FOUR PAPERS ON PROBLEMS
IN LINEAR ALGEBRA

Claus Michael Ringel

This volume contains four papers on problems in linear algebra. They form
part of a general investigation which was started with the famous paper [Q] on
the four subspace problem. The r subspace problem asks for the determination
of the possible positions of r subspaces in a vector space, o1, equivalently, of
the indecomposable representations of the following oriented graph

(+) ‘K{

with 7 + 1 vertices. For 7 = 5, this problem seems to be rather hard to attack,
however one may try to obtain at least partial results dealing with special kinds
of representations. Also, the  subspace problem can be used as a test problem
for more elaborate problems in linear algebra. This seems to be the case for
some of the investigations published in this volume, they have been generalized
recently to the case of arbitrary oriented graphs [M, SJ.

Three of the four papers deal with the r subspace problem. (We should
remark that there is a rather large overlap of [F] and [I, II]. However, the
main argument of [F], the proof given in section 7, is not repeated in [I, II],
whereas [I, II] give the details for the complete irreducibility of the repres-
entations p, ; which only was announced in [F]. We also recommend the
survey given by Dlab [8].) Given r subspaces Ey, . . ., E, of 2 finite-dimensional
vector space V, we obtain a lattice homomorphism p from the free modular
lattice D" with r generators ey, . . ., &, into the lattice L(V) of ali subspaces of
V given by p(e;) = E;. Such a lattice homomorphism is called a representation
of D', In [F], Gelfand and Ponomarev introduce a set of indecomposable
representations p, ; with 0 <t <rand! € N, which we will call the prepro-
jective representations (in [F], the representations p; with 1 <? < r are called
representations of the first kind, those of the form p, ; representations of the
second kind; in {1, II] there may arise some confusion: p, ; is denoted by
p:-', ;> Whereas the symbol p, ; used in [1, II] stands for the same type of repres-
entation but with a shift of the indices, see Proposition 8.2 in [II]). For the
construction of the preprojective representations, we refer to section 1.4 of
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[F1: one first defines a finite set 4 + @, 1) (which later we will identify with a
set of paths in some oriented graph), considers the vector space with basis the
set A,(r, 1), and also a subspace Z,(r, ) generated by certain sums of the canon-
ical base elements of A, (#, 7). The residue classes of the canonical base elements
of 4,(r, [} in V; ;= A,(r, D/Z,(r, ) will be denoted by £, (with € 4,(@, I)).
Now, the representation p;,; s given by the vector space V1 together with a
certain r tuple of subspaces of V1, all being generated by some of the gener-
ators £, . Note that this implies that Py,1 is defined over the prime field &, of

k. (Gelfand and Ponomarev usually assume that the characteristic of % is zero,
thus ko = Q. However, all results and proofs remain valid in general.)

The main result concerning these representations py,; asserts that in case
dim ¥, ; > 2, the representation Pt,1 is completely irreducible. This means that
the image of D" under the lattice homomorphism ps,1: D7 = L(Vy, ) is the set
of all sibspaces of ¥, ; defined over the prime field &, thus pz,1(D") is a pro-
jective geometry over k,. The first essential step in the proof of this resuit is
to show that the subspaces k£, are of the form ple,) for some e, €D". (In
[F], this is only announced, but it is an immediate consequence of theorem
8.1in [II].)

The second step is to show that any subspace of V1 which is defined over
the prime field, lies in the lattice of subspaces generated by the k¢, provided
dim V, ; > 2. Combining both assertions, we conclude that p;,1 is completely
irreducible unless dim V1< 2. The proof of the second step occupies section
9 of [II]. Here, one considers the following situation: there is given a set
R ={¢, | a}of non-zero vectors of a vector space V (= V, ;), with the follow-
ing properties:

(1) R generates V

(2) R is indecomposable (there is no proper direct decomposition
V=V'eV"withR=RNV"U (RNV™), and

(3) R is defined over the prime field (there exists a basis of ¥ such that any
&, €R is a linear combination of the base vectors with coefficients in the prime
field k).

Then it is shown that the lattice of subspaces of ¥ generated by the one-
dim(elr.lsiorlflal subspaces k£, , is isomorphic to the lattice of subspaces of k§, with
n=dim V.

