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I t  is well-known, how the representation theory of represen ta t ion - f in i te  quivers can 

be reduced to representations of posets (see [2 ] ) .  We show that th is  can be gene- 

ra l ized to representa t ion- f in i te  trees with a rb i t ra ry  re la t ions.  This general izat ion 

was conjectured and p a r t i a l l y  proved by the f i r s t  author using a quite technical 

induct ive argument. During ICRA I I I ,  the second author observed that there is a 

d i rec t  proof which is based on resul ts  of [3] and which is 9iven here. 

1. Modules having peaks; statement of the theorem 

Throughout the paper, k denotes a commutative f i e l d .  In th is  paragraph, we have to 

give a l o t  of notations and de f i n i t i ons .  Instead of doing i t  formal ly ,  we i l l u s t r a t e  

them by examples. We are sure that th is  is easier to read. 

Let T be a f i n i t e  quiver,  whose underlying graph is a tree. Denote the cor- 

responding path algebra by kT. I t  contains the ideal kT + generated by the arrows, 

th is  is jus t  the radical of kT. Any quotient algebra A = kT/R with R ~ (kT+) 2 

is cal led a tree algebra. Of course, the category of a l l  f in i te-d imensional  l e f t  

A-modules can be i den t i f i ed  with the f u l l  subcategory of a l l  f in i te-d imensional  

representations of T which sa t i s fy  the re lat ions in R. ( I f  M is a representation 

of T, we denote by M(i) the vectorspace associated to the point i of T, and 

by M(~) or j us t  by ~ the map associated to the arrow ~.) As an example, we 

wi l l  consider the fol lowing tree T 

T= 1 7 

2 3 9 e 6 X--~t2 

10 iI 

with R being generated by the relat ions 0 = n~m = E6y#m = ~ = ~ y  =~e~ = KaY. 

A walk w in T from i to j of length n is a f i n i t e  sequence w = ~I " ' "  an' 

with ~i or ~1_ an arrow, such that a n starts at i ,  ~I ends at j and the 

remaining star t ing and ending points f i t  together wel l .  Moreover, we don't  allow 
- I  - i  r-1 w to have a subsequence of the form ~ , ~ ~, r or with r E R. On the 

f i n i t e  set Sj of a l l  walks with end point j we define a par t icu lar  ordering by: 
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w I < w 2 ~=~ 

w I = v~w{, w 2 = vnw~ with n-l~ ER or 

w 2 = WlW 2,' w I = w ,  where a - I  is an arrow __~ 

w I = w2w I,' w 2 = va, where a is an arrow __~ 

w I = w 2 

For instance, S 4 in our example has the following shape: 

- I  

-1 -1 

ST yn- Y6 6-i~ "I  6-I< - I  

\Lo" 
Each walk w = a I . . .  a n E Sj defines a subfunctor denoted by w[-] of the 

functor Hom(Pj,-) : mod kT/R ~ mod k (here, Pj denotes the indecomposable pro- 

jective module corresponding to the point j ,  and note that for any module M, 

Hom(Pj,M) is nothing else but the vectorspace M(j)). Namely, in case a n is an 

arrow, say starting at i ,  let  w[M] = w(M(i)), whereas in case ~ I  is an arrow 

let  w[M] = w(O). In our example yB~[M] = yB~(M(1)) and yn-l[M] = yn- l(o),  both 

being subspaces of M(4). We have w I C w 2 i f  and only i f  Wl[M] ~w2[M] for al l  

modules M. Of course, this gives rise to a functor Fj from mod A to the cate- 

gory R(Sj) of al l  finite-dimensional representations of the poset Sj, where Fj(M) 

has as total space M(j) and where (FjM)(w) equals w[M] for w E Sj. 

A representation M of T has peak j ,  i f  each arrow leading to j is 

represented by an injection, each arrow going away from j by a surjection. (By 
a 

def in i t ion,  an arrow i I ~ i 2 is said to lead to j provided i 2 and j belong 

to the same connected component of T ~ {~}, otherwise ~ is said to go away from j .  

In our example, ~,~,y,i and ~ are leading to 4, the others are going away from 4.) 

Denote by Pj the fu l l  subcategory of al l  representations of A having peak j .  

Lemma: The functor Fj induces an equivalence between Pj and R(Sj). 

