The derived category of a tubular algebra

Dieter Happel and Claus Michael Ringel

Tubular algebras are rather special algebras of global dimension 2
with 6,8,9 or 10 simple modules, but their module categories seem
to be of wider interest. For a definition, we refer to [8]; we note
that typical examples are the canonical tubular algebras, these are the
canonical algebras of type (2,2,2,2), (3,3,3), (4,4,2) and (6,3,2);
a description of these canonical algebras by quivers and relations will
be recalled below. The aim of this note is to outline that previous
results of d'Este and the authors can be combined in order
to obtain a rather complete description of the derived category Db(A—mod)
of a tubular algebra A. For a definition of the derived category Db(A)

(of bounded complexes) over an abelian category A we refer to the original
article by Verdier [9]. We will freely use the notation and terminology of [8].

In a first step we note that it is sufficient to consider the case of

a canonical tubular algebra.

1. Reduction td canonical tubular algebras C

Given a tubular algebra A, there exists a canonical tubular algebra ¢

of the same type with an equivalence Db(A-mod) = Db(C~mod) of triangulated
categories.

Proof. According to [5,6], the derived category does not change under
tilting. Let A be a tubular algebra of type T. According to [8], 5.7.3,
there is a tubular extension B of a tame concealed canonical algebra, of
extension type T, and a left shrinking functor, thus a tilting functor
A-mod —> B-mod. According to [8], 4.8.1, we know that B°P is the one
point extension of a tame concealed bush algebra of branching type T by a
coordinate module. According to [8], 5.7.2, there is a canonical algebra
C' and a left shrinking functor B°P-mod —> C'-mod. Let C = (C')°P,
then C again is a canonical algebra, and of type T, and there is a
tilting functor C-mod ~—> B-mod. Altogether, we have
Db(A-mod) = Db(B—mod) Y Db(C—mod).
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2. Description of C-mod

We consider now the case of C a canonical tubular algebra, say of

type T. Actually, instead of dealing with Db(C—mod), we consider the
category a-mod, since the categories Db(C—mod) and ajggi are equiva-
lent (even as triangulated categories), according to [5,6]. Let us recall
the structure of a canonical tubular algebra and the construction of 6.
Let k be an algebraically closed field. The canonical algebras of

type (2,2,2,2) are defined by the quiver

with aa' + BB' + yy' = 0o, ao' + ABB' + 88' = 0, where A 1is some fixed
element in k~{o,1} (for different X,\', we usually obtain non-isomorphic
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of all double-infinite matrices having only finitely many non-zero entries,

on the main diagonal being from copies A(i) of A, those on the upper

next diagonal being from copies Q(i) of Q, with i € Z, and with multiplica-
tion given by the  A=-A-bimodule structure on Q, and zero composition

Q8Q — 0. The quiver A of 6, where C 1is a canonical tubular algebra,

is given as follows:
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In case C 1is of type (2,2,2,2), (3,3,3), (4,4,2), or (6,3,2), let
us denote by d the number 2,3,4, or 6, respectively,and let d' = d+1.

We denote by A the full subquiver of A given by the vertices (nd')0

3n

and (nd'+1)0, it is a copy of the Kronecker quiver. We denote by A3n+l

the full subquiver given by the vertices a., with nd'+l < a < nd'+d, and
all possible 1i; it is a subspace quiver of type T. Finally, we denote

by A3n+2
nd'+2 < a < (n+1)d', and all possible i; it is a factorspace quiver of

the full subquiver given by the vertices ass with

type T. If m < m' are integers, let Amm' be the full subquiver of A

given by the vertices in the union of all Am"’ with m <m" <m'.
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Similarly, let Amw be the full subquiver of A given by the vertices
in Am' with m <m', and A__ o the full subquiver of A given by the

* A
vertices in Am' with m' < m. We denote by c, the restriction of C to

A , and by C_, the restriction of c to A_,. Note that the algebras
m mm mm

C3n+1,3n+2 are isomorphic canonical algebras, the algebras C3n,3n+1 are
isomorphic "left squids", and the algebras C3n+2 3p+3  ATE isomorphic
"right squids” [1]; all these algebras C, ey 2re tubular of type T.

With these notations, we can collect the information available for the

category C-mod.

