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Let k be an algebraically closed field. We will consider finite dimensional 

k-algebras A and our aim is to describe some components or sometimes even all 

components of the Auslander-Reiten quiver of A. Components of the Auslander-Reiten 

quiver of A we just will call components of A. In case A is of tame represen- 

tation, it seems that there is a large amount of components which are regular tubes. 

We recall from [3] that a tube is a translation quiver containing an oriented 

cycle, and with underlying topological space being of the form S 1 x ~Zo" The re- 

gular tubes are the translation quivers of the form ~ /r with r ~ i, and r is 

called the rank of the tube. Tubes usually occur in families indexed by some set I, 

and in this case, we will speak of a tubular I-series. In our investigation presen- 

ted here, the index set I is always the projective line ~ik over k. Given a 

tubular I-series T i (i 6 I), with T i regular of rank r.,l we associate with 

it a diagram, called its type, which is constructed as follows: We form the dis- 

joint union of diagrams ~ , with i 6 I, choose in any ~ one particular end- 
r i r. l 

point, and identify all these endpoints in order to form a star. For example, given 

the path algebra A of an extended Dynkin diagram ~ with some orientation (where 

A = ~n' Dn' ~6' ~7 or ~8), then the regular A-modules form a tubular ~ik-series, 

consisting of regular tubes, and the tables in [4] show that its type in just A 

(For example, in case A = ~6' the simple regular representations of an oriented 

~6-quiver form two Y-orbits of length 3, one T-orbit of length 2, all other T-orbits 

are of length i, thus there are two regular tubes of rank 3, one of rank 2, and all 

others are of rank i, so that the diagram of this tubular ~ik-series is the star 

~6 ). One objective of the present paper is to outline a direct proof of this fact. 

Given a tubular I-series T = ~ T formed by components of the algebra A, 
l 

i61 
we will say that T is separating provided the remaining indecomposable A-modules 

fall into two disjoint classes P, Q such that 

(I) Hom(Q,P) = Hom(Q,T) = Hom(T,P) = O for all P 6 P, T 6 [, Q 6 Q, and 

(2) Given i 6 I, any homomorphism ~ : P ----+ Q can be factored through a 

direct sum of modules in T i. (We will say that T separates P from Q.) 

Of course, in case T is the tubular ~ik-series of all regular A-modules, 

where A is the path algebra of some oriented extended Dynkin diagram, then T is 

separating, with P the set of indecomposable preprojective modules, and ~ the 

set of indecomposable preinjective modules. 
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Our main interest lies in a class C of algebras introduced in section 4, and 

we are going to give a complete description of the indecomposable C-modules, for any 

C 6 C. We will see that any algebra in C has countably many separating tubular 

Plk-series, all but two being of a fixed type, namely of type T2,2,2, 2 (the case 

~4~) , or ~3,3,3 (the ease ~6) , or ~4,4,2 (the case~7) , or ~6,3,2 (the 

~), and only two additional components, a preprojective component and a pre- case 

injective component. Also, the dimension vectors of the indecomposable C-modules 

can be characterized as being the positive connected vectors x in the Grothendieck 

group Ko (C) satisfying qC(x) = O or i , where qc is a suitable quadratic form 

on K (C), the socalled Euler characteristic. 
o 

In particular, it follows directly from our investigations of the algebras of 

type ~41 that the pattern of type ~4,1)~ (see [7]) is tame. This solves the 

one remaining case which had been left open in [7]. We only remark that in all 

cases ~4~'~6'~7'~' the determination of the indecomposable modules of any 

algebra of that type directly classifies the indecomposable representations of the 

patterns of that type. 

The notes give an outline of results with indications both of the method of 

proofs as well as of applications. A detailed account will appear in [8]. It 

should be noted that the author is strongly endebted to S. Brenner and M.C.R. Butler. 

Their ideas (both mathematical and philosophical) concerning the use of tilting 

functors for tame algebras like squids have influenced the present investigation [2]. 

The one-parameter series of indecomposable modules over algebras (or better, of re- 

presentations of partially ordered sets) of type ~'~7 and ~ first havebeen 

determined by Nazarova and Zavadskij [9], and Zavadskij has informed the author 

that he also obtained the classification of all indecomposable modules in these 

cases. The results were reported at Torun in December 1981, and, in spring 1982, 

at the Seminaire d'Alg@bre Dubreil-Malliavi/% in Paris and at the mathematical 

institute of the Ukrainian Academy of Science in Kiev. The author is grateful to 

all these institutions for their hospitality and for the possibility to discuss 

the results. These discussions resulted in many improvements; in fact, the 

whole theory was transformed many times, and we hope that the form presented here 

is the most accessible one. 

Notation: For a translation quiver F with translation T we denote by F (°) 

the set of its vertices, by F (I) the set of arrows, and by F 12) the graph of T . 

Let A be a finite-dimensional algebra. The isomorphism class of a A-module M will 

be denoted by [M] , it is a vertex of the Auslander-Reiten-quiver F(A) of A . 

Given an indecomposable projective module P(i), we denote by S(i) its top 

P(i)/radP(i) . ~ will denote the set of natural numbers {1,2,3 .... }. 
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1 Construction of separating tubular series 

Given a translation quiver F, a full translation subquiver A of F is given 

by a set A (°) c F (°), and satisfying A (i) = F (i) n (A (°) x A(o)), for i=i,2. 