Proof: We define a functor G : R(Sj) ~ Pj which gives the inverse of Fj!Pj. 

For simpl ici ty,  we give the construction only in the above example. Let V be an 

object of R(S4), i .e.  V is a vectorspace with a family of subspaces V(w), w E S 4. 
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Define GV to be the following: 

V (yB~,~ V(6-1~-l~)/V(~-1~ - I  ) 

V ~ -1 1 V(yS)__  VlV(e - I )  IV(~ ~" ) >)0 
7 

v(y) ~ ~ v ,~VlV(~ - I )  

J l  3 
V(y)IV(yn- ) V(~) VlV(~-I< -1) 

with al l  maps being the canonical ones. By construction, GV lies in P4" 

This lemma shows that for a representa t ion- f in i te  tree algebra A a l l  posets 

S i are representa t ion- f in i te .  The converse is also true, i t  is the main resu l t  of 

th is paper: 

Theorem: Let kT/R be a tree-algebra. Then kT/R is representation-finite i f  

and only i f  a l l  S i a.re representation-finite. Moreover, in that case each inde- 

composable has a peak. 

2. Proof of the theorem 

The proof of the theorem rests on the results from [3] on t i l ted  algebras. To 

apply these results, we have to know that any tree-algebra we are interested in, 

has a preprojective component in i ts Auslander-Reiten quiver. This follows from a 

paper of Bautista-Larrion [1] and, for the convenience of the reader, we give 

here a direct proof. 

Recall that a component C of the Auslander-Reiten quiver of an algebra A 

is called preprojective, provided C contains no oriented cycle and each module 

in C has the form - t p  for some natural number t and some indecomposable pro- 

jective P. Here ~M denotes the Auslander-Reiten translate of the indecomposable 

M. For instance, the preprojectives of a hereditary connected algebra form a pre- 

projective component. An indecomposable M is called a predecessor of another 

indecomposable N, i f  there is a chain 

M---+  M 1 - - +  M 2 - - ~  . . .  ---+ Mn---+ N 

of i r reducib le maps.  Denote this by M~-~ N. 
A preproject ive component C is closed under predecessors and each M 6 C has 

only f i n i t e l y  many predecessors. Moreover, O contains a l l  indecomposables U with 

Hom(U,X) �9 0 for some X E C. (see [3] for detai ls). 

I f  T is a connected subquiver of T, denote by R the ideal generated by 

the paths of R which l ie  inside of ?. We call kf/R a branch-algebra of kT/R. 
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Clearly,rood k~/~ can be identified with the full subcategory of rood kT/R, whose ob- 

jects are the representations vanishing outside of ~. 

Proposition Each tree algebra A = kT/R has a preprojective ccrnponent. 

Proof: Let x ~ y be an arrow in T and U the ind~sable direct s~maTand of the 

radical of Px with U(y) # 0. Consider the connected comnonent ~ of y in T~{x] 

and the corresponding ideal ~ . Then A = k~/~ is a branch algebra of A and we de- 

note by ~ the corresponding Auslander-Reiten translate. 

Claim Let ~ be a preprojective cc~ponent of ~ .For each X 6 ~ ,X ~ U,which has not 

U as a predecessor (with respect to ~ ),we have ~-'X = ~X. 

Proof of the claim: By induction on the number of ipredecessors of X.Thus we start 

with the case,where X is sirmple projective in mod ~,hence in ~ A.Then the middle 

term of the Auslander-Reiten sequence 0 ~ X �9 P --~ ~X > 0 has to be pro- 

jective.By assur~otion we have X#U,hence P6 mod'A and ~*X =--%~X. 

For the induction step consider first the case,where X is not projective.In the 

Auslander-Reiten sequence 

e: 0 )~X )~Y.- )X ~0 

of rood ~,the Y. denote indeccr~posables.By induction,we have ~'~X =~X = X.This 
1 

implies,that e is an Auslander-Reiten sequence of mod A.Again by induction,we have 

~'~Yi = ~'!Yi 6rood ~ and this gives us the non-projective heads of all irreducible 

morphi~ns in rood A starting at X.On the other hand,the asstmTption X # U Lmplies 

j~ for each irreducible morphism X---~Pj , j �9 T.Therefore X is non-injective 

in rood A iff it is so in mod~ and then ~f~X =~-~X holds. 

The induction step is even easier,in case X is projective. 

