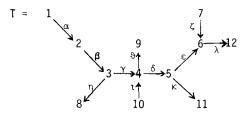
Representation-finite tree algebras Klaus Bongartz and Claus Michael Ringel

It is well-known, how the representation theory of representation-finite quivers can be reduced to representations of posets (see [2]). We show that this can be generalized to representation-finite trees with arbitrary relations. This generalization was conjectured and partially proved by the first author using a quite technical inductive argument. During ICRA III, the second author observed that there is a direct proof which is based on results of [3] and which is given here.

1. Modules having peaks; statement of the theorem

Throughout the paper, k denotes a commutative field. In this paragraph, we have to give a lot of notations and definitions. Instead of doing it formally, we illustrate them by examples. We are sure that this is easier to read.

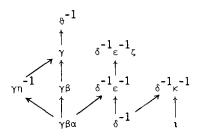
Let T be a finite quiver, whose underlying graph is a tree. Denote the corresponding path algebra by kT. It contains the ideal kT^+ generated by the arrows, this is just the radical of kT. Any quotient algebra A = kT/R with $R \subseteq (kT^+)^2$ is called a <u>tree algebra</u>. Of course, the category of all finite-dimensional left A-modules can be identified with the full subcategory of all finite-dimensional representations of T which satisfy the relations in R. (If M is a representation of T, we denote by M(i) the vectorspace associated to the point i of T, and by M(α) or just by α the map associated to the arrow α .) As an example, we will consider the following tree T



with R being generated by the relations $0 = n\beta\alpha = \epsilon\delta\gamma\beta\alpha = \lambda\zeta = \vartheta\gamma = \lambda\epsilon\delta = \kappa\delta\iota$. A walk w in T from i to j of length n is a finite sequence $w = \alpha_1 \dots \alpha_n$, with α_i or α_i^{-1} an arrow, such that α_n starts at i, α_1 ends at j and the remaining starting and ending points fit together well. Moreover, we don't allow w to have a subsequence of the form $\alpha\alpha^{-1}$, $\alpha^{-1}\alpha$, r or r^{-1} with $r \in R$. On the finite set S_i of all walks with end point j we define a particular ordering by:

$$w_{1} \leq w_{2} \iff \begin{cases} w_{1} = v_{\xi}w_{1}', w_{2} = v_{\eta}w_{2}' & \text{with } n^{-1}\xi \in R & \underline{or} \\ w_{2} = w_{1}w_{2}', w_{1} = v_{\alpha}, & \text{where } \alpha^{-1} & \text{is an arrow } \underline{or} \\ w_{1} = w_{2}w_{1}', w_{2} = v_{\alpha}, & \text{where } \alpha & \text{is an arrow } \underline{or} \\ w_{1} = w_{2} \end{cases}$$

For instance, S_4 in our example has the following shape:

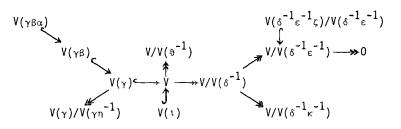


Each walk $w = \alpha_1 \ ... \ \alpha_n \in S_j$ defines a subfunctor denoted by w[-] of the functor $\text{Hom}(P_j, -)$: mod kT/R \longrightarrow mod k (here, P_j denotes the indecomposable projective module corresponding to the point j, and note that for any module M, $\text{Hom}(P_j, M)$ is nothing else but the vectorspace M(j)). Namely, in case α_n is an arrow, say starting at i, let w[M] = w(M(i)), whereas in case α_n^{-1} is an arrow let w[M] = w(0). In our example $\gamma_{\beta\alpha}[M] = \gamma_{\beta\alpha}(M(1))$ and $\gamma_n^{-1}[M] = \gamma_n^{-1}(0)$, both being subspaces of M(4). We have $w_1 \le w_2$ if and only if $w_1[M] \subseteq w_2[M]$ for all modules M. Of course, this gives rise to a functor F_j from mod A to the category $R(S_j)$ of all finite-dimensional representations of the poset S_j , where $F_j(M)$ has as total space M(j) and where $(F_jM)(w)$ equals w[M] for $w \in S_j$.

