
Kawada's theorem 

Claus Michael Ringel 

Kawadas's theorem solved the KSthe problem for basic finite-dimensional algebras: 

It characterizes completely those finite-dimensional algebras for which any inde- 

composable module has squarefree socle and squarefree top, and describes the possible 

indecomposable modules. This seems to be the most elaborate result of the classical 

representation theory (prior to the introduction of the new combinatorical and homo- 

logical tools: quivers, partially ordered sets, vectorspace categories, Auslander- 

Reiten sequences). However, apparently his work was not appreciated at that time. 

These are the revised notes of parts of a series of lectures given at the meeting 

on abelian groups and modules in Trento (Italy), 1980. They are centered around the 

second part of Kawada's theorem: the shapes of the indecomposable modules over a 

Kawada algebra. 

I. K~the algebras and algebras of finite representation type 

Recall the following important property of abelian groups, thus of ~-modules: every 

finit~ygenerated module is a direct sum of cyclic modules. KSthe showed that the 

only commutative finite-dimensional algebras which have this property are the uni- 

serial ones, and he posed the question to classify also the non-commutative finite- 

dimensional algebras with this property [II]. An algebra for which any finitely 

generated left or right module is a direct sum of cyclic modules, is now called a 

KSthe-algebra, and a classification of these algebras seems to be rather difficult. 

In fact, for a solution one would need a classification of all algebras of finite 

representation type, as well as some further insight into the structure of the mo- 

dules over a given algebra of finite representation type. 

(I.I) Notation. Let k be a (commutative) field, and A a finite-dimensional 

k-algebra (associative, with I). We want to investigate the representations of A, 

thus we consider A-modules (usually, we will deal with finite-dimensional left A- 

modules and call them just modules). Always, homomorphisms will be written on the 

opposite side as scalars, thus the composition of f : A X ÷ A Y and g : A Y ~ A Z 

will be denoted by fg . Given any module M , we denote by radM the radical of M, 

it is the intersection of all maximal submodules, and call M/radM =: topM the top 

of M . If radM = O , then M is called semisimple. Also, let socM be the socle 

of M , it is the sum of all simple submodules of M . Any finite-dimensional A- 

module M has a composition series 

0 = M ° c M 1 c ... c M% = M , 

with Mi/Mi_ I simple, for all I < i < ~. The Mi/Mi_ 1 are called composition 
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facters, and the number ~ is called the length of M , denoted by IHI . (The mo- 

dule grM := @ Mi/Mi_ I will be called the graded module corresponding to M ; we 
i=I 

will need this construction later.) We choose a fixed ordering S(]),...,S(n) of 

the simple A-modules, and denote by (dimM) i the number of composition factors of M 

isomorphic to S(i) , this number is independent of the given composition series 

(theorem of Jordan-HSlder). In this way, we obtain an n-tupel dimM , called the 

dimension type of M . If M is semisimple and (di__~O i ~ I for all i , then M 

is called squarefree. A module is semisimple and squarefree if and only if it is the 

direct sum of pairwise non-isomorphic simple modules. Again, assuming M to be fi- 
m 

nite-dimensional, then we can write M as a direct sum M = $ M. of indecomposable 
i=I i 

modules, and such a decomposition is unique up to isomorphism (theorem of Krull- 

Schmidt). In order to know all finite-dimensional modules, we therefore may restrict 

to the indecomposable ones. Note that a finite-dimensional module M is indecompo- 

sable if and only if its endomorphism ring End(M) is local. In particular, we al- 

ways have the indecomposable direct summands of the left module A A , we denote re- 

presentatives of their isomorphism classes by P(1),...,P(n) , where topP(i) = S(i), 

for i < i < n. Thus, A A = @ P(i) p(i) for some p(i) E~ (here, M m denotes the 

i=I 
direct sum of m copies of M), Note that we can calculate dimM for any module M 

as follows: 

(di__~) i = IEndP(i)HOmA(P(i),M)l 

The projective modules are the direct sums of various P(i) , they are the modules 

with the usual lifting property. For any module M , there exists (uniquely up to 

isomorphism) an epimorphism ~ : P ÷ M with P projective and with kernel contained 

in radP , it is called the projective cover. If ~ : P ÷ M is a projective cover, 

then topP ~ topM . The (left) A-module A M is called cyclic provided it is an 

epimorphic image of A A . Note that for a cyclic module M , we have IMI ~ IAAI 

(1.2) The module M is cyclic if and only if (dim topM). < p(i) for all i . 

Namely, let P ÷ M be a projective cover of M . Then P = @ P(i) , where 
i=I 

m(i) = (dim topM) i , since topM = topP . Now if m(i) J p(i) for all i , then P 

is a direct summand of A A , thus M is an epimorphic image of A A . Conversely, if 

there exists an epimorphism A A ÷ M , then P is isomorphic to a direct summand of 

A A , thus m(i) j p(i) for all i . 

