Representation-finite tree algebras

Klaus Bongartz and Claus Michael Ringel

It is well-known, how the representation theory of representation—finite quivers can
be reduced to representations of posets (see [2]). We show that this can be gene-
ralized to representation-finite trees with arbitrary relations. This generalization
was conjectured and partially proved by the first author using a quite technical
inductive argument. During ICRA III, the second author observed that there is a
direct proof which is based on results of [3] and which is given here.

1. Modules having peaks; statement of the theorem

Throughout the paper, k denotes a commutative field. In this paragraph, we have to
give a lot of notations and definitions. Instead of doing it formally, we illustrate
them by examples. MWe are sure that this is easier to read.

Let T be a finite quiver, whose underlying graph is a tree. Denote the cor-
responding path algebra by kT. It contains the ideal kTt generated by the arrows,
this is just the radical of kT. Any quotient algebra A = kT/R with R c (kT+)2
is called a tree algebra. Of course, the category of all finite-dimensional left
A-modules can be identified with the full subcategory of all finite-dimensional
representations of T which satisfy the relations in R. (If M is a representation
of T, we denote by M(i) the vectorspace associated to the point i of T, and
by M(a) or just by o the map associated to the arrow o.) As an example, we
will consider the following tree T
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with R being generated by the relations 0 = nga = edyBa = AL =9y =xed = ké1.

8 11

Awalk W in T from i to j of length n is a finite sequence w = a; ... ap,s

with a; or a}l an arrow, such that a, starts at 1, g ends at j and the
remaining starting and ending points fit together well. Moreover, we don't allow
w to have a subsequence of the form aa_l, a_la, r or r’l with re€R. On the

finite set Sj of all walks with end point j we define a particular ordering by:



40

. -1
- ) - ]
Wi o= VEW], W, = ViW, with n "¢ €R or
= wlwé, Wy = Va, where a'l is an arrow or
Wi = WoWi, Wy = Va, where o 1is an arrow or

Wp T W

For instance, S4 in our example has the following shape:
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Each walk w = ap ...oa € Sj defines a subfunctor denoted by w[-1 of the

functor Hom(Pj,-) : mod kT/R — mod k (here, Pj denotes the indecomposable pro-
jective module corresponding to the point j, and note that for any module M,
Hom(Pj,M) is nothing else but the vectorspace M(j)). Namely, in case an is an
arrow, say starting at i, let w[M] = w(M(i)), whereas in case a;I is an arrow
let wIM] = w(0). In our example vyBaM] = y8a(M(1)) and yn L [M] = yn"1(0), both
being subspaces of M(4). We have Wy < W, if and only if wl[M] c wz[M] for all
modules M. Of course, this gives rise to a functor Fj from mod A to the cate-
gory R(Sj) of all finite-dimensional representations of the poset Sj’ where Fj(M)
has as total space M(Jj) and where (FjM)(w) equals w[M] for we€ Sj.

A representation M of T has peak j, if each arrow leading to j 1is
represented by an injection, each arrow going away from j by a surjection. (By

definition, an arrow 11 LN 12 is said to lead to j provided i2 and j belong
to the same connected component of T ~ {a}, otherwise o is said to go away from j.
In our example, u,B8,y,i and ¢ are leading to 4, the others are going away from 4.)
Denote by Pj the full subcategory of all representations of A having peak j.

Lemma: The functor Fj induces an equivalence between P\j and R(Sj).

Proof: We define a functor G : R(Sj) — Pj which gives the inverse of Fj!Pj.

For simplicity, we give the construction only in the above example. Let V be an
object of R(S4), i.e. V 1is a vectorspace with a family of subspaces V(w), w € S4.
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Define GV to be the following:

V(y8a) visle Ly vt

V(vy8) V/V(e'l) V/V(a‘le"l)—»o

/
V(y)e— ¥ —V/V(s™)
-

V(v)/V(m ) V(v) V/V('S—lK-l)
with all maps being the canonical ones. By construction, GV 1lies in P4.