The full translation subquiver A of F will be called mesh complete, provided 

[~] 6 A (2) and y + z in F (I) implies y 6 A (°)" 

The Auslander-Reiten quiver of the linearly ordered quiver of type A will be 
n 

denoted by #(n), its vertices are of the form w.. with I < i < j < n, there is an 
13 

arrow wij ~ wi,j+ I for all i < i _< j < n, and an arrow wij > wi+l, j for 

all I ~ i < j < n, and there are the extensions [ wi~ -] fo r  a l l  1 < i <  j < n. 
lWi_l,j_ I 

Note that the vertices w j are projective, the vertices Win are injective,thus 

Win is the unique projective-injective vertex of ~(n) . The vertices wij with 

] < i < j < n will be said to belong to the interior of #(n) . 

w13-- 
\ 

g~ 

_ _ - Wn_ I , n--l- ~Wnn 
/ 

- - w n - - 2 ,  n - - l - -  11--1,1"1 

- - W n - - 2  ~ n  

~w I, n--1--'W2n 

Wln 

Given a vertex w of a translation quiver F, a mesh complete full subquiver 

of F will be called a wing for w provided ~ is of the form ~(n) for 

some n > 2 with w being the unique projective-injeetive vertex of ~, and such 

that (~) for x --+ w in F , with w 6 ~ , and projective and not injective in ~ , 

the vertex x is not injective in F and T-x 6 # , and dually (~) for w --+ y in 

£ , with w 6 ~ and injective and not projective in ~ , the vertex yisnotprojec- 

tive in £ and Ty 6 ¢ ; the number n will be called the length of the wing. 

Given a finite dimensional algebra A with Auslander-Reiten quiver F (A), an 

indecomposable A-module W will be called a wing module provided given any arrow 

IX] ---+ [W] or any arrow [W] ---+ [X] in F (A) there exists a wing for [W] in 

F (A) containing the arrow. Given a wing module M, with minimal right almost split 

s 
map @ X i > M, where all X i are indecomposable, the vertices [Xi] belong to 

i=l 
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pairwise different wings #(i) for [M], and let n. be the length of the wing 
1 

~(i) . The star T will be called the type of the wing module. In case 
nl---n s 

s = 3, the component containing a wing module of type ~ looks as follows: 
nl,n2,n 3 

/ ( 

( 

A wing module W will be said to be separating provided the indecomposable 

A-modules X with [X] not belonging to the interior of a wing for [W] and dif- 

ferent from [W] itself, fall into two disjoint classes U and Q such that 

Hom(V,U) = Hom(V,W) = Hom(W,U) = O 

for all U 6 U, v 6 Q and such that, moreover, any homomorphism U ---+ V with 

U 6 U, v 6 V factors through a direct sum of copies of W. 

Examples of separating wing modules of type T occur in the preprojec- 
nl---n s 

tive component of a quiver with underlying graph of the form T More gene- 
nl.--n s 

ral, most tilted algebras of type T will also have separating wing modules 
nl---n s 

of type T 
nl---n s 

Given any (not necessarily indeeomposable) A-module R, we denote by A[R] the 

one-point extension of A by R, it is given by the following matrix algebra 

JAR 1 
O k . 
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Its modules are of the form (AX,kY,~ : AX +--- A R ~ Y), with A x being a A-module, 
k 

k Y a k-vectorspace, and ~ A-linear. In case Y = O, we just deal with a A-module. 

All indecomposable projective A[R]-modules but one are, in fact, A-modules, the 

remaining one will be denoted by P(~) = (AR,k,IR), and we have rad P(~) = R. 

Given a homomorphism Q : AR --+ A x, we denote by X(p) = (AX,k,p), thus X(p) is 

given by the following pushout diagram. 

R ~ ~ P(~) 

i ' 
I 

P t 
+ 

X---÷ X(p). 

Note that if ~ is a non-zero element of k, then X(p) ~ X(~p). Thus, given an 

element [p] 6 P Hom(R,X), the module X([p]) := X(p) is defined up to isomorphism. 

Given an algebra A, we denote by K (A) the Grothendieck group of all 
o 

A-modules modulo exact sequences. It has a canonical basis given by the set of 

simple A-modules. In this way, Ko(A) is a partially ordered abelian group. Given 

a A-module X, its residue class in K (A) will be denoted by dim X, and called 
o 

the dimension vector of X. In case A is of finite global dimension, there is a 

(usually non-symmetric) bilinear form on K (A), given by 
o 

<di_~m X, dim Y> = ~ dim k ExtI(X,Y), 
i~o 

with Ext ° = Hom. The corresponding symmetrized bilinear form will be ( , ), thus 

2(x,y) = <x,y> + <y,x> , 

and qA denotes the quadratic form qA(x) = (x,x) = <x,x>. 

NOW we are able to state our main result concerning the construction of sepa- 

rating tubular series. Note that an algebra with a sincere, separating wing module 

always has global dimension < 2. 

Theorem. 

wing module W 

module with 

Let A be a finite dimensional k-algebra with a sincere, separating 

of type T Let R be a (not necessarily indecomposable) 
nl-.-n s 

<dim R,-> = 2(dim W,-) 

on K (A), and assume that proj.dim W(p) < i for all O # p 6 Hom(R,W). Consider 
- -  o 

the following linear form ~W = <dim(W • S(~)),-> __°n Ko(A[R]), and let ~W,TW,% 

be the set of all i n d e c o m p o s a b l e  A [ R ] - m o d u l e s  Y s a t i s f y i n g  ~ w ( d i m  Y) < o ,  = O,  

or > 0, 
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separating r e s p e c t i v e l y .  Then ~ i s  a t u b u l a r  P l k - s e r i e s  o f  type  ~ n l . . . n  
s 

Pw from %7" 

In fact, Hom(R,W) is two-dimensional, thus we may identify P1 k = ~ Hom(R,W). 