Perhaps we should add that the representations p: D" = L(¥) with V being
generated by the one-dimensional subspaces of the form p(a), a €D, seem to
be of special interest, In this case, the one-dimensional subspaces of the form
p(a), a € DT determine completely p(D”). (Namely, let 5 € D7, and U the sub-
space generated by all one-dimensional subspaces of the form p(x),x €D’
satistying p(x) C p(b), and choose x4, . . ., x, such that

p) CU®p(x))®...0p(x,)=Ue p(‘lex,). Thus, p(b) = U® (o( 3 x;) N p(B)).
i= i=1

Assume, U is a proper subspace of p(b). Then there exists ¢ <s with
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t~ 1 ¢ :
p(iE x;) N p(b) = 0, whereas p( £ x;) N p(d) is non-zero, and therefore one-
=1 i=1

. t t
dimensional. This however implies that p( £ x;) N p(8) = p(b iE X;) is
i=1 =1

contained in U, a contradiction. Thus p(b) = U.). For r > 4, there always are
indecomposable representations which do not have this property.

In the case r = 4, we may give the complete list of all lattices of the form
p(D*), where p is an indecomposable representation. Besides the projective
geometries over any prime field, and of arbitrary finite dimension # 1, and the

lattice c@o , we obtain all the lattices S(r, 4) introduced by Day,

Herrmann and Wille in [6]. Let us just copy S(14, 4) and note that any
interval [¢,,, ¢, 1 is again of the form S(n —m, 4).
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(In fact, in case either p: D* ~ L(¥) or its dual is preprojective and dim V" >2,
we have seen above that p(D?) is the full projective geometry over the prime
field. If neither p nor its dual is preprojective, p is said to be regular. If p s
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regular and non-homogeneous, say of regular length n (see [9]), then
p(D*) = S(n, 4), whereas for p homogeneous, we have

oD*) ~ @ )

Gelfand and Ponomarev use the representations ps,; of D7 in order to get
some insight into the structure of D’. The existence of a free modular lattice
with a given set of generators is easily established, however the mere existence
result does not say anything about the internal structure of D'. In fact, it has
been shown by Freese [14] that forr > 5, the word problem in D7 is
unsolvable. The free modular lattice D in 3 generators €y, €,, €3 was first
described by Dedekind [7], it looks as follows:

We have shaded two parts of D?, both being Boolean lattices with 23 elements.
For r 2 4, Gelfand and Ponomarev have constructed two countable families of

Boolean sublattices B*(7) and B ~(7) with 2" elements, where / € N, and such
that

B (1)<B~()<... <B"(N<B(I+1<...
and
LB DB ... <B'(2) < B,
called the lower and the upper cubsicles, respectively. Let B~ = U B~()), and
len
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B*= U B*().
len

The elements of these cubicles have an important property: they are perfect.
This notion has been introduced by Gelfand and Ponomarev in [F] for the
following property: « is said to be perfect if p(a)is either O or V for any
indecomposable representation p: D" = L(V). This means that for any repres-
entation, the image of a is a direct summand. For any perfect element g, let
N (@) be the set of all indecomposable representations p: D" = L(V), with V' a
finite dimension vector space over the field & and which satisfy p(a) = 0. It is
shown in [F] that for a € B", the set Ny (a) is finite and contains only prepro-
jective representations. Dually, for a € B~, the set Ny (a) contains all but a
finite number of indecomposable representations, and all indecomposable
representations not in Ny (a) are preinjective (the representations dual to pre-
projective ones are called preinjective).

In dealing with perfect elements it seems to be convenient to work modulo
linear equivalence. Two elements a, a' € D" are said to be linear equivalent
provided p(a) = p(a’) for any representation p: D" - L(V). Of course, any
element linear equivalent to a perfect element is also perfect. Up to linear
equivalence, one has B~ <B* and Gelfand and Ponomarev have conjectured
that, up to linear equivalence, all perfect elements belongto B~ U B*. However,
this has to be modified. Herrmann [19] has pointed out that there are
additional perfect elements arising from the different characteristics of fields.
For example, for any prime number p, and m > 2, there is some perfect ele-
ment d,,, €D such that Ny (dp,, ) contains all representations p, ; with I <m,
and, in case the characteristic of k is p, then, in addition, the representation
Po,m » and nothing else. Thus, it is even more convenient to work in the free
p-linear lattice Dy, the quotient of D' modulo p-linear equivalence where p is
either zero or a prime. Here, two elements, a, @' €D’ are said to be p-linear
equivalent provided p(a) = p(a') for any representation p in a vector space
over a field of characteristic p.