This lemma shows that for a representation-finite tree algebra A all posets
51 are representation-finite. The converse is also true, it is the main result of
this paper:

Theorem: Let kT/R be a tree-algebra. Then KkT/R 1is representation-finite if
and only if all Si are representation-finite. Moreover, in that case each inde-
composable has a peak.

2. Proof of the theorem

The proof of the theorem rests on the results from [3] on tilted algebras. To
apply these results, we have to know that any tree-algebra we are interested in,
has a preprojective component in its Auslander-Reiten quiver. This follows from a
paper of Bautista-Larrion [1] and, for the convenience of the reader, we give
here a direct proof.

Recall that a component C of the Auslander-Reiten quiver of an algebra A
is called preprojective, provided C contains no oriented cycle and each module
in C has the form r-tP for some natural number t and some indecomposable pro-
jective P. Here M denotes the Auslander-Reiten translate of the indecomposable
M. For instance, the preprojectives of a hereditary connected algebra form a pre-
projective component. An indecomposabie M is called a predecessor of another
indecomposable N, if there is a chain

M——>M1—>M2——>...———>Mn———>N

of irreducible maps. Denote this by M~~~ N.

A preprojective component C is closed under predecessors and each M € C has
only finitely many predecessors. Moreover, C contains all indecomposables U with
Hom(U,X) # 0 for some X € C. (see [3] for details).

If T s a connected subquiver of T, denote by R the ideal generated by
the paths of R which 1ie inside of T. We call kT/R a branch-algebra of kT/R.
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Clearly,mod KT/R can be identified with the full subcategory of mod KT/R, whose cb~

jects are the representations vanishing outside of T.
Proposition Each tree algebra A = kT/R has a preprojective component.

Proof: Let x—>y be an arrow in T and U the indecamrosable direct summand of the
radical of PX with U(y) # 0. Consider the.connected comonent T of y in T\{x}
and the corresponding ideal R . Then A = XKT/R is a branch algebra of A and we de-

note by % the corresponding Auslander-Reiten translate.

Claim Let & be a preprojective camponent of & .For each X €& ,X # U,which has not
U as a predecessor (with respect to & ),we have ¥ 'X = = X.

Proof of the claim: By induction on the number of predecessors of X.Thus we start

with the case,where X is simple projective in mod A,hence in mod A.Then the middle
term of the Auslander-Reiten sequence (—3X-—3 P —»%'X —30 has to be pro-
jective.By assumption we have X#U,hence Pemod E and 'X =X,
For the induction step consider first the case,where X is not projective.In the
Auslander-Reiten sequence

e: 0> —> $Yi—-—->X——->O
of mod &, the Yi denote indecamposables.By induction,we have ®'&X =%'E X = X.This
implies,that e is an Auslander-Reiten sequence of mod A.Again by induction,we have
fc"Yi = "'"Y;henodi and this gives us the non-projective heads of all irreducible
morphisms in mod A starting at X.On the other hand,the assumption X # U implies
j€T for each irreducible morphism Xe-y Pj , J e T.Therefore X is non-injective
in mod A iff it is so inmod A and then ©'X =¥'X holds.

The induction step is even easier,in case X is projective.

Now we prove the proposition by induction on the mumber of points of T.Suppose first,
that there is an arrow x —»y in T as in the beginning of the proof,such that U
does not belong to a preprojective camponent of A.By induction,there is a preprojec-
tive component of A,which is eaven a nreprojective commonent of A,since our claim
holds for each point of that camponent,and since a module in mod A is projective
inmod B iff it is so in mod A.
In the remaining case,we construct by induction full subquivers Cn of the Auslan-
der-Reiten quiver of A satisfying the following conditions:

(U8)] tn is finite,connected,without oriented cycles,closed under predecessors and

contains only modules of the form £tPP., jeT, telN .
et utn stnﬂ . (Here 'c"tn ={€'x: X is not injective and belongs to tn} )
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Put 'CO = (_S},where S is simple projective,and suppose tn has already been con-