Given O # p : R ~ W, let Tw(P) be the component of F(A[R]) containing W(p). 

Then Tw(P) is a regular tube. In case p factors through an irreducible map 

X.I ---+ W, with Xi indecomposable, then Tw(P) is a tube of rank n.,1 where n i 

is the length of the wing for W containing [Xi]. In case p cannot be factored 

in this way, TW(p) is a tube of rank i. 

The dimension vectors of the indecomposable modules in T W can be numerically 

characterized as follows: If the indeeomposable A[R]-module Y belongs to T W, 

then qA[R](dim Y) = O or i, and, of course, ~w(dim Y) = O. Conversely, given a 

positive element y in Ko(A[R]) with ~w(y) = O and qA~](Y) = i, there is a 

unique indecomposable A[R]-module Y with dim Y = y, and given a positive element 

y in KO(A[R]) with ~w(y) = o and qA[~(y ) = i, there is a mlk-family of type 

consisting of indecomposable A[R]-modules Y with dim Y = y. 
n1"''ns 

Remark i. The assumptions of the theorem directly imply that R is projective 

or indecomposable. Namely, assume R = R' • R" with R' indecomposable and not 

projective, and with R" • o. We may suppose Hom(R",W) % O, since either R" has 

an indecomposable projective direct summand, and then Hom(R",W) # O due to the 

fact that W is sincere, or else we may exchange R' with an indecomposable sum- 

mand of R". Thus, let O # p : R" ---+ W, and extend it to R by using the zero 

map on R'. Let ~ : P ---+ W be a projective cover of W. Then 

O @ R' • R" 

1 l 
P • R' • R" 

I > R' ~ R" 

(2) 

W 

is a projective cover of W((~)), and its kernel has (R',O,o) as a direct summand, 

thus proj.dim. W((~)) > 2. 

Remark 2. The condition proj.dim. W(p) < i for O # p : R ---+ W is not 

always easy to check. However, in some cases, it will be straightforward that this 

condition is satisfied. First of all, if R is projective then proj.dim. W < 1 

implies that proj.dim. W(p) < i for any p : R --+ W. [Namely, W(p) is an exten- 

sion of W by the simple module P(~)/R.]. Also, given p : R ---+ W with Ker p 
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projective and proj.dim. Cok(p) < i, then 

an exact sequence 

proj.dim. W(p) < i. [Namely, p induces 

0 ) Ker(p) ¢ ) P(~0) --+ W(p) ----+ Cok(p) ---+ o 

and thus W(p) is an extension of P(m)/Ker(p) by Cok(p).]. In particular, if 

A is hereditary, and all proper submodules of R are projective, then 

proj.dim. W(p) < I for all o # p : R ---+ W. 

Outline of proof. Let us show in which way a wing of length n of W gives 

rise to a regular tube of rank n. The wing is given by the following diagram of 

indecomposable modules W . with i < i < j < n and irreducible maps 
13 

"'" ,n-I nn Wll W 2 W3~ Wn_ 1 W 

WI2U / W2~ =Wn-2'n-lu / Wn-t'n 
W13 2fWn-2,n 

\ 

• % o.. 

Wl,n-i /W2n 
\ 

Win 

= ) Wi,j+ 1 i < i < j < n, are monomorphisms, where Wln W. Here, the maps Wij , _ _ 

and we may assume that they are inclusions. The maps Wij ---~ Wi+l,j, i _< i < j <_ n 

are surjective with kernel Wii , and we may assume that Wij = WIj/Wl,j_ i (with 

WI, ° = O), and that the maps Wij ~ Wi÷l,j, I _< i < j _< n are the canonical pro- 

jections. In this case, the given diagram is fully commutative. Let us determine 

dim Hom(R,Wij ) for all i,j. Note that R is projective or indecomposable. It 

follows that the indecomposable summands of R different from W be/0ng to U due 

to the fact that W is sincere and <di___mm R, dim W> = 2(dim W, dim W) = 2. Using 

the equality <dim R, dim W..> = <dimR, dim W..> + <dim W..,dim R>, it is easy to 
z3 -- z3 lj - -  

see that dim Hom(R,Wij) = O for all 1 < i _< j < n, and = i in the remaining 

cases except for i=i, j=n, thus for Wln= W, where dim Hom(R,Wln) = 2. Given 

an indecomposable A-module X, we denote by ~ the following A[R]-module 

(AX, Hom(R,X),e) with e : R @ Hom(R,X) ---+ X being the evaluation map. We 

consider now the following fully commutative diagram of A[R]-modules 
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/w33< 

WI3 
% 

tbo 

~_/ ~ / 

W1 ,n-i W2n 

\ /  
w(0) 

jn- 1, ~I Wnn / 

Wn-2, n 

where p : R ~ W is a non-zero map factoring through WII; more precisely, let 

W(p) = (W,Hom(R,Wll),e) , with e : R ~ Hom(R,Wll) > Wll c ) W the evaluation 

map. Let us note that W.. = W.. for i < i < j < n. 
l] 13 

We claim that the diagram exhibited above has the following property: For 

all I < i < j < n, the minimal left almost split map starting in W.. is built 
- 13 

up from maps in the diagram, and similarly for i < i < j < n, the minimal right 

almost split map ending in W.. also is built up from maps in the diagram. This 
m3 

is a direct consequence of the following lemma. 