(1.3) The algebra A is said to be of finite representation type provided there are 

only finitely many indecomposable A-modules. (In this case, even the infinite-dimen- 

sional modules are direct sums of those finite-dimensional modules [17]). For example, 

the algebra A = k[T]/(T n) , with k[T] being the polynomial ring in one variable 

T and (T n) the ideal generated by T n , for some n , is of finite representation 

type: the only indecomposable modules being the modules k[T]/(T i) , where I < i < n. 

On the other hand, the three-dimensional algebra k[T I 2 2 ,T2]/(T],TIT2,T2) is not of 
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finite representation type. There is a general theorem due to Rojter [18] which 

asserts that a_finite-dimensional alsebra with a bound on the length of the inde- 

composable modules, is necessaril ~ of finite representation type. In particular, 

any KSthe algebra A has to be of finite representation type (here, IAAI is a 

bound for the length of the indecomposable A-modules). 

(1.5) Conversely, one may ask when an algebra A of finite representation type 

actually is a K~the algebra. Let MI,...,M m be the indecomposable left A-modules. 

As we have seen above, Mj is cyclic if and only if (dim topMj) i ~ p(i) , for 

all i . For any (left) module M , let M* = HOmk(M,k ) be its dual module, it is 

a right A-module. Note that M~,...,M*m are the indecomposable right modules, and 

it follows that M~j is cyclic if and only if (dim__ socMj) i _< p(i) , for all i. 

Let qA(i) be the maximum of all (dim topMj) i and all (dim socMj) i , where 

I < j < m. Then, A is a K~the algebra if and only if qA(i) ~ p(i) , for all i. 

If we replace A by a Morita equivalent algebra A' , then there is a canonical 

bijection between the A-modules and the A'-modules. In particular, we may index the 

simple A-modules and the simple A'-modules in the same way. With A , also A' is 

of finite representation type, and qA(i) = qA,(i) . However, the numbers p(i) =pA(i) 

can be changed arbitrarily, by choosen an appropriate Morita equivalent algebra. 

For example, for the ring M(d,A) of all d ×d-matrices over A , we have 

PM(d,A)(i) = dPA(i) , for all i . As a consequence, we see: Any algebra of finite 

representation type is Morita eRuivalent to a KSthe algebra. 

(1.6) If PA(i) = 1 for all i , then A is called a basic algebra. For any algebra 

A , there exists (uniquely up to isomorphism) a basic algebra A which is Morita 
o 

equivalent to A . The following conditions now obviously are equivalent for an al- 

gebra A : 

(i) A ° is a K8the algebra. 

(ii) Any algebra Morita equivalent to A is a KSthe algebra. 

(iii) Any indecomposable A-module has squarefree top and squarefree socle. 

An algebra A satisfying these conditions will be called a Kawada algebra. 

2. The work of Kawada 

These algebras which we now call Kawada algebras, were thoroughly inyestigated by 

Y. Kawada around 1960. He both gave a characterization of these algebras in terms of 

their indecomposable projective modules, as well as a full classification of the 

possible indecomposable modules. 

(2.1) In 1960, Kawada reported his results at a meeting of the Mathematical Society 

of Japan, and a survey appeared in 1961 in two parts [l] : "The purpose of this paper 

is to announce that KSthe's problem mentioned above is completely solved for the case 

of self-basic algebras." This survey contains a set of 19 conditions which character- 

ize Kawada algebras, as well as the list of the possible indecomposable modules. 
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One may formulate these two results separately, as Kawada did it in his survey. His 

proof however derives both results at the same time. This proof is published in a 

series of three papers [I] amounting altogether to 255 pages, and devoted just to 

this one theorem. 

(2.2) The 19 conditions. These conditions are formulated in terms of the indecompo- 

sable projective A-modules and their submodules and factor modules. Let us give some 

examples: Condition VI has the shortest formulation (we use the notation introduced 

in I): For any primitive idempotent e , the A-module Ae(radA)e is serial. Some 

of the conditions are, however, rather clumsy. We quote condition X: 

X. Assume that Aea,gl is a module such that Ne~lg~=Ae, tealgl+Ae, we~g~ 
where Ae, te~g~ is uni-serial, A e.te~g~,A e,we~ig~ = N~e.te~g~ = Aeouwe~g~ ~= O(m >= 1), 
Ne~we~g~ = Aeouwe~ig~ G Ae,vwe~g~ where Ae.vwe~g~ is uni-serial, and S(Ae~,qO 
=Ae.uwe~g~@N~e.vwe~g,(k>_O). Assume that Ae~2g ~ is a non-simple module whos- ~ 
socle is isomorphic to N~e~vwe~g~. Let 9o be an isomorphism which maps S(Ae~2g~) 
onto Nkemwe~:gj+Ae.te~ga/Ae.tea~g~ considered as a submodule of Ae~ag,/Ae.te~g. 
Then So is extendable; more precisely, either 9o is extendable to a monomorpbism 
@~:Ae,~g~Ae~gJAe.te~g. or 9-~ is extendable to a monomorphism @~:Aea,g,/ 
Ae, te~g~ ~Ae~g~. 