A representation M of T has <u>peak</u> j, if each arrow leading to j is represented by an injection, each arrow going away from j by a surjection. (By definition, an arrow $i_1 \xrightarrow{\alpha} i_2$ is said to lead to j provided i_2 and j belong to the same connected component of $T \setminus \{\alpha\}$, otherwise α is said to go away from j. In our example, α,β,γ,i and ζ are leading to 4, the others are going away from 4.) Denote by P_j the full subcategory of all representations of A having peak j.

Lemma: The functor F_i induces an equivalence between P_i and $R(S_i)$.

<u>Proof</u>: We define a functor G : $R(S_j) \longrightarrow P_j$ which gives the inverse of $F_j | P_j$. For simplicity, we give the construction only in the above example. Let V be an object of $R(S_4)$, i.e. V is a vectorspace with a family of subspaces V(w), $w \in S_4$. Define GV to be the following:



with all maps being the canonical ones. By construction, GV lies in P_A .

This lemma shows that for a representation-finite tree algebra A all posets S_i are representation-finite. The converse is also true, it is the main result of this paper:

<u>Theorem:</u> Let kT/R be a tree-algebra. Then kT/R is representation-finite if and only if all S_i are representation-finite. Moreover, in that case each indecomposable has a peak.

2. Proof of the theorem

The proof of the theorem rests on the results from [3] on tilted algebras. To apply these results, we have to know that any tree-algebra we are interested in, has a preprojective component in its Auslander-Reiten quiver. This follows from a paper of Bautista-Larrion [1] and, for the convenience of the reader, we give here a direct proof.

Recall that a component *C* of the Auslander-Reiten quiver of an algebra A is called preprojective, provided *C* contains no oriented cycle and each module in *C* has the form $\tau^{-t}P$ for some natural number t and some indecomposable projective P. Here τM denotes the Auslander-Reiten translate of the indecomposable M. For instance, the preprojectives of a hereditary connected algebra form a preprojective component. An indecomposable M is called a predecessor of another indecomposable N, if there is a chain

 $\mathsf{M} \dashrightarrow \mathsf{M}_1 \dashrightarrow \mathsf{M}_2 \dashrightarrow \ldots \dashrightarrow \mathsf{M}_n \dashrightarrow \mathsf{N}$

of irreducible maps. Denote this by $M \longrightarrow N$. A preprojective component *C* is closed under predecessors and each $M \in C$ has only finitely many predecessors. Moreover, *C* contains all indecomposables *U* with Hom(U,X) $\neq 0$ for some $X \in C$. (see [3] for details).

If \overline{I} is a connected subquiver of T, denote by \overline{R} the ideal generated by the paths of R which lie inside of \overline{I} . We call $k\overline{I}/\overline{R}$ a branch-algebra of kT/R.

Clearly, mod $k\overline{T}/\overline{R}$ can be identified with the full subcategory of mod kT/R, whose objects are the representations vanishing outside of \overline{T} .

Proposition Each tree algebra A = kT/R has a preprojective component.

<u>Proof</u>: Let $x \longrightarrow y$ be an arrow in T and U the indecomposable direct summand of the radical of P_x with $U(y) \neq 0$. Consider the connected component \overline{T} of y in $T \setminus \{x\}$ and the corresponding ideal \overline{R} . Then $A = k\overline{T}/\overline{R}$ is a branch algebra of A and we denote by \overline{c} the corresponding Auslander-Reiten translate.

<u>Claim</u> Let \mathcal{C} be a preprojective component of \overline{A} . For each $X \in \mathcal{C}$, $X \neq U$, which has not U as a predecessor (with respect to \overline{A}), we have $\overline{\mathcal{C}}^{-1}X = \mathcal{C}^{-1}X$.