Now we prove the proposition by induction on the number of points of T.Suppose first, 

that there is an arrow x--~y in T as in the beginning of the proof,such that U 

does not belong to a preprojective cc~ponent of ~.By induction,there is a preprojec- 

tive cc~ponent of ~,which is eaven a preprojective cc~ponent of A, since our claim 

holds for each point of that cc~po_ nent,and since a rx3dule in rood _~ is projective 

in mod~ iff it is so in mod A. 

In the remaining case,we construct by induction full subquivers ~n of the Auslan- 

der-Reiten quiver of A satisfying the following conditions: 

(i) ~n is finite,connected,without oriented cycles,closed under predecessors and 

contains only modules of the form ~%Pj, jeT, t e o 

(2)Z~n ~n ~n+l " (Here ~'~n ={~'X: X is not injective and belongs to ~n} ) 
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Put ~0 = ~S~,where S is sin~le projective,and suppose ~n has already been con- 

... with Z-4M i~ ~ for l~<i4t, structed.N~mlber the modules ~,M 2 .... M t of ~n n 

in such a way that Mi~M j implies i< j. (If we have t=0 put ~n+l = ~n ).Once 

more,we construct by induction full subquivers ~. of the Auslander-Reiten quiver of 
l 

A with ~)0 = "~n and ~i ~ Iz"Mi+llg~i+ 1 for 0~< i~< t-l,sueh that the ~'l satisfy 

condition (i).Of course, ~n+l = ~t does the job. 

If z~Mi+I~ ~i 'put ~i+l =~i .In the other case let 

0 ; Mi+ I" ) ( ~)( e(~P.'l) �9 ~'Mi+ 1 ~ 0  
a~4 3 

be the Auslander-Reiten sequence starting at Mi+l.Here we l~ve P e~. iff 14 j~< s 
3 l 

and Xj &~i by construction.To get ~ i+l' add ~" M..it• and all its predecessors 

to ~ . and view it as a full subquiver of the Auslander-Reiten quiver.We show first, 
i 

i+l " M that has no oriented cycle.Each such cycle has to contain ~ �9 i+l or some P., 
3 

s+l 4 j ~<r.Therefore we have only to prove,that there is no arrow (in ~ i+l) starting 
-4 

at z~Mi+• and that all arrows starting at some Pj, s+14j(r, fly_ to ~Mi+ I. 

Let Mi+ 1 > Y be an arrow in ~i+l.Since ~Mi+l~ ~i,which is closed tender 

predecessors,we have Y~-~,P. for sc~e j )s+l,t/~us P ~-~P. ,what is impossible 
3 3 3 

by our claim. 

Next,take an arrow P. ~Y with Y ~ ~WMi+l.Again we have Y~'~Pk for some 
] 

s+l~ k(r,thus P'3 ~^~')Pk'Let PJ --~ V 1 ~ V 2 ..... Vq---~ U --~Pk be a chain of 

irreducible morphisms.By the cla~n,Pj belongs to rood ~ ,where -~ is the branch algebra 

defined by Pk and U.Since there is an arrow Mi+l---~Pj,we infer that U = Mi+l,i.e- 

Pj ~-~Mi+l,a contradiction. 

It is easy to see,that ~i+l satisfies all other conditions.To finish the proof of 

the proposition,one has to observe that ~ =D~ is a preprojective comlxgnent. 
n 

The only result which we will need from [3] is the following: 

L6~ma 1 Let kT/R be a tree algebra having a preprojective component ~ and a sincere 

representation N s .If An .... ~l is a path in T,then N(~n) .... N(m I) is injecti- 

ve,surjective or zero. 

Recall that N is sincere iff N(j) # 0 for all j~T. 

Proof of L6~ma 1 : This follows directly frcrn theorem 8.5 of [3] . 

Furthermore we need the following little lemma on representations of partially 

ordered sets. 



44 

Lemma 2. Let S be a p a r t i a l l y  ordered set,  a E S a po in t  and V an indecompo- 

sable representat ion such that  0 # V(a) ~ V. Then there ex i s t  b and c E S, 

such that  the spaces V(a),  V(b), V(c) are pairwise incomparable. 

Proof: Suppose not. Then the set {b I . . . . .  b n} of  elements, such that  V(bi) is 

incomparable to V(a),  can be numbered such that  i < j impl ies V(b i )  E V(b j ) .  