(Here, the elements e. are primitive idempotents, N = radA, and S(M) denotes the 

soele of M.) 

Of course) one may reformulate these conditions in terms of the quiver with relations 

which defines A , at least in case the base field is algebraically closed. Then the 

conditions are more easy to visualize. For example, it is clear that any vertex a 

can have at most 4 neighbors~ with at most two arrows having a as endpoint, and 

at most two arrows having a as starting point. Namely, otherwise, we obtain a 

subquiver of type D 4 with one of the orientations 

or ~ ; 

a 

in the first case, we obtain an indecomposable module with socle S(a) 2 , namely 
111 

with dimension type 2 , in the second case, we obtain an indecomposable module 

with top S(a) 2 . Also, we see that we have to expect a rather long list of condi- 

tions. For example, we have to exclude subquivers of the form E 6 (with no relation) 

with all possible orientations. This is easy to formulate if one can use a dia- 

grammatic language, however, it amounts to a large number of awkward conditions in 

terms of idempotents and serial modules. 

(2.3) The possible indecomposable modules. The second part of Kawada's theorem 

describes completely the shape of the indecomposable modules over a Kawada algebra. 

Kawada first derides the indecomposable projective modules into 5 different types 
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and then lists 38 possibilities of forming indecomposable modules as amalgamations 

of indecomposable projective modules. We want to present this list in a slightly 

different form. In order to do this, we first introduce the notion of the shape of 

a module. 

3. The shape of a module 

In order to define the shape of a module, we have to develop some of the machinery 

presently available in representation theory. Given a finite-dimensional algebra A, 

we will make use of its Auslander-Reiten-species F(A) , and the universal covering 

~(A) of F(A) , as defined by Gabriel and Riedtmann. Since for an algebra A of 

finite representation type, ~(A) is the Auslander-Reiten-species of some "locally 

finite-dimensional algebra", we always have to take into account certain infinite- 

dimensional algebras (such an algebra will not contain a unit element). 

(3.1) Locally finite-dimensional alsebras. The k-algebra C is said to be locally 

finite-dimensional provided there exists a set {e i I i 6 I} of orthogonal idem- 

potents e. of C such that C = @ e. Ce. , with Ce. and e.C finite-dimensio- 
z i,j61 i J I l 

nal for every i 6 1 . For a C-module C M , we require CM = M , or, equivalently, 

M = @ e.M . All modules considered will be assumed to be finite-dimensional over k. 
i61 i 

Note that we may and will assume that the idempotents e. all are primitive, so that 
1 

the left modules Ce. are indecomposable. In ease Ce. and Ce. are isomorphic as 
l l 3 

left C-modules only for i = j , we call C basic . As for finite-dimensional 

algebras~ two locally finite-dimensional algebras will be called Morita equivalent 

in case their module categories are equivalent. And, given C , locally finite-dimen- 

sional, there exists a basic locally finite-dimensional algebra C which is Morita 
o 

equivalent to C . 

Assume now that C is locally finlte-dimensional. For any module M , we define its 

support algebra C(M) as the factor algebra of C modulo the ideal 
2 

<e I eM = 0 , e = e > generated by all idempotents e with eM = 0 . With M also 

C(M) is finite-dimensional over k . Note that M is a sincere C(M)-module (i. e. 

no idempotent # 0 annihilates M). The C(M)-modules will be considered as C-modules, 

and the set of C(M)-modules is closed under submodules~ factor modules and extensions. 

Clearly, the modules P(i) = Ce. are indecomposable and projective, and the modules 
1 

I(i) = (eiC)~ indeeomposable and injective. There is a categorial equivalence 

between the category of (finite-dimensional) projective modules and the category 

of (finite-dimensional) injective modules, with ~P(i) = I(i) , the Nakayama functor 

(see [5]). Namely, maps P(i) = Ce. ÷ Ce. = P(j) are given by right multiplication l J 

with elements from C of the form e.ce. . But left multiplication by e.ce. also 
lj zj 

gives a map e°Cj ÷ e. Cl ' thus let ~(.eicej) = (eicej.)~ . For any C-module M , 

there exists a projective cover P(M)-~M , and an injeetive envelop M~-+ I(M) . 
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We always have ~P = I(topP) for P projective. 

Let us now describe the Auslander-Reiten translation: Let M be a C-module, and 

P 
P1 ---+ Po ---+ M ---+ O 

the first terms of a minimal projective resolution of M . Then, by definition, 

TM = Ker v(p) , thus we have the exact sequence 
v ( p )  

O ----+ TM ---+ vP  1 - - - ~  ~Po 

Let X = Po @ P! @ vP] @ vP ° . Then all modules involved in the construction of 

• M = TcM are in fact C(X)-modules, and we see that we have TC(x)M = TM . Now 

assume that M is indecomposable and not projective. For the finite-dimensional 

algebra C(X) , we have an Auslander-Reiten sequence 

0 ----+ TM > E ---+ M > 0 

and we claim that this sequence has the usual lifting properties with respect to 

all C-modules, not only the C(X)-modules. Namely , given a C-module Y , then we 

also may consider C(X @ Y) . Since rC(X @ y)M = TM , the Auslander-Reiten sequence 

ending with M , in the category of C(X @ Y)-modules, must be the given sequence 

I(M,~M) Thus, (since it is characterized as being a socle element of End(M)EXt 

we may call the given sequence an Auslander-Reiten sequence in the category of 

C-modules. 