-]
SLYLUEUATL  ULIC ARALULT O U, yll oy e v o 6 o i T > < i r
structed.Number the modules MM, M, of tn with € Ml¢ tn for 1¢igt

in such a way that MiM-’Mj implies i< j. (If we have t=0 put tn+l = tn ) .Once

more,we construct by induction full subquivers :bl of the Auslander-Reiten quiver of
i =, e -

A with 00 tn and :bi (e Mi+li $®i+l for 0¢igt-1,such that the :b satisfy

condition (l).0f course, does the job.

n+l = t
if ¢ M€ i)i ,put fbi+l =’-?>i .In the other case let

0—> 1, —> @XIe (@ FH el (@F)h —> iy, —>0
be the Auslander-ReJ.ten sequence startmg at M 41 .Here we have PJ e?) iff 1&¢j¢ s
and XJ G.ﬁbl by construction.To get 23 141’ add ! M +1 and all its predecessors

to D, i and view it as a full subquiver of the Auslander—Relten quiver.We show first,

7) has no oriented cycle.Each such cycle has to contain € Mi+l or same Pj,

st+1¢ 3 4r Therefore we have only to prove,that there is no arrow (in d . +l) starting
at ':"Mi+l and that all arrows starting at some PJ, stlgjgr, fly to €M, e
Let Mi +1 —> Y be an arrow in Q)i+l.SJ.nce < uli +l¢ Q)i,whlch is closed under

predecessors,we have YN\-—»Pj for some j@s+l,thus PjA~—>Pj,what is impossible
by our claim.

Next,take an arrow Pj —>Y with ¥ # t"Mi+l.Again we have Ya~—yP for some

st+1¢ k ¢ r, thus Pj rvv-?Pk.Let Pj -—;Vl -—> V2 ..... Vq-—-> U —-)Pk be a chain of
irreducible morvhisms.By the cla:'_m,l_:'j belongs to mod A ,where A is the branch algebra

defined by P, and U.Since there is an arrow Mi+l—9Pj,we infer that U=M, _,i.e.

k i+l
P,an~»M, _,a contradiction.
Jj i+l
It is easy to see,that.@_,ﬂ satisfies all other conditions.To finish the proof of
-

the proposition,one has to observe that € =UEn is a preprojective camponent.

The only result which we will need from [3] is the following:

Lemma 1 Iet KT/R be a tree algebra having a preprojective component € and a sincere

representation N ¥ .If Reees & is a path in T,then N(«n) ....N(ul) is injecti-

1
ve,surjective or zero.

Recall that N is sincere iff N(j) # 0 for all jeT.

Proof of Lemma 1 : This follows directly from theorem 8.5 of [3] .

Furthermore we need the following little lemma on representations of partially

ordered sets.
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Lemma 2. Let S be a partially ordered set, a € S a point and V an indecompo-
sable representation such that 0 + V(a) # V. Then there exist b and c €S,
such that the spaces V(a), V(b), V(c) are pairwise incomparable.

Proof: Suppose not. Then the set {bl,...,bn} of elements, such that V(bi) is
incomparable to V(a), can be numbered such that i < j implies V(bi) c V(bj).
It is well-known and easy to see, that the indecomposable representations of the
set

S'={1',1<2<3<...<n}

are l-dimensional, i.e. have k as total space. The restriction of V to
{a,bl,...,bn} can be considered as a representation of S' and decomposed 1nto
V1 & Vs, such that V(a) = Vl(a) = vl. A short computation shows that this is a
decomposition of V 1in the category of all S-spaces, a contradiction.

Finally, we prove the remaining part of the theorem. Let a tree algebra
A = kT/R be given, such that all partially ordered sets Si are representation-
finite. We have to show, that A is representation-finite and that each indecompo-
sable has a peak. By induction, this is true for each branch algebra of A.