The modified conjecture now asserts that any perfect element is
p-linearly equivalent to an elementin B~ U B*. This indeed is true, as we want
to show. Thus, assume there exists a perfect element ¢ € D" which is not
p-linear equivalent to an element of B~ U B*. Gelfand and Ponomarev have
shown that then N(a) = Ny (2) contains all preprojective representations and
10 preinjective representation. In a joint paper [10] with Dlab, we have shown
that for » > 5, the set N(a) either contains only the preprojective repres-
entations or else all but the preinjective representations. The elements x €D’
are given by lattice polynomials in the variables ey, . . ., e,. Of course, there will
be many different lattice polynomials which define the same element x. A
lattice polynomial with minimal number of occurrences of variables defining x
will be called a reduced expression of x and this number of variables in a
reduced expression will be called the complexity c(x) of x. Now, let
p: D" - L(V) be a representation, U a one-dimensional subspace of ¥, and
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p': D" = L(V/U) the induced representation, with p'(e;) = (p(e;) + U)/U for the
generators e;, 1 <i<<r. We claim that for x €D", we have

dim p'(x) <e(x) — 1 + dim p(x).

[For the proof, we consider instead of p' the representation p": D" = L(W¥)
with p"(x) the full inverse image of p'(x) under the projection ¥+ V/U, thus
dim p"(x) = 1 +dim p’(x), for x €D’. Also note that p(x) C p"(x) for all x,
By induction on ¢(x), we show the formula

dim p"(x) ~ dim p(x) < e(x),

Since dim U = 1, this clearly is true for x = e, with p"(e;) = p(e;) + U. Now
assume the formula being valid both for Xy and x,. Forx = x; +x, with
c(x) =c(xy) + e(x, ), we have

dim p"(x) = dim p"(x; +x,)<dim plxy +x3)+elxy) +cx,)
= dim p(x) + e(x).
Similarly, for x = x,x, with e(x)=c(xy) + e(x,), we have
dim p"(x) = dim p"(x1,) = dim p"(x;) + dim p"(x,) — dim p"(x, +x3)
Sdim p(xy) +c(xy) + dim p(x,) + (x5 ) - dim p(xy +x,)
=dim p(x;x,) +c(xy) +c(x,) = dim p(x) + c(x).

This finishes the proof.] '

It is now sufficient to find a preprojective representation p: D7 = L(V)
with dim V' > ¢() and a one-dimensional subspace U of ¥ such that the

‘induced representation ¢’ in ¥/U has no preprojective direct summand.

Namely, our considerations above imply that dim p'(a) <c(a) — 1 < dim V/U,
due to the fact that p(a) =0, and therefore there exists at least one indecom-
posable representation ¢ in N(a) which is not preprojective. As a consequence,
in case r 2 5, we know that N(a) contains all but the preinjective repres-
entations. By duality, we similarly show that N(a) contains only the pre-
projective representations, thus we obtain a contradiction. So, let us construct
a suitable preprojective representation with the properties mentioned above. In
fact, instead of considering representations of 1" ,» we will work inside the
abelian category of representations of the oriented graph (*). We denote by
Py =V prilen, ..., Ps,1(e,)) the graph representation corresponding to
Pt,1- Take any homomorphism @: Py > P, , such that R = Cok v is regular
(that is, has no non-zero preprojective or préinjective direct summand. For
example, there always exists such a ¢ with R being the direct sum of two
indecomposable Tepresentations of dimension types (1,1,1,0,...,0)and

r—3;0,0,1,1,..., 1).) Now apply &/ fori € N. We obtain exact
sequences
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®-i(p) ,
O-)lPO,i""]. - PO,i.l.z _>(b—IR'+O,

thus, the inclusion
@ =@ i(p)o ...od () o p: Po,1 _>Po,z'+2

has regular cokernel (extensions of regular representations being regular, again).
We now only have to choose i such that dim ¥, ;, , > c(a). This finishes the
proof in case r = 5. (For » = 4, we again take : Py ; > £ , with Cok v being
the direct sum of two representations of dimension types ’(1; 1,1,0,0) and
(1,0,0, 1, 1), and form ¢;. The indecomposable summands of Cok ¢ all belong
to one component C of the Auslander—Reiten quiver, thus we conclude as
above that C C N(a). By duality, one similarly shows that there are repres-
entations in C which do not belong to N(a), so again we obtain a contradiction.
I[\Iote that in case r = 4, the conjecture has been solved before by Herrmann
19]1.)