Finally, we also will need the dimension type of a C-module. Let {P(i) I i E I o} 

be a complete set of pairwise non-isomorphic indecomposable projective modules. 

The dimension type dimM of the C-module M will be an Io-tuple , with 

(di___~) i = IEnd(P(i))HOmc(P(i),~Ol , 

or, equivalently, the number of composition factors of M of the form top P(i) . 

(3.2) Translation species= We first need the notion of a translation quiver. A 

quiver (Fo,Fl) is given by a set Fo of "vertices" and a set F l of "arrows", 

to any arrow being assigned its starting point and its end point in F . A trans- 
O 

lation quiver (Fo~F],T) is given by a locally finite quiver (Fo,FI) without 

loops ! ) or multiple arrows o~o and with an injective function 

T : F'o --+Fo where F'o is a subset of F ° , such that for any y C F'o ' we have 

y- = (Ty) + . Here, y- denotes the set of starting points of arrows with end point 

y , and y+ the set of end points of arrows with starting point y . We denote by 

F' the set of arrows ~ : x + y with y E F' . For every arrow ~ : x ÷ y in F I , 
1 o 

there is a unique arrow Ty ÷ x , and it will be denoted by d~ . A translation 

species (Fo,FI,F,N,T,X) is given by the following data: (Fo,FI,T) is a transla- 

tion quiver. For every y E F o , there is given a division ring F(y) , and for 

every arrow x ÷ y in F l , there is given an F(x)-F(y)-bimodule N(~) = N(x,y), 

' there also is given an finite-dimensional on either side. Next, for every y E F o , 
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isomorphism • : F(y) ÷ F(Ty) . Finally, let ~ : x + y be in 
Y 

sider N(qa) as an F(y)-F(x)-bimodule using the isomorphism ry 

a non-degenerate bilinear form 

X~ = Xxy : F(x)N(a)F(y) @ F(y)N(O~)F(x) * F(x)F(X)F(x) 

Y I , we may con- 

. There is given 

Note that N(o~) is isomorphic as an F(y)-F(x)-bimodule to the left-dual 

HOmF(x)(N(oa),F(x)) of N(a) , using the bilinear form ks . [However, in general 

it may not be possible to identify the division rings in an a-orbit in such a way 

that all maps Ty are identity maps, since the ~-orbit may be closed. Similarly, 

it may not be possible to identify N(oe) with HOmF(x)(N(a),F(x)) for all a , 

so that the bilinear forms X~ are the evaluation maps.] Also, the bilinear form 

Xxy determines a unique element exy in N(Ty,x) @ N(x,y) as follows: let 
F(x) 

nl,...,n t be a basis of F(x)N(x,y) and ~l,...,~t the dual basis with respect 

to Xxy , then Cxy = E ~i ~ ni " This element exy is called the canonical element 

[ 2 ]  . 

Given a translation species F = (Fo,FI,F,N,T,X) , we can construct the tensor aa- 

tegory @F over F . It has F ° as set of objects. Given a pair x,y E F ° , let 

W(x,y) be the set of (oriented) paths from x to y in (Fo,Fl) , and if 

~1 ~2 ~r 
w = ( o ---+ o ---+ o ... o ---+ o ) is a path in W(x,y) , let 

x y 

N(w) = N(~I) @ N(a2) @ ... @ N(~r) , the tensor products being taken with respect 

to the various F(*) ; note that for the constant path w at the point x we have 
x 

N(Wx) = F(x) . Now, for x,y C F define as set of homomorphisms from x to y 
o 

the set @ N(w) , the composition being given by the tensor product. The 
wC~(x,y) 

~ F is defined as the factor category of ~F modulo the ideal gene- 

rated by the elements E c with y ~ F' . 
xEy- xy o 

(3.3) The universal covering of translation species. Let (ro,ri,~) be a translation 

quiver. A covering of (Fo,PI,T) is given by a translation quiver (Ao,Ai,T) and 

a quiver map ~ : (Ao,Al) ÷ (Yo,Fl) which is compatible with T , with 

~-l(Y~ ) = A'o and such that the induced maps x + + (~x) + and x- ÷ (~x)- are bi- 

jective, for any x E A , see [6] . Now assume a translation species (Fo,PI,F,N,T,X) 
o 

is given, and (Ao,dl,r) is a covering of (Fo,FI,T) with covering map ~ . Then 

we can construct a translation species (A ,AI,F,N,T,X) with underlying translation 
o 

quiver (Fo,Yl,T) as follows: For y C Ao ' let F(y) = F(~y) ; for a E A I , let 

N(a) = N(~a) ; for y E A' let T = r : F(y) = F(~y) ÷ F(T~y) = F(~Ty) = F(Ty) , 
o ' y ~y 

' let Xa Thus, all the data of a translation species are and for ~ in A I , = X~ a . 

lifted back via ~ . We call (Ao,AI,F,N,~,X) a covering of (Fo,FI,F,N,T,X) . 

