of the preprojective algebra
TI(9R) of a modulated graph . is equal to 0 if the graph defined by W is Dynkin, 1
if it is Euclidean and oo otherwise.

REMARK. Thus, choosing a particular admissible orientation § of 9K,
Dim II(9M) = 0 if the respective tensor algebra R(OR, ) is of finite representation
type, Dim TI(9W) = 1, if R(OR, Q) is of tame representation type and Dim II(OR)
= oo otherwise (that is if R(O,, ®) is of wild representation type).

PROOF OF THEOREM. For the calculation of the Gelfand-Kirillov dimension of
IT = II(9W), we need a finite-dimensional k-subspace V of IT which generates II.
Choose an admissible orientation @, and let R = RN, Q). Then R is a finite-di-
mensional hereditary k-algebra, and II, decomposes into the direct sum of all
preprojective right R-modules, each occurring with multiplicity one:

HR =@ @ P@s0);

120 1<s<n
see [4]. Let
V= @ @ P(s, 1)
0<t<m 1<s<n
then ¥'° can be identified with R, and we put ¥ = V' It follows from [4] that
Vr+l= pmopl forall m.
[Namely, we can identify P(s, f) with
Hom( P
l<@<n om(P(r, 0), P(s, 1)),
and in this way, we see that the product P(s, 1) P(s', ') is contained in P(s’, 1 + 1)

anq that any element of P(s’, 1 + 1) can be written as a sum of elements from the
vanous products P(s, f) P(s’, 1) with 1 < 5 < n.
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Let f = max, ., ., dim, F,; here, F, are the division rings given in the modula-
tion IR Thus, f is the maximal k-dimension of a simple R-module, and therefore
|dim M| < dim, M < fldim M|
for any R-module M. This shows that we may consider

T log|dim V™|
Moo logm
instead of
— log dim, V™
i og dim,
max  logm
in the definition of the Gelfand-Kirillov dimension. Now,

dim vm= 3 S dm PG, )= S S (u(s, )]

tm) s=0 t=0 s=0

> |p(s, m)| =|c™p(s,0)| foranyl <s<n.

Now,
lim J8Psm)| . m  loglp(s,m)] o,
m—oo log m m—o logm m

since

m—>Q0

lim 18l ; m) _ log p

by Proposition 2. Hence, if the graph defined by U is neither Dynkin nor
Euclidean, we see that Dim IT = oo.

In the case that the graph is Euclidean let h be the standard homogeneous
vector; thus h is the minimal positive integral vector stable under ¢. Furthermore,
there is a natural number u such that

c“x =x + d(x)h
for some linear functional 3 (called the defect); see [3]. In this case, we use the
subspace W = V“~!in place of ¥; thus, W™ = V™~ D, Let d = 3(dim W). Then

dim W™ = dim W + (m — 1) dh,
and therefore

Dim Il = im Jo8dm ¥ _

m—o0 log m

3

because

fim log(m — 1) d|h| -1
m—>o0 log m

If the graph of 91 is Dynkin, trivially Dim IT = 0. . .
REMARK 1. In their paper, W. Borho and H. Kraft [2] define the superdimension
DIM 4 of an algebra 4 as

T log log dim, V™

m i
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It is easy to see that DIM II(9R) = 0 if the graph defined by 9K is Dynkin or
Euclidean, and that DIM II(9R) = 1 otherwise.

REMARK 2, We also note the analogy to a theorem of V. Kac [9] which asserts
that the Lie algebra associated to a Cartan matrix C is of finite growth if and only
if C is Dynkin or Euclidean. However, whereas the theorem of Kac measures really
the increase of the dimensions of the root spaces for the imaginary roots (all others
have dimension 1), the theorem above measures the increase of the components of
certain real roots with respect to a fixed basis of the root system.
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