We consider now the general problem of representations of an oriented graph
(T, A). We do not recall the definition of the category L(I', A) of
representations of (I", A) over some fixed field &, nor the typical examples, but
just refer to the first two pages of [BGP]. We only note that L(T', A) can also
be considered as the category of modules over the path algebra k(T', A), see
[171, and k(T, A) is a finite-dimensional k-algebra if and only if (I, A) does
not have oriented cycles. In [15], Gabriel had shown that (T, A) has only
finitely many indecomposable representations if and only if T is the disjoint
union of graphs of the form 4,,, D,,, E¢, E; and Eg (they are depicted on the
third page of [BGP]). It turned out that in case I" is of the form A4,,, D,, Es,
E, or Eg, the indecomposable representations of (I', A), with A an arbitrary
orientation, are in one-to-one correspondence to the positive roots of I'. It is
the aim of the paper [BGP] to give a direct proof of this fact. It introduces
appropriate functors which produce all indecoimposable representations from
the simple ones in the same way as the canonical generators of the Weyl group
produce all positive roots from the simple ones. We later will come back to
these functors and their various generalizations.

Given a finite graph I, let Ey. be the Q-vector space of functions I'y > Q, an
element of E. being written as a tuple x = (x,) indexed by the elements
a€T,. For BE T, we denote its characteristic function by # (thus g, = 0 for
a7, and B'ﬂ = 1). Any representation ¥ of (I', A) gives rise to an element
dim ¥ in K., its dimension type. For any orientation A of I, and any B €Ty,
there is a unique simple representation Lg of dimension type dim Lg = 8. In
case there are no oriented cycles in (I, A), we obtain in this way all simple
representations of (I, A), thus, in this case, Ex. may be identified with the
rational Grothendieck group Go(T', A) ® Q (here, Go (T, A) is the factor group

z

of the free abelian group with basis the set of all representations of (T, A)
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modulo all exact sequences) with dim being the canonical map (sending a
representation to the corresponding residue class). On Er,, there is defined a
quadratic form B. In fact, for any orientation A of I', we may consider the
(non-symmetric) bilinear form B A OnEL given by

By, ¥)= 2 x,y,—~ Z X ()Y a()
Ier, ler,

and B is the corresponding quadratic form B(x)= B, (x, x). Note that B is
positive definite if and only if " is the disjoint union of graphs of the form
A, D,, Eg, E; and Eg, and in these cases, the root system for I" is by
definition just the set of solutions of the equation B(x) = 1.

For k algebraically closed and B being positive definite we will outline a
direct proof that dim: L(T, A)~ Ey, induces a bijection between the indecom-
posable representations of (T, A) and the positive roots, There is the following
algebraic-geometric interpretation of B due to Tits [15]: The representations
of (I', A) of dimension type x may be considered as the algebraic variety

m* (T, A)= 11 Hom(kX", kb)),
ler,

and there is an obvious action on it by the algebraic group

G*= 1 GL(w, k)/A

aET,

with A being the multiplicative group of k diagonally embedded as group of
scalars. Clearly

B(x)=dim G* + 1 ~ dim m* (T, A),

Using this interpretation, Gabriel has shown in [16] that it only remains to
prove that the endomorphism ring of any indecomposable representation is %.
So assume ¥ is indecomposable, and that there are non-zero nilpotent endo-
morphisms. Then V' contains a subrepresentation lJ with End(0) = k and
Ext! (U, U)+ 0. [Namely, let 0 + ¢ be an endomorphism with image S of

smallest possible length, thus @2 = 0,and let W = ZB W; be the kernel of ¢,
i=1

with all W; indecomposable. Now S’ € W, thus the projection of § into some

W; must be non-zero. Since § was an image of a non-zero endomorphism of
smalle‘st leJTgth, we see that § embeds into this W;. We may assume { = 1. Thus
there is an inclusion ¢: § — W,. If W, has non-zero nilpotent endomorphisms, we

use induction. Otherwise End(W,) = k. Also, Ext!(Wy, W,) # 0, since on the one
hand Exti(gs, W1) %0 due to the exact sequence