Any translation quiver (Fo,FI,T) has a universal covering, as Gabriel and Riedtmann 

(see [6]) have shown; it will be denoted by (F'~o,F~ 1 ,~) . Given a translation species 
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r = (Fo,FI,F,N,T,X) , we therefore can consider ~ = (L,~|,F,N,T,X) and call it 

the universal covering of r . Note that there exists a group G of automorphisms 

of (~o,FI,T) such that (ro,r],~) = (L,FI,T)/G . By construction, G is also a 

group of automorphisms of the translation species ~ , and clearly F = ~/G . 

Note that for the universal covering (ro,r1,T) of a translation quiver, neither 

any z-orbit of L ' nor any o-orbit of ~I is closed. Therefore, for the univer- 

sal covering (Fo,FI,F,N,T,X) , we can assume that all maps Ty for y C ~'o are 

identity maps (we choose one representative y in any z-orbit of ~ , fix F(y) , 
O 

and identify the division rings corresponding to the remaining vertices in this 

T-orbit with F(y), using the maps ~). Similarly, in any o-orbit of ~| , we 

select one arrow ~ , fix the corresponding bimodule N(~) , and replace the bi- 

modules corresponding to the remaining arrows in this o-orbit by suitable dualized 

forms of N(~) . 

(3.4) Auslander-Reiten-species= Let C be a locally finite-dimensional algebra. 

We denote by F(C) = (Fo,FI,F,N,T,X) its Auslander-Reiten-species, which is defined 

as follows: F is a fixed set of representatives of the isomorphism classes of 
O 

indecomposable C-modules. For any X E r , let F(X) = End(X)/rad End(X) , the 
O 

residue division ring of End(X) , and TX its Auslander-Reiten translate. For 

X,Y C r ° , let N(X,Y) = rad(X,Y)/rad2(X,Y) the bimodule of irreducible maps [15], 

it is an F(X)-F(Y)-bimodule; given X,Y C r ° , there is an arrow X ÷ Y in r I if 

and only if N(X,Y) ¢ O ; also, r' is the set of non-projective modules in r , 
O O 

and T is the AuslanderrReiten translation. 

In order to be able to define the isomorphisms Ty and the bilinear forms XX Y , 

we have to consider Auslander-Reiten sequences. Let Y E F' . Since Y is indecom- 
o 

posable and non-projective, there exists an Auslander-Reiten sequence 

(fx~i) $xd (X) 
O ~ TY ~ Y >O , 

X6~f- 

here, both (fx, i ) and (gx,i) are indexed by X E Y- and 

some X C Y and write fi = fx, i ' gi = gx, i " Then (fi) i 

a basis of N(TY,X)F(X~ , and (gi)i gives modulo rad2(X,Y) 
~ J 

see [15]. Any automorphism of Y lifts to an automorphism of the middle term 

@ X d(X) , and therefore induces an automorphism of TY . In this way, we define 
XEY- 
an isomorphism Ty : F(Y) -~ F(TY) . More precisely, given h E F(Y) and gi ' there 

are elements hij E F(X) satisfying E hijg j = gi h , and then T(h)-f. = E f.h... 
j J i z zj 

Now define for ui,v i E F(X) 

XXy( E uig i , E fivi ) = .~ uiv i , 
i I 

and note that this factors over the tensor product N(X,Y) ® N(TY,X) . Namely, if 
F(Y) 

I < i < d(X) . We fix 

gives modulo rad2(Ty,x) 

a basis of F(x)N(X,Y), 
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h E F(Y), then 

Xxy(gih,fj) = XXy( E hirgr,fj) = hij 
r 

and 

XXy(gi,m(h )fj) = XXy(gi, E frhrj) = hij 
r 

Thus, XX Y is a bilinear form on F(x)N(X,Y) ® N(TY,X)F(X) with values in F(X). 
F (Y) 

(3.5) Coverings of an Auslander-Reiten species. Given a finite-dimensional algebra 

A of finite representation type, we may consider coverings A of the Auslander- 

Reiten species F(A) of A . Gabriel and Riedtmann [6] have shown (at least in the 

case when k is algebraically closed) that A is again the Auslander-Reiten species 

of a suitable locally finite-dimensional algebra. In fact, one can construct such 

an algebra R(A) as follows: First, consider the mesh category C = ~A over A . 