<u>Proof of the claim</u>: By induction on the number of predecessors of X.Thus we start with the case, where X is simple projective in mod \overline{A} , hence in mod A.Then the middle term of the Auslander-Reiten sequence $0 \longrightarrow X \longrightarrow P \longrightarrow \overline{c}^{\dagger}X \longrightarrow 0$ has to be projective.By assumption we have $X \neq U$, hence $P \in \text{mod } \overline{A}$ and $\overline{c}^{\dagger}X = \overline{c}^{\dagger}X$. For the induction step consider first the case, where X is not projective. In the Auslander-Reiten sequence

e: $0 \longrightarrow \overline{c} X \longrightarrow \bigoplus Y_i \longrightarrow X \longrightarrow 0$

of mod \overline{A} , the Y_i denote indecomposables. By induction, we have $\P'\overline{e}X = \overline{V}'\overline{e}X = X$. This implies, that e is an Auslander-Reiten sequence of mod A.Again by induction, we have $\P'Y_i = \overline{V}'Y_i \in \text{mod }\overline{A}$ and this gives us the non-projective heads of all irreducible morphisms in mod A starting at X.On the other hand, the assumption $X \neq U$ implies $j \in \overline{T}$ for each irreducible morphism $X \longrightarrow P_j$, $j \in T$. Therefore X is non-injective in mod A iff it is so in mod \overline{A} and then $\P'X = \overline{\P}'X$ holds. The induction step is even easier, in case X is projective.

Now we prove the proposition by induction on the number of points of T.Suppose first, that there is an arrow $x \rightarrow y$ in T as in the beginning of the proof, such that U does not belong to a preprojective component of \overline{A} . By induction, there is a preprojective component of \overline{A} , which is eaven a preprojective component of A, since our claim holds for each point of that component, and since a module in mod \overline{A} is projective in mod \overline{A} iff it is so in mod A.

In the remaining case,we construct by induction full subquivers ${\pmb\xi}_n$ of the Auslander-Reiten quiver of A satisfying the following conditions:

(1) $\boldsymbol{\mathcal{C}}_n$ is finite, connected, without oriented cycles, closed under predecessors and contains only modules of the form $\boldsymbol{\tau}^{\mathbf{t}_{p_i}}$, jeT, teN.

$$(2)_{\tau} t_n \cup t_n \leq t_{n+1} . (\text{Here } \tau' t_n = \{ \tau' X: X \text{ is not injective and belongs to } t_n \})$$

Put $\mathcal{C}_0 = \{s\}$, where S is simple projective, and suppose \mathcal{C}_n has already been constructed. Number the modules M_1, M_2, \ldots, M_t of \mathcal{C}_n with $\vec{v}M_i \notin \mathcal{C}_n$ for $1 \leq i \leq t$, in such a way that $M_i \cdots M_j$ implies i < j. (If we have t=0 put $\mathcal{C}_{n+1} = \mathcal{C}_n$). Once more, we construct by induction full subquivers \mathcal{D}_i of the Auslander-Reiten quiver of A with $\mathcal{D}_0 = \mathcal{C}_n$ and $\mathcal{D}_i \cup \{\vec{v}M_{i+1}\} \subseteq \mathcal{D}_{i+1}$ for $0 \leq i \leq t-1$, such that the \mathcal{D}_i satisfy condition (1). Of course, $\mathcal{C}_{n+1} = \mathcal{D}_t$ does the job. If $\vec{v}M_{i+1} \in \mathcal{D}_i$, put $\mathcal{D}_{i+1} = \mathcal{D}_i$. In the other case let