I t  is well-known and easy to see, that  the indecomposable representat ions of  the 

set 

S' = { I ' , i  < 2 < 3 < . . .  < n} 

are 1-dimensional ,  i . e .  have k as t o ta l  space. The r e s t r i c t i o n  of V to 

{a,b I . . . .  ,b n} can be considered as a representa t ion of S' and decomposed in to  

V I ~ V 2, such that  V(a) = Vl(a ) = V I .  A short  computation shows that  th is  is a 

decomposition of  V in the category of  a l l  S-spaces, a con t rad i c t i on .  

F i n a l l y ,  we prove the remaining part  of  the theorem. Let a t ree algebra 

A = kT/R be g iven,  such that  a l l  p a r t i a l l y  ordered sets S i are representa t ion-  

f i n i t e .  We have to show, that  A is r e p r e s e n t a t i o n - f i n i t e  and that  each indecompo- 

sable has a peak. By induc t ion ,  th is  is t rue f o r  each branch algebra of  A. 

Take an indecomposable N belonging to a p repro jec t i ve  component of  A. 

I f  N is not s incere,  i t  has a peak by induc t ion ,  so we may assume N to be s in-  

cere, hence Lemma I app l ies .  In p a r t i c u l a r  each arrow is represented by an in-  

j ec t i on  or a su r jec t ion .  Now choose a po in t  p, such that  dim N(p) is maximal. 

We w i l l  show that  p is a peak and we need the f o l l ow ing  

Claim: Let w be a walk form i to j through k wi th i �9 k �9 j .  Then 

dim N(i)  ~ dim N(k) ~ dim N(j)  cannot occur. 

Proof: Let w = ml " ' "  an be a counterexample of minimal length.  Then N(ml), 

N(mn) are not b i j e c t i v e ,  but a l l  the other N(~i)  are b i j e c t i v e .  

i st  case w or w - I  is a path. 

Dua l iz ing ,  i f  necessary, we can assume that  w is a path. Then N(~2) N(~3)...N(~n) 

is proper su r j ec t i ve ,  N(ml) proper i n j e c t i v e ,  but the composit ion ne i ther  i n j e c t i v e ,  

nor su r jec t i ve  nor zero, a con t rad ic t i on  to Lemma 1. 

2 nd case w changes the d i r e c t i o n .  

Let ~ be an intermediate po in t ,  where w changes the d i r ec t i on .  

may assume, that  ~ is a source, i . e .  the p ic tu re  is as fo l lows 

By d u a l i t y  we 
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~1 ~n 
- . . . . . .  ( 4 - ~  4 '  �9 i 
J 

Let T 4, be t h e  connec t ed  component of  T \ {4} c o n t a i n i n g  4'  and 
r 

l e t  ? be the  f u l l  s u b t r e e  o f  T wi th  p o i n t  s e t  T 4, u {g} . Let  ~lNq be a 
q 

decomposition of  NI? in to  indecomposables of  A = kT/R. We have Nq(4) r 0 fo r  

each q, fo r  otherwise N decomposes. Moreover, we have dim Nq(i)  ~ dim Nq(4) 

fo r  some q, say q = i .  By induc t ion ,  N I has a peak x E ?. Let u be the 
-1 - i  walk from 4 to x. C lear ly ,  u has the form u = u'~ v By const ruc t ion ,  
n 

we have 0 �9 U '~n l [B l  ] ~ Nl(X ). By Lemma 2, there ex is ts  Ul,U 2 E ~x (the 

ordered set with respect to A), such that  U'~n1[N1 ] ,  Ul[N I ]  and u2[N 1] are 

pairwise incomparable. 

�9 ~ i  ~ u2 

Write u' = su", u I = su~ such that  u" and u~ are d i s j o i n t  and do the 

same fo r  u 2 u = t u " ' ,  u 2 = tu~. Put Ul  = , - i  , ~- , , , - i  , -- , ' VOCnU u 1, u2= VOCnU u 2 Then u I ,  

u 2 are walks belonging to $4, which are incomparable. 

The same argument gives two walks u 3, u 4 in $4, which come through j .  There- 

fore S 4 contains four incomparable elements, the f i n a l  con t rad ic t i on .  

The claim together with the f ac t ,  that  each arrow is represented by an in jec -  

t i on  or su r jec t i on ,  immediately impl ies that  p is a peak. 