0> & Wi=V->98-90
P=1
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and, on the other hand, the inclusion ¢ gives rise to a surjection Ext? (;, W).
Here we use that L(T', A) is a hereditary category]. The bilinear form B, has
the following homological interpretation [25] :

B, (dim V, dim V") = dim;. Hom(V, V') — dim;, Ext!(V, V"),

for all representations ¥, ¥V'. Consequently, the existence of a representation
U satisfying End(0) = k, Ext! (U, U) # 0 would imply that

B(dim U) =B, (dim U, dim U) <0,

contrary to the assumption that B is positive definite. This finishes the proof.

For any finite connected graph I" without loops, Kac [21, 22] gave a purely
combinatorial definition of its root system A. Note that A is a subset of £y,
containing the canonical base vectors B, for €'y, and being stable under the
Weyl group W, the group generated by the reflections o, along B with respect
to B, The set A can also be interpreted in terms of root spaces of certain
(usually infinite dimensional) Lie algebras [21]. Denote by A, the set of roots
with only non-negative coordinates with respect to the canonical basis. Then
A is the union of A, and A_=—A,. In case I is of type 4, Dy, E¢, Eq or
Eg, the root system is finite and coincides with the set of solutions of
B(x)= 1. Otherwise the root system is infinite and will contain besides certain
solutions of B(x) = 1 also some solutions of B(x) < 0. The elements x of the
root system which satisfy B(x) = 1 are called real roots, they are precisely the
elements of the W-orbits of the canonical base elements. The remaining
elements of the root system are called imaginary roots, and Kac has deter-
mined a fundamental domain for this set, the fundamental chamber.

Now, one has the following results (at least if & is either finite or
algebraically closed): For any finite graph I' without loops, and any
orientation A, the set of dimension types of indecomposable modules is
precisely the set A, of positive roots. For any positive real root x, there exists
precisely one indecomposable representation ¥ of (T, A) with dim V = x. For
any positive imaginary root x, the maximal dimension g, of an irreducible
component in the set of isomorphism classes of indecomposable
representations of dimension x is precisely 1 = B(x, X). (Note that the subset
of indecomposable representations in m* (I', A) is constructible, and

'G* -invariant, thus we can decompose it as a finite disgjoint union of

G* -invariant subsets each of which admits a geometric quotient. By definition,
K, is the maximum of the dimensions of these quotients.) In particular, we see
that the number of indecomposable representations (or of the maximal
dimension of families of indecomposable representations) of (I, A) does not
depend on the orientation A. For I' of the form 4, Dy, E¢, £ 0T Eg, this is

Gabriel’s theorem (of course, there are no imaginary roots). For I' of the form
A, Dy, E, 62 E, 7, OT E, s, the so called tame cases, these results have been shown
by Donovan—Freislich [13] and Nazarova [23], see also [9]; in fact, in these
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cases one obtains a full classification of all indecomposable representations;
also, it is possible in these cases to describe completely the rational invariants
of the action of G* on m* ([, A), for any dimension type x, see [27]. Of
course, the oriented graphs of finite or tame representation type are rather
special ones. It has been known since some time that the remaining (I, A) are
wild: there always is a full exact subcategory of L(I', A) which is equivalent

to the category My x y, of k (X, Y >-modules (k { X, ¥ ) being the polynomial
ring in two non-commuting indeterminates). In this situation, the results above
are due to Kac [21, 22]. Note that this solves all the conjectures of
Bernstein—Gelfand—Ponomarev formulated in [BGP]. However, there remain
many open questions concerning wild graphs (I, A). One does not expect to
obtain a complete classification of the indecomposable representations of such
a graph, but one would like to have some more knowledge about certaiif
classes of representations. For example, there does not yet exist a combina-
torial description of the set of those roots which are dimension types of
representations V with End(V) = k.