We fix some m € Z. Since Cm is a tame hereditary algebra, we may
speak of preprojective, regular, and preinjective Cm—modules. The m%nimal
positive radical vector of KO(Cm), considered as an element of KO(C), will
be denoted by hm. Let Tm be the module class given by all C-modules with
restriction to Cm being non-zero and regular. Let Pm be the C_w’m—modules
with restriction to Cm being preprojective, and Qm the Cm modules with

E
restriction to C, being preinjective. Then

C~mod = Pm v Tm v Qm »

Tm is a tubular family separating Pm from Qm’ being obtained from the

tubular family of Cm by ray insertions and coray insertions, and all modules

in Tm are actually Cm_l’m+l—modules.

Proof. We use [3]. Since ¢ is a tubular extension and a
bt m—1,m+]

tubular coextension of the tame hereditary algebra Cm’ the category

C ~-mod can be written in the form
m-1,m+i

- = pt t
Cm—l,m+] mod Pm v Tm v Qm

where Tm is the tubular family obtained from the tubular family of Cm by
ray insertions and coray insertions, where P& contains only Cm_l,m—modules
with restriction to Cm being preprojective, and Qé contains only
Cm’m+1-modu1es with restriction to c, being preinjective, and Tm separates
Pé from Q;. Note that the restriction of any indecomposable module in Tm
to C is non-zerc, since the simple projective Cm_l,m_l—modules belong to

P&, the simple injective C -modules belong to Q&. Thus P& contains

m-1,m1

all Cm~1 m—modules with restriction to Cm preprojective, and
b

all ¢ -modules with restriction to C_ preinjective. We obtain C
m,m+]1 m m-

' contains

1,
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from Cm—l ol by the successive one-point extensions using modules with
E

.. . oL . '
restriction to Cm—l,m+l belonging to Qm ; in this way both Pm and Tm

remain untouched as unionsof components of the Auslander-Reiten quiver,
whereas the additional modules together with those in Q& give Qm’ and Tm

separates P& from Qm. We obtain C from C by successive one-point co-

m-1,®

extensions using modules with restriction to Cm_1 - Dbelonging to P&, thus
2

now Tm and Qm remain untouched, and the additional modules together with

those in P' give P .
m m

Before we proceed, let us desribe in more detail the structure of the

tubular families Tm' They are indexed over the projective line ‘Plk, thus

\V/ T (p). Note that any indecomposable module in Tm is either
p€P]§

T-periodic or else projective-injective. First, consider the case m = 3n+l.

In this case, all but one of the tubes are stable, thus contain only C3n+1_

modules. The remaining one, say for the index p = «® 1is obtained from a

stable tube in C3n+l—mod of rank d-1 by inserting one ray and one coray.

The tube Tm(m) has a unique projective-injective vertex, and all other
vertices are stable. We indicate the shape of Tm(w) for the various cases,

)

replacing any vertex by the corresponding dimension vector in Ko(Cm_] -~
b

of course, the vertical boundary lines have to be identified in order to

obtain a tube.
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T = (4,4,2)
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In the stable category 6—mod, we obtain from Tm(m) a standard stable tube
of rank d. Consequently, in C-mod, we obtain from Tm a standard stable
tubular family of type T. In particular, all non-projective indecomposable

modules in Tm are t-periodic of period d.

The case m = 3n+2 1is similar to the case m = 3n+l; actually, the

algebras are opposite to those of the form C

C3n-1,3n+3 3n,3n+2°

So let us consider the case m = 3n. In this case all stable tubes of Tm are
homogeneous (i.e. of the form ZA_/1). For T = (2,2,2,2), there are four
non-stable tubes, everyone containing just one projective~injective vertex.
For T = (p,q,r), there are three non-stable tubes, containing p-1, g-1,
and r-1 projective~injective vertices, respectively. In the stable category
é—ggg, we obtain from the non~stable tubes in Tm four standard stable tubes
of rank 2, in case T = (2,2,2,2), and three standard stable tubes of
rank p,q,r, in case T = (p,q,r), thus again Tm gives rise, in éjggg,
to a standard stable tubular family of type T. Again we want to indicate
the shape of the exceptional tubes Tm(p). In case the stable rank
of Tm(p) is p, the modules in Tm(p) are defined over a subalgebra given

by the restriction of C to a full (convex) subquiver of the form

o
(*) 02 ... o< d::::b N

with 2p vertices (p to the left and p to the right of the double arrow),

and there are the following relations:

(*%) of = 0, Ba = 0, o

Of course, any algebra with quiver (*) and relatioms (%%), different from
the Kronmecker algebra, has precisely one non-stable tube. For example, for
the quiver (#*) with both four vertices to the left, and to the right of
the double arrow, and the relations (**), the non-stable tube is of the

following form (again, the vertical boundary lines have to be identified):
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We consider now simulteneously the various m € Z. Let Mm mtl be
b
the set of Cm m+1—modules with restriction to Cm being preinjective, and
E]
with restriction to Cm+1 being preprojective, thus
M =
m,m+] Pm+| n Qm’
and
C-mod = \V/ T v \\/ M 1
m€Z m€EZ
The categorical structure may be visualized as follows:
- [
) S -
T—1 M—},o To Mo,l Tl
N - S
P e NI 2, -

with maps only from left to right (and inside the individual module classes).

Note that the indecomposable modules in Tm have support in A those

m-1,m+1’

in M have support in A . In particular, all indecomposable

m+1
—modules have bounded support.

m, m+ |
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We remark that our account on the decomposition of C-mod into the

module classes Tm and Mm,m+1 follows closely the treatment given by
Gabriella d'Este in her Oberwolfach talk 1981 [2]. The module classes
Mm,m+1 have been described in section 5.2 of [8]. As a first invariant
of an indecomposable module X in Mm,m+|’ its index has been defined

in [8], it is an element of Q+. In our case, it seems more advisable to
consider instead the A-index, obtained from the index by changing the norma-
lisation; the A-index of a module in Mm’m+] is an element of the rational
interval Q§+l ={y€q | m<y<ml}, The definition of the A-index will be

given below.

Recall that we have denoted by hm the minimal positive radical vector
. . +1
of KO(Cm). Let dm =d, for m = O(mod 3), and = 1 otherwise. Given Y € Qz ,

say y = m + % with integers O < a < B8, let hY be the minimal positive

vector in KO(C) which is a rational multiple of (B—a)dmhm + adm+]hm+l'

[Note that this definition of hY differs in two ways from that in [8].
First of all, v is renormalized, as mentioned above, it is the A-index of hY.
Second,our minimality condition implies that the coefficients of hY are
relative prime; in contrast, in [8] «o,8 were supposed to be relative

prime, and then Bh +ah was considered.]

+1

On Ko(é), there is defined the usual bilinear form <-,-> by

<e(a),e(b)> = (1) Ydim Ext (B (a),EMD)),

‘Z
120
where E(a) is the simple C¢~module corresponding to the vertex a of A,

and e(a) = dim E(a). Note that the sum is indeed finite, since the restriction
of C to any_finite subquiver of A has finite global dimension, and we can
evaluate Extl(E(a),E(b)), by restricting to any full convex subquiver con-
taining both a and b. The corresponding quadratic form is denoted by i,
thus %(x) = <x,x>. For any vy € @, we denote by IY the linear form

1 o= <hy,~> : KO(C) — Z. Also, let C_ be defined as follows: For

¥
_ F m+ 1 . =
Yy =m€Z, let Cm =C 1 and for vy € Qm with m € Z, let CY Cm,m+1'

m1
With these notations,let

K (C) =K (C)N Ker 1_.
0( )Y o( Y) er 1,

For vy ¢ Z, define Ty as the module class given by the indecomposable

C-modules X with dim X € Ko(e)y. Thus, if vy € Q:+I {(with m € Z),
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then TY is given by the indecomposable Cm m+1—modu1es X with <hy,dim X> = 03
b4
and we call these the Cp ey modules with A-index vy. Then, [8] asserts that
Mm,m+l = \\\// TY’
eQm+1
LA™

and that TY is a standard stable tubular family of type T, and is controlled
by the restriction of ¥ to Ko(a)Y. Also, TY is separating, and it sepa-
rates P from where

Y %’

(+) P =\\J/ TB , QY =\\J/ T6 .

v<$

[According to [8], TY separates PY nc mod.