Lemma. Let X and Z be indecomposable A-modules and let 

be a minimal left almost split A-map. Then 

i 
R ~ Hom(R,X) > R ~ Hom(R,X) 

e I I ef 

f 
X > Y 

f : X---+ y 

is a minimal left almost split A[R]-map. Also, let g : Y ) Z be a minimal 

right almost split A-map, and e : R ~ Hom(R,Y) ---+ Y the evaluation map. Then 

R ® Ker(Hom(R,g)) ~ o 

g 
Y ~ Z 

is a minimal right almost split A[R]-map. 
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The proof ist straightforward. 

AS a consequence, we conclude that in the category of all A[R]-modules, 

TWii = Wi_l,i_l, for 3 ~ i ~ n, and TW22 = WII" It remains to calculate TWII. 

We note that proj.dim. WII ~ I, and that Hom(WII,A[R]) = O, thus 

dim__ = c dim WII, where c is the linear transformation of Ko(A[R]) given by 

c dim P(i) = -dim I(i), for any indecomposable projective module P(i) and any 

indecomposable injective module I(i) satisfying P(i)/rad P(i) ~ soc I(i). 

Now c (dim W..)ll = dim Wi_l,i_ I for 3 < i < n, and c(dim W22) = dim(Wll. S S(~)), 

thus c di___~m W(p) = dim W(p) implies c(dim WII) = dim Wnn. Since Wnn is the 

only indecomposable A-module with dimension vector dim W , it follows that 
--- nn 

TWII = Wnn. This shows that the category of A[R]-modules contains the following 

Y-orbit: Wnn' Wn-l,n-l''t" " W33' W22' WII' Wnn,..., and now it is easy to see that 

the corresponding component of AIR] is a regular tube of rank n. 

w. w.. 

.; .; ..... -; .:: 
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2. First Application: Maximal modules 

We will say that the module category of A is directed, provided A is re- 

presentation finite and 

[X] < [Y] ~=~ Hom(X,Y) % o 

defines a partial ordering on the set of isomorphism classes of indecomposable 

A-modules. An indecomposable A-module is said to be maximal provided its dimension 

vector is maximal in the set of all dimension vectors of indecomposable A-modules. 

Lemma. Let W be a maximal indecomposable A-module, where A is a finite- 

dimensional algebra with directed module category, and assume W is sincere. Then 

there exists a projective A-module R with <dim R,-> = 2(dim W,-), and R is 

uniquely determined by W. 

Proof. Since the module category of A is directed, and there exists an in- 

d e c o m p o s a b l e  s i n c e r e  A - m o d u l e ,  t h e  i n d e c o m p o s a b l e  A - m o d u l e s  c o r r e s p o n d  b i j e c t i v e l y  

to the positive roots of qA' under dim, see [ 5 ]. Let S(i) , I < i < n, be 

the s i m p l e  A - m o d u l e s ,  e i = d i m  S ( i ) ,  w = d i m  W. 
n 

NOW w = ~ w~e i± is a maximal root, thus d i = 2(w,e i) > o for all i. Let P(i) 

i=l 
n d .  

1 
be the i n d e c o m p o s a b l e  p r o j e c t i v e  m o d u l e  w i t h  t o p  S ( i ) ,  a n d  R = • P ( i )  T h e n ,  

i = l  
n 

for any A-module X with dim X = x = ~ xie i, 

i=i 

<dim R,dim X> = 

n n 

E d. Hom(P(i),x) = Z d.x. 
l i l 

i=l i=l 

= 2(w, ~ x e ) = 2(dim W,dim X) . 
i 

Of course, dim R is uniquely determined by <dim R,->, and it determines uniquely 

the projective module R. 

Remark i. (Ovsienko [ 6 ]) Note that R is the direct sum of at most two 

i n d e c o m p o s a b l e  p r o j e c t i v e  m o d u l e s .  N a m e l y ,  e i t h e r  d i = 1,  w.1 = 2 f o r  some i ,  a n d  

then d. = o for all j # i, or else d i = d. = i, w~ l = w~ 3 = i for some i * j, 
3 3 

and then d = o otherwise. 
t 

Remark 2. Given an algebra with directed module category, any indecomposable 

and sincere module W satisfies proj.dim AW ~ i. Thus, given in addition any 

projective module R and a homomorphism p : R --+ W, it follows that 
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proj.dimA[R]W(p) ~ I. 

In order to be able to apply the construction theorem for separating tubular 

series, we have to restrict to the case that the r-orbit of [W] is the only pos- 

sible branching point in the orbit quiver of A. Thus, we deal with the following 

assumptions: 

A is a finite dimensior~k-algebra, with directed module category. 

W is a sincere and maximal indecomposable A-module, and its r-orbit is the 

only possible branching point of the orbit quiver of A. 

In this case, let R be the ~Lniquely determined projective A-module with 

<dim R,-> = 2(dim W,-). Then we obtain for A[R] a tubular ~ik-series TW sepa- 

rating ~W from %, and being characterized by ~W" The type of this 

tubular series is given by the underlying graph of the orbit quiver of A. 

In particular, we can consider the case of A being the path algebra of a 

quiver of type T = An, ~n' ~6' ~7' or ~8' and W the unique maximal A-module. 

Then A[R] is the path algebra of a quiver with underlying graph being the corres- 

ponding extended Dynkin diagram ~ = ~n, ~n, ~6' ~7' or ~8' respectively, and ~W 

is (a scalar multiple of) the usual defect function. 