We have mentioned above that the root system A of I is stable under the
Weyl group W and that any W-orbit of A contains either one of the base
vectors B (with f €T'y) or an element of the fundamental chamber. One there-
fore tries to find operations which associate to an indecomposable repres-
entation V of (T, A) with A an orientation, and a Weyl group element w € W
a new indecomposable representation of (I, A'), where A’ is a possibly
different orientation of I'. By now, several such operations are known (see
[BGP, 21, 28]), the first one being the reflection functors Fg, F; introduced
by Bernstein, Gelfand and Ponomarev in [BGP]. Here, for the definition of
FE , the vertex § is supposed to bg a sink, thus the simple representation Lg
with dimension vector dim L, =B is projective, This concept has been
generalized by Auslander, Platzeck and Reijten [1] dealing with any finite
dimensional algebra 4 (or even an artin algebra) with a simple projective
module L. For this, we need the Auslander—Reijten translates 7, 77!, Recall

that 7X 4 is defined for any A-module ¥ 4 let Py —p> Py = X4 — 0 be a minimal
projective resolution of X ,, then Tr X 4 Is by definition the cokernel of the
map Hom(p, 44)and 7 X =D Tr X, 7! X=TrD X , with D the usual duality
with respect to the base field k. So assume L is a simple projective A-module,
let P be the direct sum of one copy of each of the indecomposable projective
modules different from L, and B = End(P @ =1 L}. The functor considered by
Auslander, Platzeck and Reiten is F = Hom s (Per~1L, =) from the category
M4 of A-modules tod . The functor induces an equivalence of the full sub-
category T of M, of all modules which do not have L as a direct summand
and a certain full subcategory of Mg . Note that P ® 771 L is a tilting module in
the sense of [18], except in the trivial case of I, being, in addition, injective.
(A tilting module T, is defined by the following three properties:
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(1) proj. dim. Ty <1, (2) there exists an exact sequence

0->A4, > T'=>T"—~0,with 7', T" being direct sums of direct summands of
T4,and (3) Ext' (T4, T,)=0. Now, if L, is simple projective and not
injective, the middle term Y of the Auslander—Reiten sequence

0-+L~>Y +71[ >0

starting with L is projective. This sequence shows, on the one hand, that

proj. dim. 771 L = 1. On the other hand, it also gives an exact sequence of the
form needed in (2). Finally, Ext! (Pe7™'L, Pe77 L)~

~ D Hom(P ® v~1L, L) = 0, since any non-zero homomorphism from a module
to L is a split epimorphism.) .

A certain composition of the reflection functors F; (or F,;' , respectively) is
of particular interest, the Coxeter functor " (or ® ). An explicit calculation
for the r-subspace situation is given in [F1, in the special case of the 4-subspace
problem it had been defined before in [Q]. The Coxeter functors are endo-
functors of L(T", A), they are only defined in case (I', A) does not have oriented
cycles (non-oriented cycles are allowed, see [9]). Note that the assignment of
an orientation A without oriented cycles is equivalent to the choice of a partial -
ordering of I'y (let & << § iff there exists an oriented path e =a oy < ...

..+ aj =), and also to the choice of a Coxeter transformation: this isa
Weyl gr up element of the form ¢ = O+ O with oy, . . ., @, being the

elements of Iy in some fixed ordering (take an ordering of I' which refines the
given partial ordering). So assume from now on that (I, A) is a connected
oriented'graph without oriented cycles, and let ¢ be the corresponding Coxeter
element.}The Coxeter functors ®" and &~ defined in [BGP] have the follow-
ing properties: if ¥ is an indecomposable representation of (I', A), then either
V is projective and then &'(¥) = 0, or else ¥ is not projective, and then ®*(V)
again is indecomposable, ® ~®*(¥) ~ V and dim ®"(¥) = ¢ dim V. Thus the
Coxeter functor ®" realizes the action of the Coxeter transformation on the
set of all representations without non-zero projective direct summands. The
usefulness of the Coxeter functors seems to have its origin in their relation to
the Auslander—Reiten transiation 7. Namely, Gabriel ([17], Prop. 5.3, see
also [1,5]) has shown that 7 can be identified with C* o T, where T is the
functor which maps the representation (¥, f) to (¥, — f). In particular, for I’
being a tree, we can identify 7 with C " itself. |
In order to explain the value of the Auslander—Reiten translation 7 (and I
therefore of the Coxeter functors), we have to recall the definition of the ¢
Auslander—Reiten quiver of a finite dimensional algebra 4. Its vertices are the :
isomorphism classes [X] of the indecomposable A-modules X,and,if X, Y
are indecomposable modules, then there is an arrow [X] - [Y] iff there exists h
an irreducible map X - Y (a map f is said to be irreducible provided it is _ :
neither a split monomorphism nor a split epimorphism, and for any factori- |
zation f=f" o ', we have that f' is a split monomorphism or f " is a split i

T e
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epimorphism [2]). Now, the Auslander—Reiten quiver is a translation quiver
with respect to 7: if X is indecomposable and not projective, then there exists
an irreducible map Y = X iff there exists an irreducible map 7X = Y.