Now, by the propos i t ion  there is a p repro jec t i ve  component C. Since each 

module in C has a peak and since T has only  f i n i t e l y  many points ,  C is f i n i t e  

and contains therefore  a l l  indecomposables. 

3. Appl ica t ions and examples 

Besides the branch-algebras, there is another type of  t ree algebras,  which can be 

der ived from a given t ree algebra kT/R. Let x ~ y be a f i xed  arrow in T. 

Denote by x I . . . . .  x n a l l  points wi th arrow x i - - +  x and by Yl . . . . .  Ym those with 

arrow y Yi" Furthermore, suppose that  ~ i  = 0 i f f  i < i < r  and s i m i l a r l y  

yi  B = 0 i f f  i < i ~ s. Denote by Txi (resp. Tyi)  the connected components of  
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x i (resp. y i )  in T ~ {x ~ y } .  Let ? be the t ree obtained from 

( !  Tx i S Ty i )  B T = T x U U by shr ink ing x ~ y to a po in t  z. Consider the 
i - I  i = l  

ideal  R of  k? generated by the paths w, such that  e i t he r  w is a path in 

belonging to R not conta in ing B or such tha t  w can be w r i t t en  as WlW 2, 

where WlBW 2 is a path in T belonging to R. For instance i f  we s ta r t  wi th the 

arrow 3 Y 4 in our example, we get: 

T = i 7 

2 8 -A-~ Ts 

I-0 IT  

With R generated by nBe = ~B~ = x~ = ~ a  = K~I = O. The algebra kT/R is 

ca l led  a shrinked algebra of  kT/R and mod k?/R can be in te rp re ted  as f u l l  sub- 

category of  mod kT/R, conta in ing only modules where B is represented by a b i j ec -  

t i on .  F i n a l l y ,  an algebra A is said to be contained in B, i f  there is a f i n i t e  

sequence Ao,A I ,  . . . .  A n of a lgebras,  such that  A = A o, B = A n and A i is a 

branch-algebra or a shrinked algebra of Ai+ i f o r  0 < i < n - l .  

Coro l la ry  i .  A t ree-a lgebra  kT/R is r e p r e s e n t a t i o n - f i n i t e  i f  and only i.f i t  

does not contain one of  the fo l l ow ing  algebras:  

0 

A 
" > ~ 0 - - - 0  

O.~C~__O__FO___O___ O 

>T< 0 
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0 

o-o--y--o--o-~,- 
0 

0 0 

0---0 ~ r/'0 ~o -<~~~-.o 

0~--0~---0~----0~ 

~176 
0----0-~----0~ 

0 0 0 

0 0 

~o~ 

~-~-o 
0 
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J j " ~ 0 - ~ ' 0 ~  j ~  

S'7 i 

P 

~ - - ' - 0 - - - 0 - ~ 0 ~  >~_o~ 

7 
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Here, we do not specify the or ientat ions.  A dotted l ine marks a (zero-) re la t ion  

(of course, the arrows along a dotted l ine  have to point in one d i rec t ion) �9  These 

algebras are concealed quiver algebras [4,7] of type D4' E6' E7 or E8 (depen- 
ding on the number of points),  and a l l  the i r  representations have a peak�9 

Proof: The proof consists in a ve r i f i ca t i on ,  that these are the 'minimal' algebras 

which contain one of the minimal representa t ion- in f in i te  posets in some S i .  

In pract ice, the above c r i te r ion  is not so easy to apply, i f  one wants to know 

whether a given tree-algebra A is representa t ion- f in i te  or not. Quite often i t  is 

more convenient to compute the dimension-vectors of the indecomposables s tar t ing 

with the simple project ives. In this connection, the fo l lowing remark is useful. 

Corol lary 2. Let U be an indecomposable representation of a representation- 

f i n i t e  tree-algebra kT/R. Then dim U(x) < 6 for  a l l  x E T�9 

Proof: This fol lows from Kleine~s theorem ( [5 ] ) .  

Kleine~s l i s t  of posets having an exact indecomposable representation even 

y ie lds a l i s t  of  a l l  indecomposables of a l l  representa t ion- f in i te  trees. The o r i -  

ginal par t ia l  proof of the theorem used this l i s t .  To convince the reader of the 

ar is ing combinatorial d i f f i c u l t i e s ,  we give the l i s t  of a l l  representa t ion- f in i te  

tree-algebras kT/R, such that dim U(x) ~ 4 for  a l l  x E T and U indecomposable, 

and such that there exists at least one sincere indecomposable V. 