In this case, ~W is the set of all indecomposable preprojective, % the set 

of all indecomposable preinjective A[R]-modules, whereas ~W is the set of all 

indecomposable regular modules. The type of the tubular series T W is given by the 

underlying graph of the orbit quiver of A, and this graph is nothing but ~. Thus, 

we obtain a direct proof for the fact that the tubular type of the path algebra of 

a quiver of extended Dynkin type ~ has to be just T. 
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3. Separating tubular series of arbitrary type 

Our aim in this section is to construct an algebra with a separating tubular 

series of given type T 
nl.--n s 

We endow T 
nl.-.n s 

the following quiver 

with the soealled subspace orientation~thus we deal with 

a12 a13 

0 < 0 

~1~a22 a23 

a° ° ~ i <  0 

as2 as3 

al,nl-i al,nl 

... 0 ~ O 

a2,n2-1 a2,n2 

0( 0 

O( 0 

aS,ns-i as,ns 

and A will denote its path algebra. 

A-module W = I(a ) corresponding to the vertex 
o 

type ~ , its dimension vector ist 
nl...n s 

ii ... 1 
ii ... 1 

w = I . 

Note tlhat the indecomposable injective 

a is a separating wing module of 
o 

Ii ... 1 

Now, a A-module R satisfies <R,-> = 2(w,-) if and only if the dimension 

vector of R is of the form 

Ii ... i 

ii ... 1 

r = 2 . 

ii ... 1 

Also, given a module R with dim R = r, then any proper submodule of R is pro- 

jective if and only if all linear transformations occuring in R are injective, 

and the linear transformations ~l,...,~s have pairwise different images; a module 

satisfying these conditions will be said to be generic. Since A is hereditary, 

it follows that for any generic R with di_~ni R = r, and any non-zero map p : R ÷~ 

the projective dimension of W(p) is < i. Thus, in this case, R and W satisfy 

the conditions of the construction theorem in section i, and therefore ~W is a 

tubular ~ik-series of type ~nl...n s in the module category of A[R]. 
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4. Algebras of type ~41'~6'~7'~8" 

We consider now certain special algebras and want to exhibit for any one of 

these a particular separating tubular series. The algebras will be given by quivers 

(vertices and solid arrows) with relations(usually marked by dotted lines, indica- 

ting the relation formed by the sum of all paths between the end points of the dot- 

ted line; in some cases, the relations will be written down explicitely). One 

particular vertex, always a source, is marked by ~. For the application of the 

construction theorem of section 1, the given algebras are those of the form A[R], 

and A is obtained by deleting the vertex m; note that R = rad P(m) . We also 

write down the dimension vector w = dim(W • S(~)), where W as a A-module is a 

suitable sincere separating wing module of some type &, such that W and R 

satisfy the conditions of the construction theorem. In this way, we obtain a sepa- 

rating tubular series of type A, and A[R] will be said to be of type ~. 

Case ~I (I 6 k , 1% 0,1) 

w 8 
O 

>12  4 
1 -1  

, _ ,  

%"" 2"' "" ~' 

C(2)= 

3 = w ~81 =O 

/ . . ~  3' (~'B2 =0 

i ~ / 2  ~ 3" (~-~'1B 3 =o 

~" ~ " "~  3"' (kc~-~') 84 =o 

I 0 1 

2411 -22 ° 0-211 

1 0 1 

Case  

c(1)= i (. ' ' '°':l '2 '< 3 "I': ..... 4 

"--.. 3.7 
= W  

11 11 - 1 - 1  
1111 -3110  0 - 1 - 1 3  

11 11 - 1 - 1  

C(2)= 

~,/,.3< 4 =(~ (~i =o 
{z / 

4"' (e-~') g3=O 

21 O0 11 
3621 -3300  0 -311  

21 O0 11 
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C (3) = 

2 ~..~-~ 3 

~p~ -41 
i f  °~2 2 ' ~  =~ a181 =ct2B 2 =a3B 3 

w 

2~ 
1 

21 

~o 

2 2 
-620 

2 
22 

co 

o-~! 
-21 

C(4)= 
21 
21 

321 
3 

3O 
-63O 

30 
3 

-12 
-12 

0_12 
-3 

(5)= 
21 
21 

221 
1 

10 
10 

-210 
1 

-11 
-11 

°_11 
o 

c ( 6 ) =  ~ ~ 3 ~ ,  

2 

2 1 
2 1 
261 
3 

-1 
o 

-12o 
-1 o 
-1 

0 2 
0122 
0 2 

-2 

Cose® 

c (1 )=  

k:::-':.2"~3" 

21 
21 

221 
21 

10 
_2 lo 

10 
10 

-11 
-11 

0-11 
-11 
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C(2)= 

1 . . . . . . . . . . . . .  " ; i t  3 = c~ 

w ~0 

1 i -i 0 0 1 

1 1 -120 0 21 
141 -I 0 O- 1 

1 1 -I 0 0 1 

Case ~8 

c(i)= 1 ' ~ 2 ' ~  ".. 3 '  

' 

241 -220 O-21 
241 -220 O-21 
241 -220 O-21 

3 O 3 

C(2)= 

.. . . . . . . . . . . .  . , . .  
. . . + ; c - - - 2~ - - - -~4 .  " = 1 

1 ( 2'~-~.. ' 

111 -210  0-12  
111 -210  0-12  
111 -210  0-12  

3 3 -3  

For any such algebra C, we also have noted the coefficients of two linear 

forms ~0,~ : Ko(A[R]) ) ~ which will be of interest. Note that the restric- 

tion C of C to the support of ~ , as well as the restriction C of C to 
o 0 

the support of ~ , are tame hereditary algebras. Note that always C is obtained 

from C by a sequence of simple tubular extensions, and from C by a sequence 
o 

of cosimple tubular extensions (see [ 3 ] for the definition). We remark that the 

two algebras C and C are uniquely determined by C and that ~o,~ are, 
o 

up to scalar multiples, the usual defect forms for these algebras. We have arranged 

~0,~ + ~ . 
in such a way that ~W is just a scalar multiple of ~0 

~ 
Note that by definition dim W is obtained from w by deleting the component 

of the vertex ~. In this way, we obtain the dimension vector of an indecomposable 

A-module belonging to the preinjective component of A, and therefore W is unique- 

ly determined by dim W. Also, the explicit construction of the corresponding pre- 

injective component of A (which is a routine procedure) shows that W is a 
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separating wing module of type ~. Of course, it is also straightforward to check 

that the two linear forms <dim R,-> and 2(dim W,-) on K (A) coincide. Thus, 
o 

it only remains to be seen that proj.dim W(p) < i for all 0 • p : R ---+ W. 