Take an indecomposable N belonging to a preprojective component of A.
If N is not sincere, it has a peak by induction, so we may assume N to be sin-
cere, hence Lemma 1 applies. In particular each arrow is represented by an in-
jection or a surjection. Now choose a point p, such that dim N{p) is maximal.
We will show that p is a peak and we need the following

Claim: Let w be a walk form i to j through k with i+ k # j. Then
dim N(i) 2 dim N(k) $ dim N(j) cannot occur.

Proof: Llet w = ap e 0 be a counterexample of minimal length. Then N(al),
N(an) are not bijective, but all the other N(ai) are bijective.

15% case  w or wl isa path.

Dualizing, if necessary, we can assume that w is a path. Then N(az) N(a3)...N(an)
is proper surjective, N(al) proper injective, but the composition neither injective,
nor surjective nor zero, a contradiction to Lemma 1.

an case w changes the direction.

Let 2 be an intermediate point, where w changes the direction. By duality we
may assume, that & is a source, i.e. the picture is as follows
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Let Tg' be the connected component of T ~ {2} containing &' and
r

let T be the full subtree of T with point set TQ. U {2} . Let ® Nq be a

9=1
decomposition of N|{T into indecomposables of A = kT/R. We have Nq(z) + 0 for
each g, for otherwise N decomposes. Moreover, we have dim Nq(i) 2 dim Nq(z)
for some q, say q = 1. By induction, N1 has a peak x € T. Let u be the
walk from & to x. Clearly, u bhas the form u = u'aglv-l. By construction,
we have 0 # u'agl[Nl] # Nj(x). By Lemma 2, there exists wuj,u, € S, (the
ordered set with respect to A), such that u‘uai[Nl], up [Ny ] and UZ[N1] are

u) /5/——;(

e i u
v Ay

pairwise incomparable.

Write u' = su", up = sui such that u" and ui are disjoint and do the
[ m . ] - u'l ) - _ Wi I -—_
f?me for Uys ut = tu", Uy = tu2. Put Up= veeu® Tup, Up= vetu U,  Then Ups
u, are walks belonging to Sz’ which are incomparabie.
The same argument gives two walks U&, E@ in Sz’ which come through Jj. There-

fore Sl contains four incomparable elements, the final contradiction.

The claim together with the fact, that each arrow is represented by an injec-
tion or surjection, immediately implies that p is a peak.

Now, by the proposition there is a preprojective component C. Since each
module in C has a peak and since T has only finitely many points, C is finite
and contains therefore all indecomposables.

3. Applications and examples

Besides the branch-algebras, there is another type of tree algebras, which can be
derived from a given tree algebra kT/R. Let x —§+ y be a fixed arrow in T.

o
n all points with arrow xi—l+ x and by Yio-eo¥p those with

Denote by XisevnsX
’Y .
arrow y - \Zp Furthermore, suppose that Bay = 0 iff 1 <i <r and similarly

YiB = 0 iff 1 <1 <s. Denote by Tx. (resp. Ty } the connected components of
i i
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8
X; (resp. yi) in T~{x— y}. Let T be the tree obtained from

~ r ] 8
T=T~ ( U TX VIV Ty ) by shrinking X — y to a point z. Consider the
i=l M 4=1 Yy

ideal R of kT generated by the paths w, such that either w is a path in T
belonging to R not containing B8 or such that w can be written as Wiy,
where wiBW, s a path in T belonging to R. For instance if we start with the

arrow 3 s 4 dn our example, we get:

(]

AQ/
Lol
O —~J

\/’
/\

With R generated by nBo = eSBa = Az = Aes = ké1 = 0. The algebra kT/R is
called a shrinked algebra of kT/R and mod kT/R can be interpreted as full sub-
category of mod kT/R, containing only modules where g 1is represented by a bijec-

tion. Finally, an algebra A 1is said to be contained in B, if there is a finite
sequence Ao’Al""’An of algebras, such that A = Ao’ B = An and Ai is a
branch-algebra or a shrinked algebra of A, , for 0 < i <n-l.