Given any (not necessarily finite) family J of objects in C , let Endo(J) be 

the ring of all row-and-column finite matrices indexed by J , with entries in the 

x-y-position (where x,y C J) from HomC(x,y) , and with matrix multiplication, 

using the composition in C . Now, let R(A) = Endo(A o~An) . (Note that F o~ F' 
o 

is a complete set of indecomposable projective A-modules, and we want that 

A ~A' becomes a complete set of indecomposable projective R(A)-modules.) The re- 
o o 

sult of Gabriel and Riedtmann can be formulated as follows: 

Proposition: Let A be a finite-dimensional algebra of finite representation type. 

Let A be a covering of the Auslander-Reiten species F(A) of A . Then R(A) 

is locall L~f finite-dimensional~ and P(R(A)) = A . 

Two special cases of this proposition are of particular interest. First of all, let 

A = F(A) . Note that the algebra A and R(F(A)) are not necessarily isomorphic, 

not even in case k is algebraically closed. Algebras of the form A = R(F(A)) have 

been called standard, and for any algebra A of finite representation type, there 

is associated R(F(A)) , its standard form. (Note that for algebraically closed k , 

the algebra R(P(A)) is nothing else than Kupisch's "Stamm-Algebra" [14] of the 

Auslander algebra of A.) 

The other special case we are interested in is the case of A = ~(A) , the universal 

covering of P(A) . We will denote R(~(A)) by ~ ° Note that ~ usually will not 

be finite-dimensional. This was the reason for considering the more general class 

of locally finite-dimensional algebras from the beginning. Also note that ~ can 

be shown to be the only basic locally finite-dimensional algebra satisfying 

r(~) = ~(A) . 

(3.6) The type of an ~-module. Let A be a finite-dimensional algebra and ~ the 

basic locally finite-dimensional algebra with F(A) = ~(A) . Recall that for any 

~-module X , the support algebra of X is denoted by ~(X) . Now ~(X) is a 

finite-dimensional algebra, of finite representation type, since with ~ also ~(X) 
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is of bounded representation type. Also the Auslander-Reiten quiver of ~(X) has 

no oriented cycles, since otherwise we would obtain an oriented cycle in ~(A) . 

As a consequence, we can apply the results of [8]. In particular, we see that if 

X,Y are indecomposable X-modules with dimX = di__mm Y, then X,Y are isomorphic. 

Also, we have the following: By definition, the ~(X)-module X is always sincere. 

Thus , i!f X is indecomposable~ then X is a faithful ~(X)-module. Both results 

rest on the fact that for X indecomposable, the algebra ~(X) is a tilted alge- 

bra in the sense of [8]. In fact, we have the following proposition [8]: 

Proposition. . . . . . . . .  Let X be an indecom~osable A~-module. Then there exists a basic, 

hereditary~ finite-dimensional alsebra H , a tilting module T H , and a primitive 

e of H such that %(X) = End(TH) , %(x)X = %(x)Te and moreover 

He is the only simplfl projectiye H-module. Also, H, TH, an_~d e are uniquely 

determined by X . 

The algebra H is called the t%pe of X. 

Let us indicate in which way H,TH,e are constructed: One constructs a "complete 

slice" T in the Auslander-Reiten quiver of ~(X) with X being the unique sink 

of T , and defines T = • T. , H = End(~(x)T) , with e being the projection 
T C T i 
i 

onto the direct surm~and X of T . 

(3.7) The shape of an A-module. Again, let A be a finite-dlmensional algebra, 

and ~ the basic locally finite-dimensional algebra with ~(A) = F(~) . Also, de- 

note by ~ the covering map ~(A) ÷ F(A) , note that ~ is surjective, and let 

G be the group of automorphisms of ~(A) such that ~(A)/G = F(A) . 

Now let M be an indecomposable A-module. Since ~ is surjective, there exists 

some M in L such that ~(M) = M . Let ~(M) be the support algebra of M , 

and consider M as an A(M)-module. The pair (A(M),M), or also the pair 

(~(M~),dimM) will be called the shape of M . Note that the shape of H is inde- 

pendent of the choice of H . For, any other inverse image of M under ~ is of 

the form M ~g , with g C G , and clearly g defines an isomorphism between the 

corresponding support algebras and also between the ~(~)-module M and the 

%(M~)-module M ~ 

(3.8) Example. Let A be the matrix algebra 

A = O c O I a CN ; b,c,d E 
O d e  

There are two simple A-modules S(]) and S(2) , with End S(1) =~ , End S(2) = ~ . 