In order to deal with this question, we recall that any given algebra C is ob- 

tained from a tame hereditary algebra C by a sequence of cosimple tubular exten- 

sions, and that ~ (w) < 0 in all cases. As a consequence, given any 0 # p : R-~ 

~hen W(p) is an indecomposable A[R]-module not belonging to a component of A[R] 

containing injective modules. Thus, we can invoke the dual of the following lemma: 

Lemma. Let B be obtained from a tame concealed algebra by a sequence of 

simple tubular extensions, and let M be an indecomposable B-module belonging to a 

component of B containing no indecomposable projective B-module. Then 

inj. dim M < I. 

Proof, by induction on the number of simple tubular extensions. If B itself 

is a tame concealed algebra, then there are at most finitely many indecomposable 

modules with injective dimension > 2 and all be~ng to the preprojective component. 

Now assume the result is true for B, take a ray module V in T(B,A), and let 

C = B[V,n] for some n. Given a C-module C Y, let Y' denote the maximal B-sub- 

module of Y. It is obvious that inj.dim. Y/Y' <_ 1. Now let C Y be indecomposable, 

E 2 and assume that xt C (S (i) ,Y' ) % o for some simple C-module S (i) . If S (i) is 

in fact a B-module, then also Ext;(S(i),Y') • o, since a minimal projective reso- 

lution of S(i) considered as a C-module only contains B-modules, thus Y' con- 

tains at least one indecomposable direct summand in a component of B containing a 

projective module, and therefore Y' is indecomposable and the component of C 

containing Y also contains a projective module. Now assume S (i) is not a 

B-module, and let P(i) be its projective cover. There is only one possibility for 

P(i), namely rad P(i) has to be the direct sum of V and a projective module 

(since otherwise proj. dim S(i) _< i). Thus Ext~(S(i),Y') = Extl(rad P(i) ,Y') 
I 

EXtc(V,Y') = ExtB(V,Y') , and this is nonzero only in case Hom(Y',TV) # o. However, 

this implies that Y' contains at least one indecomposable summand which is either 

in the preprojective component of B or in the component of B containing V, and 

therefore again Y' is indecomposable and the component of C containing Y is 

either the preprojective component of C or else the component of C containing V0 

This finishes the proof of the lemma. 

Remark: In all cases considered, fixing both A and R, the module W is not 

the only wing module satisfying both conditions 

<dim R,-> = 2(dim W,-) 
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and pro].-dim.W(p) < I for all o • p : R ) W. Actually, there are infinitely 

many wing modules having these properties, and all are of the same type. This shows 

that we obtain infinitely many separating tubular series in the category of all 

A[R]-modules, all being of the same type. However, for the moment, we are satis- 

fied with the single wing module W exhibited above and with the tubular series 

produced by W, since we will encounter in the next section an algorithm which pro- 

duces not only infinitely many, but actually all tubular series in the category of 

all A[R]-modules. 
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5. The elementary shrinking functor. 

We consider the set C of algebras consisting of those exhibited in the last 

section as well as their duals and given an algebra C 6 C, we construct further 

separating tubular series by using appropriate functors with values in the category 

C M- 

The functors used will be compositions of the following ones which we will call 

the elementary left shrinking functors, denoted by ~Z, and which are defined on 

the module category C£~, with C£ again in C. Always, C and C Z will be tubu- 

lar extensions of tame hereditary algebras C and (Ci) ° of the same type, and 
o 

the image ofa C£-module M under the functor ~£ restricted to C o will be ob- 

tained from the restriction of M to (C£) ° by a sequence of Bernstein-Gelfand- 

Ponomarev reflection functors [ I ], whereas the restriction of M~£ to the comple- 

ment of C will be unchanged. 
o 

We recall the relevant definitions: Given the path algebra A of a quiver Z, 

and a a sink of Z, let Z' be obtained from Z by changing the orientation of 

all arrows ending in a, and A' the path algebra of ~' By S + : A M -~ A,~ a 

we denote the corresponding Bernstein-Gelfand-Ponomarev reflection functor; it anni- 

hilates the simple A-module SA(a) , and gives an equivalence between the 

full subcategory of all A-modules without direct summands of the form SA(a), onto 

the full subcategory of all A'-modules without direct summands of the form SA,(a). 