$$0 \longrightarrow \mathsf{M}_{i+1} \longrightarrow (\overset{\bullet}{\mathbf{\Phi}} \mathsf{X}_{j}^{\mathbf{j}}) \oplus (\overset{\bullet}{\mathbf{\Phi}} \mathsf{P}_{j}^{\mathbf{m}_{j}}) \oplus (\overset{\bullet}{\mathbf{\Phi}} \mathsf{P}_{j}^{\mathbf{m}_{j}}) \longrightarrow \overset{\bullet}{\mathbf{\bullet}}^{\mathbf{m}} \mathsf{M}_{i+1} \longrightarrow 0$$

be the Auslander-Reiten sequence starting at M_{i+1} . Here we have $P_j \in \mathcal{Q}_i$ iff $1 \leq j \leq s$ and $X_j \in \mathcal{Q}_i$ by construction. To get \mathcal{Q}_{i+1} , add $\mathbf{r}^{\mathsf{H}} M_{i+1}$ and all its predecessors to \mathcal{Q}_i and view it as a full subquiver of the Auslander-Reiten quiver. We show first, that \mathcal{Q}_{i+1} has no oriented cycle. Each such cycle has to contain $\mathbf{r}^{\mathsf{H}} M_{i+1}$ or some $P_{j'}$ $s+1 \leq j \leq r$. Therefore we have only to prove, that there is no arrow (in \mathcal{Q}_{i+1}) starting at $\mathbf{r}^{\mathsf{H}} M_{i+1}$ and that all arrows starting at some P_j , $s+1 \leq j \leq r$, fly to $\mathbf{r}^{\mathsf{H}} M_{i+1}$. Let $M_{i+1} \longrightarrow Y$ be an arrow in \mathcal{Q}_{i+1} . Since $\mathbf{r}^{\mathsf{H}} M_{i+1} \notin \mathcal{Q}_i$, which is closed under predecessors, we have $Y \sim P_j$ for some $j \geq s+1$, thus $P_j \sim P_j$, what is impossible by our claim.

Next, take an arrow $P_j \longrightarrow Y$ with $Y \neq \P^{M_{i+1}}$. Again we have $Y \longrightarrow P_k$ for some $s+l \leq k \leq r$, thus $P_j \longrightarrow P_k$. Let $P_j \longrightarrow V_1 \longrightarrow V_2 \ldots V_q \longrightarrow U \longrightarrow P_k$ be a chain of irreducible morphisms. By the claim, P_j belongs to mod \overline{A} , where \overline{A} is the branch algebra defined by P_k and U.Since there is an arrow $M_{i+1} \longrightarrow P_j$, we infer that $U = M_{i+1}$, i.e. $P_j \longrightarrow M_{i+1}$, a contradiction.

It is easy to see, that \mathfrak{O}_{i+1} satisfies all other conditions. To finish the proof of the proposition, one has to observe that $\mathfrak{C} = U\mathfrak{E}_n$ is a preprojective component.

The only result which we will need from [3] is the following:

Lemma 1 Let kT/R be a tree algebra having a preprojective component \mathcal{L} and a sincere representation N \mathcal{L} . If $\boldsymbol{\alpha}_{n} \dots \boldsymbol{\alpha}_{1}$ is a path in T, then $N(\boldsymbol{\alpha}_{n}) \dots N(\boldsymbol{\alpha}_{1})$ is injective, surjective or zero.

Recall that N is sincere iff $N(j) \neq 0$ for all $j \in T$.

Proof of Lemma 1 : This follows directly from theorem 8.5 of [3] .

Furthermore we need the following little lemma on representations of partially ordered sets.

<u>Lemma 2</u>. Let S be a partially ordered set, $a \in S$ a point and V an indecomposable representation such that $0 \neq V(a) \neq V$. Then there exist b and $c \in S$, such that the spaces V(a), V(b), V(c) are pairwise incomparable.