Corollary 1. A tree-algebra kT/R is representation-finite if and only if it
does not contain one of the following algebras:

(]
\
o——$——o o} —0—0 0—-0——;==0

o—-o——o——i——o-—o——o
5 0—0 =28 0—0—0 j;;n——i——agi:
) .
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Here, we do not specify the orientations. A dotted line marks a {(zero-) relation
(of course, the arrows along a dotted line have to point in one direction). These
algebras are concealed quiver algebras [4,7] of type D4, E6’ E7 or E8 (depen-

ding on the number of points), and all their representations have a peak.

Proof: The proof consists in a verification, that these are the 'minimal' algebras
which contain one of the minimal representation-infinite posets in some Si'

In practice, the above criterion is not so easy to apply, if one wants to know
whether a given tree-algebra A is representation-finite or not. Quite often it is
more convenient to compute the dimension-vectors of the indecomposables starting
with the simple projectives. In this connection, the following remark is useful.

Corollary 2. Let U be an indecomposable representation of a representation-
finite tree-algebra kT/R. Then dim U(x) <6 for all x € T.

Proof: This follows from Kleiner's theorem ([5]).

Kleiners list of posets having an exact indecomposable representation even
yields a list of all indecomposabies of all representation-finite trees. The ori-
ginal partial proof of the theorem used this 1ist. To convince the reader of the
arising combinatorial difficulties, we give the list of all representation-finite
tree-algebras kT/R, such that dim U(x) <4 for all x € T and U indecomposable,

and such that there exists at least one sincere indecomposable V.

Again, we do not specify the orientation, and the dotted Tines describe the
generating relations.

No relation: The Dynkin-diagrams with the exception of E8.

1 Relation

K+
./
Vd
1 /k/+1
2>3—4—- ..... —k\( k>3, 2>1,m>1
k‘+2+1
~
~N
k+2+ m
13- ~-n+l
N3 S
3—4 — ..., —n , n>4
27 nt2 -
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3 Relations
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P\
o—0 —=

&
L
0= =2—0"
\
b
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5. Generalization to species

Let S = (Fa’aNb)a,b
tensor algebra of S, and R an ideal inside the square of the radical of kS.
Then: if A = kS/R is of finite representation type , then all indecomposable
A-modules have a peak. Here, the point j of the underlying graph of S s said
to be a peak for the representation M = (Ma,bapa : Ma 8 aNb — Mb) of S if and

be a k-species with underlying graph a tree, kS the
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only if for every 0 % n € aNb’ the k-11inear map b3 ®n: Ma ] Ma 8 n— Mb is
injective in case a — b s an arrow leading to j, and is surjective in case
a — b 1is an arrow going away from j.

The proof is an obvious generalization of the arguments given above. First,
one notes that the radical rad P of any indecomposable projective A-module P
is the direct sum of (at most three) indecomposable modules, and this
impTies that the Auslander-Reiten quiver of A has no oriented cycles (see [1]
or the proof of the proposition in section 2). Again, using theorem 8.5 of [3],
one knows that for indecomposable M, any composition of maps of the form
bPa 8n: Ma ~ Ma 8 n— Mb is injective, surjective, or zero. In particular, for
M indecomposable, 0 # n € aNb’ the map 6% 8 n 1is injective or surjective.
Now assume M is indecomposable, and does not have a peak. In the tree case con-
sidered above, we have used lemma 2 in order to construct a full embedding of the
module category of a quiver of type Bn into mod A. In the general case, one
similarly obtains a full embedding of the module category of a hereditary algebra
with underiying graph of the form bn’ or

where dd' > 2 and ee' > 2. Thus, A cannot be of finite representation type,
contrary to the assumption.

As a consequence, it follows that#fA = kS/R is of finite representation type
and M an indecomposable A-moduie, then the components of the dimension vector
dim M all are < 6. (Recall that dim M has as components (dim M) = dim(M ). ).
a
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