The A-modules which do not split off a copy of S(]) are given by a ~-vectorspace V 

endowed with an endomorphism $ satisfying 2 = 0 , and an ~-subspace U con- 

tained in the kernel of ~ , thus we will use the notation (V,U,~) . There are 
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the indecomposable projective modules 

the indecomposable injecti~e modules 

~,~ = ~,~, ~:~ = ~, ~O,(o o 1)~ 
and three additional indeeomposable modules of length > I ~0o ;) (o ;) 

= 0 " ) , M 2 = (~,I~,0) , M 3 = (~, ~0, ) M 1 (¢¢¢, ~0 , ~0 0 

The Auslander-Reiten species of A is of the form 

( r o , r l , ~ )  p(a) F (E 

, "? I1  

The arrows ~ : x ÷ y are always endowed wit h the bimodule N(~) = F(x)~F(y) , the 

bilinearforms ~F(y) @ F(y)~ ÷ ~ are the multiplication map, those of the form 

IR~ @ ~% -~R~IR are given by a projection IR~ ÷~I~I " 

The universal covering ~(A) is of the form 

~,,,~-~, ~r~ ~l)I~ % . . . .  

with the same description of the bimodules and bilinear forms. Finally, 

by the species 

is given 

again with bimodules ~ and ~ , and with all compositions being zero. 
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Let us determine the shape of the A-module 

covering map is given by M; with 

the hereditary algebra 

M l . An inverse image of M 1 under the 

O 200 thus ~(~) is dimension type "''O 2 I O''" ' 

IR 

O( 0 

N 2 
and ~(Ml )MI is the indecomposable representation of dimension type 2 l " 

4. The shapes of the indecomposable modules of a Kawada alsebra 

(4.1) Let us now give the list of the indecomposable modules for a Kawada algebra. 

We will write down all possible shapes (~(M),din~) of such modules. In fact, it 

turns out that always A(M~) is the path algebra of a fully commutative quiver with 

at most one zero-relation over a division ring F ; thus, we only list this quiver 

and mark the starting point of a zero-relation by • , the endpoint by • . Note 

that this result is only the second part of Kawada's theorem. 

Theorem (Kawada). Let A be a Kawada alsebra~ and M indecomposable~ Then the 

shape of M is one of the following or its dual: 

~(~) di~ type Kawada's notation 

o-o-o ... o-o l l l  ... I I  A 
n 

o + o + o  . . .  o + ~ + o  I l l  . . .  l l l  D 
1 n 

l l l  ... 121 

1 

121 . . .  221 
1 

o + o + o  . ~  l l l  . . ~ . l  D n 

11 . . .  l l  

l l l  . . .  12 

I I  . . .  l l  

1 2 2  . . .  22 

l l  . . .  11 

0•0"*0 . . . 0 ~ , , .  0 

~ ' o ~  o+o j 

I1 ... l l  

I I  ... l l  

! 

0--0° . .0--$--0.. ,0--0 

o + o  I 

l l  . . .  11 

l l  . . .  l l  

~--O--~--O , , , O--O 

1-I, 1-2, 11-3"I, 
11-3.2,11-3.3,11-3.4 

I-4.1, II-2"l, 
II-l-1, I-3"] 

I-4"2 
II-2.2, II-2"3 
II-l .2 
I-3.2, I-3"3 

IV-2"|, III-4.2 

IV-2"2, IV-2"3 
III-4"3, III-4"4 

111-4 • l 

V-I 
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o 0 

~ i o ~  . . .  o. ~ 

. .0~+0...0+0 0+0. 

o + o , ,  , ~ ,  • , o + o  

o-.~o, 7 ~  " ° + °  

o% 
o %. 

l l / 1 ~  . . .  o - o  1 ~-o-~-o 
11 . . .  11 

/ 1  ~ .  * - o - o - 9 - o 6  I1 ~ l l  ... o - o  
11 . . .  11 

1 1 . . . 1 1  1 1 . . . 1 1  * - o  . . . o -  - o  
1 

? 
11 . . .  121 . . .  11 o - * - o  . . .  o - 6 - o  

11 

? 
11 ... 121 ... 11 o-o...*...o-6-o 

II...11 

22 ... 22 o-*--o ...o-o 

1 1 

I 9 
11 ] *-o-~-o-o 

I 
I 

I o 
I 

I I I 0-*-4-0-0 

2 
I 

121 i o- *-~-o-o 
2 

I 

2 9 
I 2 I o - o - ~ - o - o  

2 
! 

I 9 
I I I *-o-o-6-o-o 

I I 
I 

I 
} I i * - o - o - o - ~ > - O - o  

I I I  
1 

111-3"I, III-I 

111-3 • 1 

III-I, 111-2 

II-2"4 

IV-2"4 

II-I "3 

III-3"2, IV-I;| 

III-3" 3, IV-I " 2 

111-3"4, IV-I • 3 

111-3"5, IV-I "4 
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N N 
An edge in the quiver of A(M) means that there is an arow with arbitary orientation. 

In all cases, the type of M is the path algebra H of a quiver without cycles. 

We have listed these quivers, the unique sink being marked by * (except in the first 

cases). Note that modules with shape of type A are also called strings. 
n 

(4.2) Note however that there are algebras with all indecomposable modules having 

shapes as in the list, without being a Kawada algebra. For example, the path algebra 

of o ) @  ~ with 2 = 0 is not a Kawada algebra, whereas all its indecompo- 

sable modules are strings. However, under the assumption that all indecomposable 

modules have shapes as in the list, it is not difficult to check for any of these 

modules both top and socle, and thus to verify directly whether it is a Kawada algebra 

or not. 