<u>Proof</u>: Suppose not. Then the set $\{b_1, \ldots, b_n\}$ of elements, such that $V(b_i)$ is incomparable to V(a), can be numbered such that $i \leq j$ implies $V(b_i) \subseteq V(b_j)$. It is well-known and easy to see, that the indecomposable representations of the set

$$S' = \{1', 1 \leq 2 \leq 3 \leq \dots \leq n\}$$

are 1-dimensional, i.e. have k as total space. The restriction of V to $\{a,b_1,\ldots,b_n\}$ can be considered as a representation of S' and decomposed into $V_1 \oplus V_2$, such that $V(a) = V_1(a) = V_1$. A short computation shows that this is a decomposition of V in the category of all S-spaces, a contradiction.

Finally, we prove the remaining part of the theorem. Let a tree algebra A = kT/R be given, such that all partially ordered sets S_i are representation-finite. We have to show, that A is representation-finite and that each indecomposable has a peak. By induction, this is true for each branch algebra of A.

Take an indecomposable N belonging to a preprojective component of A. If N is not sincere, it has a peak by induction, so we may assume N to be sincere, hence Lemma 1 applies. In particular each arrow is represented by an injection or a surjection. Now choose a point p, such that dim N(p) is maximal. We will show that p is a peak and we need the following

<u>Claim:</u> Let w be a walk form i to j through k with $i \neq k \neq j$. Then dim N(i) \geq dim N(k) \leq dim N(j) cannot occur.

<u>Proof</u>: Let $w = \alpha_1 \dots \alpha_n$ be a counterexample of minimal length. Then $N(\alpha_1)$, $N(\alpha_n)$ are not bijective, but all the other $N(\alpha_i)$ are bijective.

 1^{st} case w or w^{-1} is a path.

Dualizing, if necessary, we can assume that w is a path. Then $N(\alpha_2) N(\alpha_3)...N(\alpha_n)$ is proper surjective, $N(\alpha_1)$ proper injective, but the composition neither injective, nor surjective nor zero, a contradiction to Lemma 1.

2nd case w changes the direction.

Let ℓ be an intermediate point, where w changes the direction. By duality we may assume, that ℓ is a source, i.e. the picture is as follows

$$j \xrightarrow{\alpha_1} \cdots \cdots \leftarrow \ell \xrightarrow{\alpha'} \cdots \xrightarrow{\alpha'} \frac{\alpha'}{n} i$$

Let T_{ℓ^1} be the connected component of $T \\ \{\ell\}$ containing ℓ' and let \overline{T} be the full subtree of T with point set $T_{\ell^1} \cup \{\ell\}$. Let $\underset{q=1}{\overset{\bullet}{P}} N_q$ be a decomposition of $N | \overline{T}$ into indecomposables of $\overline{A} = k\overline{T}/\overline{R}$. We have $N_q(\ell) \neq 0$ for each q, for otherwise N decomposes. Moreover, we have dim $N_q(1) \geqq \dim N_q(\ell)$ for some q, say q = 1. By induction, N_1 has a peak $x \in \overline{T}$. Let u be the walk from ℓ to x. Clearly, u has the form $u = u'\alpha_n^{-1}v^{-1}$. By construction, we have $0 \neq u'\alpha_n^{-1}[N_1] \neq N_1(x)$. By Lemma 2, there exists $u_1, u_2 \in \overline{S}_x$ (the ordered set with respect to \overline{A}), such that $u'\alpha_n^{-1}[N_1], u_1[N_1]$ and $u_2[N_1]$ are pairwise incomparable.



Write $u' = su'', u_1 = su'_1$ such that u'' and u'_1 are disjoint and do the same for u_2 , $u' = tu'', u_2 = tu'_2$. Put $\overline{u}_1 = v\alpha_n u''^{-1}u'_1, \overline{u}_2 = v\alpha_n u'''^{-1}u'_2$ Then \overline{u}_1 , \overline{u}_2 are walks belonging to S_{ℓ} , which are incomparable. The same argument gives two walks $\overline{u}_3, \overline{u}_4$ in S_{ℓ} , which come through j. Therefore S_{ℓ} contains four incomparable elements, the final contradiction.