Given an A-module V, we may extend S + to a functor a 

A[V] ~ A'[S~V] , 

+ 
also denoted by Sa 'as follows: Given an A[V]-module (AX,k Y, ~ : A V ~ Y ) AX), 

its image will be (S~X,Y,S~). Given a sink-sequence a I ..... a n of E (called 

(+)-admissible sequence in [ I ]), we denote the composition of S +al,...,San+ just 

+ 
by S 

al--.a n 

With these notations, the elementary left shrinking functors 9£ : C£ ~ ~ C ~ 

are the following functors. The algebras C, C£ are listed by the underlying quiver, 

for the relations we refer to the previous section, and the vertices of C and o 

(C£) ° are indexed in order to identify ~£. 
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Case~4 ~ 

Case ~6 

(P£ 

+ 

SI I ,  t,,l,,, 

+ 
S 1 

+ 
s I 

C£ 

1 

I"~ 2 r._.o 

i .t 

/ o  
° 

-,,...o 

2 

I 

o 

2 1 

o 

2,,..~_ " 1 ._. o 

2 ''z/ 

+ 

S11 ' I"22' 2"11 ' 1" 

+ 
S 1 

+ 

SII ' 1"22' 2"311 ' 1"22' 2"11 ' I" 

+ 

S122'2"3 

+ 

Sll,1,, ~ 

+ 
s I 

i~-- 2 ~... 
i ,4-- 2 '~-- 3 ~_...o 

i ".e- 2 "e'' 

~..... o -~--- o 
i ~  2 .~-- o +-- o 

1 ~--- 2 
i ,~___ 2 ,~'~ 3~"-'- o 
1 "<--- 2 ''~'/ 

2¢-~o 

2 ,,,~__~0 
3 

i 
1 ' ~  ~....... o 

12 "L,~ 3 "  ° 

2",;---0 
i ~ 2 '"~'---/o 

2 "JZ-/o 

3 ~..~__ 2 ,.__ i , ' ~  o 
w..... 2".---.-1 ,,z,,,-" 

0 ,r,-- 0 1.Eo.__o 
0 .r.--.-.. 0 

2 ~.._--------- 1 

3*---z ~--~o 
~"" 2" ~_~___ 1' 

1 " 

24----O 

I ~ 2 '4--.-/o 
%..-.-.. 2 ,~,//o 
"~ 3,;,I/ 

~ 1.4-.-- o 
J "~---- i qa-c'-. 0 
~ i"~'0 
--2 

. ~  i 4, 0 

~y ~-o 
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+ 
S 

2 

+ 
S l l , I , ,  

+ 
S 1 

+ 
S 1 2 2 ' 2 " 3 1 3  

+ 
S1 1,1, , i , , ,  

+ 
S 1 

+ 

$11 ' 1" 1" '  

+ 
S l l , I , ,  

C% 

1 "~'--" 2 
1 ,~. - -  2 , ' ~  
1 "~ ~'~"~--- 2 , , ~ o  

~-..~ 3 ~ "  

2 "-~---- 3 '' ~ ' ~  

1 ~ 2 " ~ ; ' o  

1 o 

1 " ' ~  2 

1 '" 

2 ~-.-- o 

~_.. 2,,~. o 
2 ,,,.~.._~ 0 

1 ' ~ 2 ' ~  ~'-  
I "~---v, 2 "  4L'~ ° 
1 "'~[/~ 2 " ,L-  

2 '~ '~  o 

11"~" 2"~-o 
~'~o 

1 3 
3 , ' ~  2 ,t"-'~ 

1 ""~--- 3 '' ~ ' ' "  

2 -,r--...~ 
3 ~ - " -  1 , ' ~  ° 

2 ~ - ~ ' 3 -  

2 "~ ~-~-- 3 " ~ " 2  ° 

2 o 

2 '' ~''/ ' ~ o  

- - 3  

1 " ~ C O  

2 " ~  1 ~ _ _ o  
2 '" o 

2 ~ 1 _  ~,,K~,b 
2 '  ~-~~ 2 " ~  o 

2 " ~ 1 '" 

2 ~-'-~ 1 ~'~--- o 
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cp~ 

+ 

$11,I , ,  2 

+ 

$II,1,, 

C Z 

1 ~---3~-/o 
I'----%'~--, o 

2~  

1.---2.--o 
1 '~.-- 2 ,~-~o 
1 "~-- z "*-- o 

3~-- i-~---o 
3 ' ~--- 1 '~---/o 

~2 ~/ 

2~--- i _~--- o 
2 ~---i 4-c. o 

//. ,,~'( 
,;~ ~- o 

A 
Note that in the cases __~'~'~'__ __ the given functor is given by the compo- 

sition of the reflection functors of all possible sinks. 

The main property of these elementary left shrinking functors relates to the 

tubular series constructed in the previous section: Recall that for any algebra 

C 6 C, we have constructed in the last section a tubular series which we will denote 

by TI, and the indecomposable C-modules not belonging to T 1 fall into two dis- 

joint classes PI' Q1 of modules such that T 1 separates from F I from QI" In 

fact, given ~,8 6 ~, let 3 = e~ O + 63 , this is a linear form on K (C). For 
a:g ~ o 

example, for ~= 6= i, we just obtain 31: I = 3 I . For arbitrary a,6 6~, let 

~ , T e , % be the set of indecomposable C-modules M satisfying ~ :6(dim M) < o, 

or = o, or > o, respectively. Also,we know that C is obtained from C by 
o 

a sequence of simple tubular extensions, thus C has~preprojective component which 

we denote by Fo, and a tubular series T being obtained from the tubular series 
o 

of all regular C -modules by ray insertions [ 3 ], and we denote by % the set 
o 

of indecomposable C-modules not belonging to ~o or To (note that ~o (dim__ M) < o 

characterizes those indecomposable modules M belonging to L' that ~o(dim M) = o 

for all M in To and that all but finitely many modules in % satisfy 

(dim M) > o). Similarly, using that C is obtained from C by a sequence of 
o -- 

cosimple tubular extensions, there is a preinjective component, denoted by ~, 

a tubular series T obtained from the tubular series in M by coray insertions, 
C 

and the remaining indecomposable module will form the set ~. Note that these sub- 

categories Py, Ty, %, with y 6 ~>o_ 0 {~} are defined for any algebra C 6 C, 

however it does not seem to be necessary to make a reference to C, since it always 

should be clear in which category C ~ we are working. 