For the finite dimensional hereditary aigebras 4, the structure of the
Auslander—Reiten quiver is known. We will recall this result in the special
case of 4 = k(T', A). First, we need some notation. Define Z(T', A) as follows:

4

its vertices are the elements of I'y X Z, and for any arrow* o +—o/, there
(o, 2) (o*, z)

are arrows (4, z) — > (j, z) and (f, z) ——— (i, z+ 1), for all z € Z, see
[24] and also [17,29]. Note that in case I' is a tree, Z(T", A) does not depend
on the orientation A and just may be denoted by 2. If I C Z, let I(I', A) be
the full subgraph of all vertices (i, z) withi €I. In particular, we will have to
consider N(I', A) and N™(T', A), where N={1,2,3, ...} and
N™={-1,-2,-3,...}. Also, denote by 4_, the following infinite graph

o—o.._oul-omoi"

The result is as follows: in case I' is of the form Ay, Dy, Eg, Eq or Eg, the
Auslander—Reiten quiver of £(T', A) is a finite full connected subquiver of ZI,
(In case D, with n =0(2), the Auslander—Reijten quiver of k(I", A) is
[1,7n=1] (T, A), in case of E; or Eg, it is [1,9] (T, A) or [1,15] (T, A),
respectively; in the remaining cases, it is slightly more difficult to describe,
see [17, 29]). In all other cases, the Auslander—Reiten quiver of k(I", A) has
infinitely many components, all but two being quotients of ZA.. (see [26]),
the remaining two being of the form N(T', A) and N~(T', A). The component of
the form N(T", A) contains the indecomposable projective modules: in fact,
the indecomposable projective module P; corresponding to the vertex i €I,
appears asindexed by (7, 1), and the module indexed by (i, z), z € N, is just
®~2*1(P,), this component is called the preprojective component. Similarly,
the component of the form N (T, A) is called the preinjective component, it
contains the indecomposable injective module J; corresponding to i €Iy as
indexed by (i, —1), and the module indexed by (i, ~z), z €N, is just 21 (J)).
Let us consider in more detail a preprojective component :#, and the modules
belonging to:#; they will be called preprojective modules. In case I' is of type
Ays Dy, Eg, Eq, or Eg, we let % denote the full Auslander—Reiten quiver; in
any case, we note that an indecomposable representation of (I", A) is said to
be preprojective iff it is of the form &2 P, with P indecomposable projective
and z 2 0. (A general theory of preprojective modules has been developed by
Auslander and Smalg, see {3]1). For an indecomposable preprojective repres-
entation X, there are only finitely many indecomposable modules ¥ such
jchat Hom(Y, X)# 0, all of them are preprojective again, and any non-
nvertible homomorphism ¥ = X is a sum of compositions of irreducible maps.
In particular, if X, ¥ are indecomposable and preprojective and
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Hom(X, Y) # 0, then there is an oriented path [X]— ...~ [Y] inZ. In fact,

the complete categorical structure of the full subcategory of preprojective

modules can be read off from the combinatorial description of Zas a

translation quiver: the category of all preprojective modules is equivalent to the

quotient category () Z of the path category of Z modulo the so called mesh

relations (see [4, 24, 17]). Note that the category ( Z allows to reconstruct

all the modules in 4. Namely, any module X, is isomorphic to

Hom(y4,, X,), thus,if A4y = @ Pi, then X, can be identified with

ier,

iEB Hom(P;, X)"{, and Hom(P;, X) can be calculated inside %, since both
&r, ,

P;, X are preprojective.