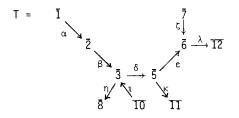
The claim together with the fact, that each arrow is represented by an injection or surjection, immediately implies that p is a peak.

Now, by the proposition there is a preprojective component *C*. Since each module in *C* has a peak and since T has only finitely many points, *C* is finite and contains therefore all indecomposables.

3. Applications and examples

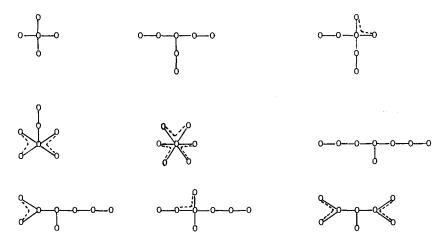
Besides the branch-algebras, there is another type of tree algebras, which can be derived from a given tree algebra kT/R. Let $x \xrightarrow{\beta} y$ be a fixed arrow in T. Denote by x_1, \ldots, x_n all points with arrow $x_i \xrightarrow{\alpha_i} x$ and by y_1, \ldots, y_m those with arrow $y \xrightarrow{\gamma_i} y_i$. Furthermore, suppose that $\beta \alpha_i = 0$ iff $1 \le i \le r$ and similarly $\gamma_i \beta = 0$ iff $1 \le i \le s$. Denote by T_{x_i} (resp. T_{y_i}) the connected components of

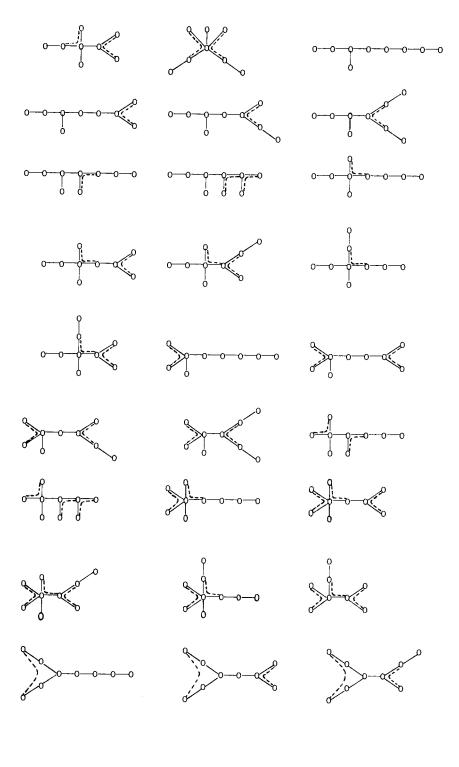
 x_i (resp. y_i) in $T \setminus \{x \xrightarrow{\beta} y\}$. Let \overline{T} be the tree obtained from $\widetilde{T} = T \setminus \begin{pmatrix} r \\ U \\ i=1 \end{pmatrix}^S T_{x_i} \cup \begin{bmatrix} s \\ U \\ i=1 \end{bmatrix}^T T_{y_i} \end{pmatrix}$ by shrinking $x \xrightarrow{\beta} y$ to a point z. Consider the ideal \overline{R} of $k\overline{T}$ generated by the paths w, such that either w is a path in \widetilde{T} belonging to R not containing β or such that w can be written as w_1w_2 , where $w_1\beta w_2$ is a path in \widetilde{T} belonging to R. For instance if we start with the arrow $3 \xrightarrow{\gamma} 4$ in our example, we get:

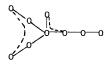


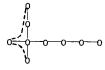
With \bar{R} generated by $n_{B\alpha} = \epsilon \delta \beta \alpha = \lambda \zeta = \lambda \epsilon \delta = \kappa \delta \iota = 0$. The algebra $k\bar{T}/\bar{R}$ is called a <u>shrinked algebra</u> of kT/R and mod $k\bar{T}/\bar{R}$ can be interpreted as full subcategory of mod kT/R, containing only modules where β is represented by a bijection. Finally, an algebra A is said to be <u>contained</u> in B, if there is a finite sequence A_0, A_1, \ldots, A_n of algebras, such that $A = A_0, B = A_n$ and A_i is a branch-algebra or a shrinked algebra of A_{i+1} for $0 \le i \le n-1$.