(4.3) Let us outline a direct proof of the theorem. First, one notes that with an 

indecomposable A-module M also the r-module M has squarefree top and squarefree 

soele. As a consequence, we see that for a Kawada-algebra A , also the algebras 

A(M) are Kawada algebras. Thus, we may assume that A is a tilted algebra with an 

indecomposable sincere representation, and at the same time a Kawada algebra, and 

have to show that A is one of the algebras in the list. (Note that it is easy to 

check that all these algebras are Kawada algebras and that all their indecomposable 

modules are listed, using the inductive construction of the corresponding Auslander- 

Reiten quiver~ as outlined in [5].) Now one uses induction on the number of simple 

A-modules: Given A , we can write it as a one-point-extension of a Kawada algebra 

B by a B-module B X , see [16], and, by induction, we know all indecomposable B- 

modules. Since A is a Kawada algebra, the veetorspace category Hom(BX,BM) actually 

is of the form adds for some partially ordered set S , and in addition, the width 

of S must be < 2 . Now it is a rather elementary, however tedious, exercise to 

check all possibilities. 

5. Appendix: The reception of thewprk PS Kawada 

Kawada's theorem was the last result in a sequence of investigations of special 

classes of algebras of finite representation type. These investigations started with 

KSthe and Nakayama who studied the serial algebras, and they were continued for exam- 

ple by Yoshii and Tachikawa. All these investigations aimed at an internal charac- 

terization of algebras whose modules decompose in a predictable way. However, after 

the work of Kawada, this type of problem must have appeared as a dead end: First of 

all, the length of his proof was rather surprising. And what was the result? 19 really 

horrible conditions which are difficult to check and which did not seem to give much 

insight into the problem. As a consequence, for a long time, there were no further 

attempts to deal with algebras of finite representation type, the work of Kawada was 

forgotten. 
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Some of Kawada's results were rediscovered later, and usually not in a simpler form. 

His methods involve a large number of different ways of amalgamation of modules in 

order to form large indecomposable modules, and also different ways of splitting off 

certain types of modules in order to decompose a given module. Several of these 

techniques were needed later by different authors and had to be introduced again. In 

particular, the decomposition of modules which are direct sums of strings has been 

investigated thoroughly (strings also have been called V-modules [13]), they play a 

rather dominant role in representation theory. We note however that not all alge- 

bras of finite representation type with only strings as indecomposable modules are 

Kawada algebras (see 4.2). 

The most important Kawada algebras are perhaps the blocks of group algebras with 

cyclic defect group (in particular, the group algebras of groups with cyclic p-Sylow 

group over a field of characteristic p ). These algebras were investigated by Dade, 

Janusz and Kupischo Using deep character theoretical results of Dade, both Janusz [9] 

and Kupisch [12,13] determined the structure first of the indecomposable projective 

modules, they are of shape 

C 
and then of the remaining modules: they are strings. After having derived the struc- 

ture of the indecomposable projective modules, one could have applied Kawada's 

theorem. 

A special class of Kawada algebras (which includes the blocks of group algebras with 

cyclic defect group) have been considered recently [4]: algebras of distributive 

module type. Recall that a module is said to be distributive in case its lattice of 

submodules is distributive. Note that a module M over a finite-dimensional algebra 

is distributive if and only if for every pair of submodules O c U c V c M with V/U 

semisimple, this module V/U is squarefree. The finite dimensional algebra A is 

said to be of distributive module type provided any indecomposable module is distri- 

butive. Clearly, algebras of distributive module type are Kawada algebras. Thus, we 

can apply Kawada's theorem. Note that the shape of a distributive module is again a 

distributive module, and the only quivers with relations occuring in Kawada's list 

for which all indecomposable representations are distributive, are 

0--0--0...0--0 

and the commutative quiver 

~ o~/ 

There also is a recent survey .on the KSthe problem (which there is called the 

o-cyclic problem, and correspondingly KSthe rings there are called o-cyclic rings), 
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with a "look to the future". It was presented at the 1978 annual AMS-meeting and 

then also published. This survey does have a reference to the papers [l] of Kawada, 

but it refers to them as follows: "Kawada gave a determination of a very special 

case of the o-cyclic problem (e. g. radical square zero, and every indecomposable 

cyclic embeds in R ), but even then some 19 conditions were deemed necessary and 

sufficient." The number of conditions is the right one, but everything else is pure 

fantasy (actually, under the mentioned assumptions, the problem would be very easy 

[lO]). On the other hand, the author poses the problem to do what Kawada actually 

did: "Call a ring property P Morita stable if every ring Morita equivalent to a 

ring with P also has P .... It would be a reasonable conjecture that any semi- 

perfect Morita stable o-cyclic ring is uniserial." At least Nakayama gave a counter 

example to such a conjecture, and we have seen above the large variety of possible 

shapes of modules found by Kawada. A look to the past is sometimes valuable. 
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