Starting from the preprojective component # of k(I', A), one may define a
(usually infinite-dimensional) algebra IT as follows: Take the direct sum of all
homomorphism spaces Hom(, 1), (¢, 1)) in {} & and define the product of two
residue classes @, ' of paths w: ¢, 1)=>...~>(, ) and

- -

w's G, 1)=>. ..~ (' 1") as follows: in case £ =], let il @' be the residue class
of the composed path 7™ o w: G, 1)~>...=> (¢ I+1'—1),and 0
otherwise. There is a purely combinatorial description of Il in terms of (I, A)

due to Gelfand and Ponomarev, see [R]. Let I be obtained from (I', A) by
. adding to each arrow o: i =] an additional arrow o*:j = i. We clearly can

identify IT with the factor algebra of the path algebra kT modulo the ideal

generated by the element = oara*+ T o*ew. Note that this description is
aELYy =g

independent of the choice of the orientation A. Also, we see from both
descriptions that IT contains as a subalgebra k(T A), thus we may consider II as

a right k(T", A)-module, and the first description now shows that the k(, A)-
module IL; (p,4) decomposes as the direct sum of all preprojective representations
of (T, A) each occurring with multiplicity one, and therefore is called the prepro-
jective algebra of I'. (For the proper generalisation to the case of a species, we
refer to [11]. We also should note the slight deviation of the preprojective
algebra from the model algebra defined in [M], which reduces to the algebra A"
given in [I, II] in the case of the r-subspace situation. Namely, here the constant
paths have square zero, whereas they are idempotents in II. Now, in II tl}e sum of
the constant paths is the identity element. In order also to have an identity ele-
ment, Gelfand and Ponomarev add to the direct sum of all preprojective modules
an additional one-dimensional space ke. There is a change of definition proposed
in [S], using the constant paths as idempotents as in I1, but adding E{gail} an
additional identity element.) Since I is the direct sum of the prepro_u?ctw_e repres--
entations of (I, A), it follows that II is finite dimensional if and only if L' is of the
form 4, D,, E¢, En, or Eg. In [12], the tame cases A, Dy, Ee, Eq and ES. have
been characterized by the fact that the Gelfand—Kirillov dimension of ILis 1,
whereas it is oo for the wild cases.
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Let us return to the special case of the » subspace graph (*), with » > 4. The
description above gives that the preprojective component £is of the form

(1,1) (1,2) {1.3)

AN
/

(0,1)

\ :

(r,1) {r,2) (r,3)

e

then the mesh relations are as follows: o of =0 for all i, and = of a; =0,
i

Thus, if we want to determine the total space of the representation labelled
(¢, D), we have to calculate Hom((0, 1), (¢, 1)) inside the category (02, and this
amounts to the calculation of all possible paths from (0, 1) to (¢, ), taking this
as the basis of a vector space and factoring out the mesh relations. However,
taking from the beginning into account the relations o oz;" =0, we just as well
may work with the vector space generated by the set 4 (r, D) and factoring out
the remaining mesh relations. This shows that we obtain as total space the
vector space V1. Similarly, the r different subspaces of the representation
labelled (¢, 1) are given by the various Hom((j, 1), ¢, D), 1 <j<r,again
calculated in ()%, and therefore coincide with the subspaces P:,1(¢p). In this
way, we obtain directly the description of the preprojective rep,resentations of
J[DI; ]g)iven by Gelfand and Ponomarey (and a direct proof of Proposition 8.2 in
Finally, let us note in which way the preprojective component of D" deter-
mines the lattice B* of perfect elements belonging to the upper cubicles. For
any perfect element o, we have denoted by N(a) the set of indecomposable
representation p satisfying p(a) = 0. We claim that for g € B*, the set N(a)isa
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finite, predecessor closed subset of 7 (an element x is said to be a predecessor
of y in case there is an oriented path x — . .. y. For the proof, we first note
that clearly N(a) N7 is predecessor closed, since for indecomposable repres-
entations p, p' with Hom(p, p') 0, and a perfect, p' € N(a) implies p € N(a).
Since not all of 2 is contained in N(a), it obviously follows that N(z) NZ is
finite. However, any complete slice of #generates all representations outside
of #, thus taking a complete slice of # outside of N(a) N.#, we easily see that
no indecomposable representation outside of i can belong to N(a), thus

N(a) C€2.) Thus N determines a map from B* to the set of all finite,
predecessor closed subsets of # This map is bijective and order-reversing, thus
B* is anti-isomorphic to the lattice of finite, predecessor closed subsets of 7.
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