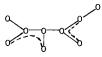
<u>Corollary 1</u>. <u>A tree-algebra</u> kT/R <u>is representation-finite if and only if it</u> does not contain one of the following algebras:

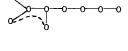


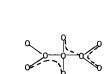


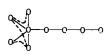












Here, we do not specify the orientations. A dotted line marks a (zero-) relation (of course, the arrows along a dotted line have to point in one direction). <u>These</u> algebras are concealed quiver algebras [4,7] of type \tilde{D}_4 , \tilde{E}_6 , \tilde{E}_7 or \tilde{E}_8 (depending on the number of points), and all their representations have a peak.

<u>Proof</u>: The proof consists in a verification, that these are the 'minimal' algebras which contain one of the minimal representation-infinite posets in some S_i.

In practice, the above criterion is not so easy to apply, if one wants to know whether a given tree-algebra A is representation-finite or not. Quite often it is more convenient to compute the dimension-vectors of the indecomposables starting with the simple projectives. In this connection, the following remark is useful.

<u>Corollary 2.</u> Let U be an indecomposable representation of a representation-<u>finite tree-algebra</u> kT/R. Then dim U(x) < 6 for all $x \in T$.

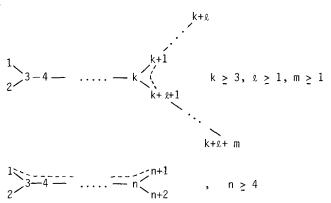
Proof: This follows from Kleiner's theorem ([5]).

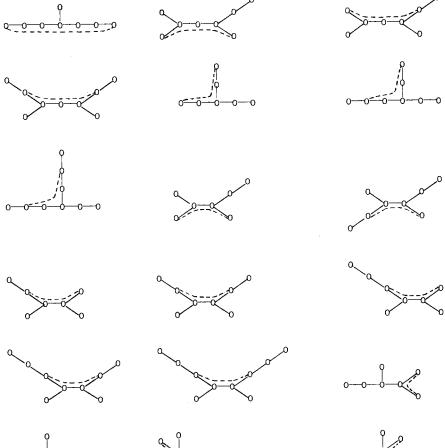
Kleiner's list of posets having an exact indecomposable representation even yields a list of all indecomposables of all representation-finite trees. The original partial proof of the theorem used this list. To convince the reader of the arising combinatorial difficulties, we give the list of all representation-finite tree-algebras kT/R, such that dim $U(x) \le 4$ for all $x \in T$ and U indecomposable, and such that there exists at least one sincere indecomposable V.

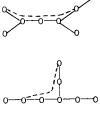
Again, we do not specify the orientation, and the dotted lines describe the generating relations.

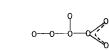
No relation: The Dynkin-diagrams with the exception of E₈.