Again, we do not specify the or ien ta t ion ,  and the dotted l ines describe the 

generating re la t ions.  

No re la t ion :  The Dynkin-diagrams with the exception of E 8. 

1 Relation 

k+~ 
/ 

/ 

k+l 1\  /,, 
2 / 3 - 4 - -  . . . . .  - - k \ k  ' k > 3, ~ > 1, m > 1 

k+ ~+I 

1~< . . . . . . . . . .  ~sn+1 
2 7 3 _ 4  - -  " . . . .  \n+2 

~ 

k+~+ m 

, n > 4  
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? 
Q~ _~_ _~_ _ _---o_~ 

/o 

~ o ~o/~ ___Jl 
O c - u o - - - O ~  

,,y 

1o j o  

0 - - - 0 - - - 0 - ~  r 

0 0 

2 Relations 

~c. 8 .. o/~ 

? 

_ - J l  o--o-~~~ 
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b 

0 

j,'I 
0 ~ - - - 0 ~  

0 

0 

X 
3 Relat ions 

~o 

~o  

0 0 o~~ 
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",~-~ 

o 

�9 I 

4 Relat ions 

? 
- 

5. Genera l i za t ion  to species 

Let S = (Fa,aNb)a, b be a k-species w i th  under ly ing graph a t r ee ,  kS the 

tensor a lgebra of  S, and R an ideal  ins ide  the square of the rad ica l  of  kS. 

Then: i f  A = kS/R is of f i n i t e  represen ta t ion  type , then a l l  indecomposable 

A-modules have a peak. Here, the po in t  j o f  the under ly ing graph of  S is said 

to be a peak fo r  the represen ta t ion  M = (Ma,b~ a : M a 8 aNb ~ Mb) of  S i f  and 
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only i f  f o r  every 0 # n 6 aNb , the k - l i n e a r  map 

i n j e c t i v e  in case a -~  b is an arrow leading to 

a -+  b is an arrow going away from j .  

b~a g n : M a ~ M a g n ~ M b 

j ,  and is s u r j e c t i v e  in case 

is 

The proof  is an obvious g e n e r a l i z a t i o n  of  the arguments given above. F i r s t ,  

one notes tha t  the rad ica l  rad P of any indecomposable p r o j e c t i v e  A-module P 

is the d i r e c t  sum of  (a t  most th ree)  indecomposable modules, and t h i s  

imp l ies  tha t  the Auslander-Rei ten qu iver  of  A has no o r ien ted  cycles (see [ i ]  

or  the proof  of  the p ropos i t i on  in sect ion 2) .  Again, using theorem 8.5 of  [ 3 ] ,  

one knows tha t  f o r  indecomposable M, any composi t ion of  maps of the form 

b~a g n : M a ~ M a g n --+ M b is i n j e c t i v e ,  s u r j e c t i v e ,  or zero.  In p a r t i c u l a r ,  f o r  

M indecomposable~ 0 �9 n E aNb , the map b~a g n is i n j e c t i v e  or s u r j e c t i v e .  

Now assume M is indecomposable, and does not have a peak. In the t ree  case con- 

s idered above, we have used lemma 2 in order  to cons t ruc t  a f u l l  embedding of the 

module category of  a qu iver  of  type Dn in to  mod A. In the general case, one 

s i m i l a r l y  obta ins a f u l l  embedding o f  the module category of a he red i t a r y  a lgebra 

w i th  under ly ing graph of  the form Dn' or 

( d , d ' )  ~ ' I ~  
C 0 0 , . .  C ) ~  C ~  , o r  

( d , d ' )  ( e , e ' )  
o o o . . .  o - -  o o 

where dd' > 2 and ee' > 2. Thus, A cannot be of  f i n i t e  represen ta t ion  type,  

con t ra ry  to the assumption. 

As a consequence, i t  fo l l ows  t h a t ~ A  = kS/R is of  f i n i t e  represen ta t ion  type 

and M an indecomposable A-module, then the components of  the dimension vec to r  

dim M a l l  are < 6. (Recal l  t ha t  dim M has as components (dim M)a = dim(Ma)Fa). 
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