155 

Proposition. Let , ~£ : C ~ ---+ C ~ be an elementary left shrinking functor. 

The functor ~i annihilates a finite set A of modules in Po' and induces an 

equivalence between the full subcategory of all C£-modules without a direct sum- 

mand in A, and the image category of ~Z" The image of P under ~£ is just 

~i' the image of ~ under ~Z is contained in ~i' and any tube of ~I is ob- 

tained by ray-insertion from the image of a tube in ~ under ~i. Also, for any 

y 6 ~Zo , the functor ~ induces an equivalence of ~ with ~ , where 

for e,8 6 ~. ~ = ~+S 

As a consequence, we obtain in C ~ a new separating tubu~.ar ~ik-series, 

namely T 1 (being the image of the separating tubular series ]'I in C£~). 

For any algebra C 6 C, there also is defined a correspond~_ng elementary right 

s h r i n k i n g  f u n c t o r  ~ r  : C M - - ' +  C M" N o t e  t h a t  w i t h  C a l s o  t h e  d u a l  a l g e b r a  C ~ 
r 

is contained in C, thus denoting by ~z(C*) : (C*~ M --+ C.M the elementary left 

s h r i n k i n g  f u n o t o r  f o r  t h e  a l g e b r a  C * ,  l e t  C = ( ( C ~ ) ~ )  ~ ,  a n d  ~ r  : C M "---~ C M t h e  
r 

r 
dual functor of 9£(C*). 
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6. Self-reproduction of separating tubular series 

Let I be the set of positive rational numbers, and define ~Z'gr : I ---+ I 

- = for ~,8 6 ~. by ~'~ a+8 ' 8(Pr 

Lemma. Any element of I can be written in a unique way as 19i "'" ~i ' 
i n 

with i I ..... i n 6 {£,r} . 

The proof is be induction on N(~) := ~+8, where ~,8 6~ are without common 

disisor. Note that N(yg£) = N(¥~ r) > N(y) for any y 6 I. The smallest possible 

value of N is 2, in this case the assertion is obvious. Now assume the asser- 

tion is true for any y with N(y) < m, and let N(~) : e+8 = m. If e < 8, then 

B (B-~)+~ ~-e ~£ and N( _ ) < m. Using induction, we see that ~ can be 

written as 19i I ... 9i~Z , and also that this expression is unique. Similarly, we 
n 

argue in case ~ > 8. 

Consider again any algebra C E C, and let y E I. The lemma above shows that 

= I~i I "'" ~in for some il,...,i n 6 {£,r} and it follows from the proposition 

in the previous section (and the dual assertion) that the restriction of the compo- 

site functor 

9i I "'" ~i : C ~ ) 
n in "''il C 

defines an equivalence from [i in C. ~ onto T in C ~. As a consequence, 
Y 

in---i 1 

is a tubular ~ik-series and also it follows that T separates P from ~. 
T Y Y 

In this way, we obtain for any y 6 I a separating tubular ~ik-series. 

On the other hand, we have noted above that the structure of F and T , as 
o o 

well as of T and ~, is completely known due to previous investigations. Thus, 

we only have to consider 30 A 9" We claim that 3 o ~ ~ is the disjoint union 

of all T¥, with ~ 6 I. Namely, given an indecomposable module X in 30 A 9' 

~(dim X) 
then ~ (dim X) > o, ~ (dim X) < o, thus let y o -- ~ (dim X) , then obviously X 

o -- 
belongs to T . Altogether, we see: 

Y 

Theorem i. Any algebra C 6 C of type G has the following components: 

(i) a preprojective component P (containing precisely the preprojective 
o 

C -modules). 
o 
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(2) a separating tubular ~ik-series To {obtained from the tubular series of 

C by r a y - i n s e r t i o n s ) .  
o 

(3) for any 7 6 I, a separating tubular ~ik-series T of type G (consisting 
7 

of all indecomposable modules X with ~ :8(dim X) = o, where y = ~ and ~,8 6~). 

(2) ~ a s e p a r a t i n g  t u b u l a r  ~ l k - s e r i e s  ~ o b t a i n e d  f rom t h e  t u b u l a r  s e r i e s  o f  C 

by e o r a y  i n s e r t i o n s ) .  

(i)* a preinjective component ~ containing precisely the preinjective 

C - m o d u l e s ) .  

Considering in the same way positive roots of qc instead of indecomposable 

C-modules, we see: 

Theorem 2. Let C be an algebra in C • For any indecomposable C-module M, 

the dimension vector dim M is a connected positive vector in K (C) satisfying 
o 

qc(dim M) = O o_~r I. Conversely, given a positive connected vector x i n_n Ko(C) 

with qC(x) = i, there exists precisely one isomorphism class of indecomposabl$ 

C-modules M with dim M = x. Given a positive connected vector x in K (C) 
- -  o 

with qC(x) = O, there is a one-parameter family of isomorphism classes of indecom- 

posable C-modules M satisfying dim M = x. 

Here, a vector in K (C) is said to be connected provided its support is a 
o 

connected subset of the q u i v e r  o f  C. (An example  o f  a n o n - c o n n e c t e d  p o s i t i v e  r o o t  
o l  @6 

is furnished by Iloo for the algebra C (2) of case .) 
oo 
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