1 Relation

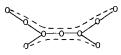


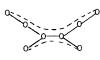




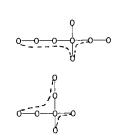


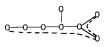
Relations

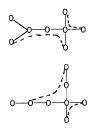


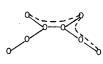




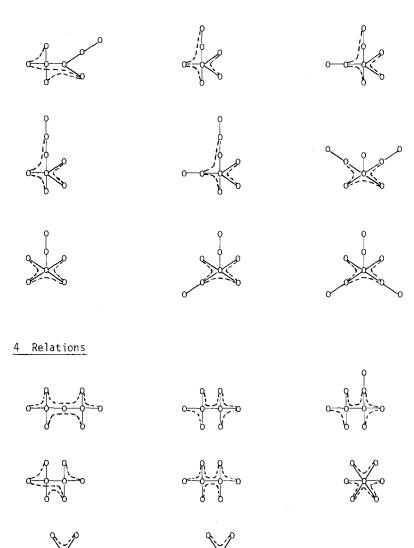








3 Relations



5. Generalization to species

Let $S = (F_a, N_b)_{a,b}$ be a k-species with underlying graph a tree, kS the tensor algebra of S, and R an ideal inside the square of the radical of kS. Then: if A = kS/R is of finite representation type, then all indecomposable A-modules have a peak. Here, the point j of the underlying graph of S is said to be a peak for the representation $M = (M_a, \Phi_a : M_a \oplus A_b)$ of S if and only if for every $0 \neq n \in {}_{a}N_{b}$, the k-linear map ${}_{b}\phi_{a} \otimes n : M_{a} \approx M_{a} \otimes n \longrightarrow M_{b}$ is injective in case $a \rightarrow b$ is an arrow leading to j, and is surjective in case $a \rightarrow b$ is an arrow going away from j.

The proof is an obvious generalization of the arguments given above. First, one notes that the radical rad P of any indecomposable projective A-module P is the direct sum of (at most three) indecomposable modules, and this implies that the Auslander-Reiten quiver of A has no oriented cycles (see [1] or the proof of the proposition in section 2). Again, using theorem 8.5 of [3], one knows that for indecomposable M, any composition of maps of the form ${}_{b}\phi_{a} \otimes n : M_{a} \approx M_{a} \otimes n \rightarrow M_{b}$ is injective, surjective, or zero. In particular, for M indecomposable, $0 \neq n \in {}_{a}N_{b}$, the map ${}_{b}\phi_{a} \otimes n$ is injective or surjective. Now assume M is indecomposable, and does not have a peak. In the tree case considered above, we have used lemma 2 in order to construct a full embedding of the module category of a quiver of type \tilde{D}_{n} into mod A. In the general case, one similarly obtains a full embedding of the module category of a hereditary algebra with underlying graph of the form \tilde{D}_{n} , or

where dd' ≥ 2 and ee' ≥ 2 . Thus, A cannot be of finite representation type, contrary to the assumption.

As a consequence, it follows that if A = kS/R is of finite representation type and M an indecomposable A-module, then the components of the dimension vector dim M all are ≤ 6 . (Recall that dim M has as components (dim M)_a = dim(M_a)_{F_a}).

References

- Bautista, R., Larrion, F.: Auslander-Reiten quivers for certain algebras of finite representation type. To appear.
- [2] Gabriel, P.: Unzerlegbare Darstellungen I., Manuscripta Math. <u>6</u> (1972), 71-103
- [3] Happel, D., Ringel, C.M.: Tilted algebras. To appear.
- [4] Happel, D., Ringel, C.M.: Construction of tilted algebras. These Proceedings.
- [5] Kleiner, M.M.: On exact representations of partially ordered sets of finite representation type. Zap. Naucn. Sem. LOMI <u>28</u> (1972), 42-60, Engl. translation: J. Soviet Math. <u>23</u> (1975), 616-628.
- [6] Nazarova, L.A., Rojter, A.V.: Representations of partially ordered sets. Zap. Naucn. Sem. LOMI <u>28</u> (1972), 5-31 Engl. translation: J. Soviet Math. <u>23</u> (1975), 585-606
- [7] Ringel, C.M.: Tame algebras. Proceedings ICRA II. To appear Springer Lecture notes.

Klaus Bongartz	Claus Michael Ringel
Mathematisches Institut	Fakultät für Mathematik
Universität	Universität
Zürich	Bielefeld