’m+]—mod from QY n Cm,m+1-

Using the separation property of Tm and Tm+1, it easily follows that TY

separates P from .
P Y QY ]

Altogether, we see that

a-mod =\\// T

veg ¥

where all TY are separating tubular families, separating PY from Qy,
with PY and Q_Y given by (+), and that the stable tubular type of any TY

is .

We should add the following remark. By definition, for vy € Z, the module
class TY is given by all indecomposable C-modules X with dim X € Ko(é)Y.
If y=m€Z, and X 1is an indecomposable module in Tm, then clearly
dim X € KO(C)m ; however, not all indecomposable C-modules X with
dim X € KO(C)m will belong to Tm’ one needs in addition the condition that
the restriction of X to Am is non~zero. (For example, E(21) is a

Eo—module and satisfies <ho,dim E(21)> = 0, however, E(Zl) belongs to TI/Z)'

We end this section by determing the position of the simple C-modules.
This will be needed in section 4, and it also gives a reason for the chosen
normalization of the A-index. Note that for any simple C-module E, there is

precisely one integer m such that E has support in Am na (For the

m+1 "
vertices (nd')o, take m = 3n-1, for (nd'+l)g, take m = 3n, and for the

vertices a; with nd'+l < a < nd'+d, take m = 3n+l).
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Lemma: Let E be a simple C-module, with support in Am n Am+

i

Then E considered as a G-module, belongs to TY with y = m+-.

0.

#

Proof. One only has to verify that <hm+h

m+1,dim E>

We have obtained in this way an explicit description of é-mod, and there~—
fore also of C-mod. All components of C-mod are stable tubes of rank a

divisor of d, they form separating standard P k-families of type T, and the

i
set of these families may be indexed over (, in a rather natural way. Since
Db(C—mod) a3 6—mod, this could finish our investigation. However, the description

of Db(C-mod) outlined above is given in terms of KO(C), and it seems advisable

to use more intrinsic invariants.



167

3. The additive function dimA on A-mod.

Consider an arbitrary finite dimensional algebra A. The algebra A has
countably many subalgebras A(i) isomorphic to A, and given a vertex a
of A, we denote by a(i) the corresponding vertex of A(i). In this way
we obtain all vertices of A. In partic?lar, KO(K) = igiz KO(A(i)). We
identify A with A(o). We denote by v the canonical shift isomorphism,
sending A(i) to A(i+1), thus a(i) to a(i+l). It induces a self-equi-
valence on A—mod, again denoted by 3. Given a vertex b of A, denote by
ﬁ(b) the indecomposable projective A-module with top the simple A-module
corresponding to b, and let ﬁ(b) = dim ﬁ(b). Note that %(b) is also an
indecomposable injective g—module, and its socle is the simple A-module
corresponding to v-]b. Since sﬁ(b) = %(;b) for all vertices b of 3,
it easily follows that v is the Nakayama functor for A. We denote by P(A)
the subgroup of KO(A) generated by the dimension vectors p(b), with b
a vertex of A. 1If we denote by pA(a) the dimension vector of the indecom-
posable projective A-module with top corresponding to a, and by qA(a) that
of the indecomposable injective A~-module with socle corresponding to a, we

have

3L S(a(i)) = qA(a)Si“ + pA(a)Qi )

(Applying v to an element x of KO(A), we write v to the right of xj
since we think of x as a row vector.)
Assume now the Cartan matrix CA of A is invertible over Z (for

example, this is satisfied in case gl.dim.A<x)., Recall that the columns

of C, are given by p (a)T, the rows b (a), and that for an invertible
A MY

A
Cartan matrix CA’ the Coxeter matrix is defined by @A = -CATCA. First,
we note that under our assumption of CA being invertible,

3.2. K, (B) = K (4) 8 P(&)

(For, using 3.1 for i > 1, we see that all these GlpA(a) belong to
K (&) + P(A), therefore K (A(i)) €K (A) + P(A). Using 3.1 for i <o,

it follows that all Gl—lqA(a) belong to KO(A) + P(R), therefore
KG(A(i—l)) o KO(A) + P{A).) Next, we observe the following:

3.3. For any x € KO(A) and all i € Z, we have wh = x¢;(mod PA)).
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Proof: Since P(&) is stable under Vv, we obtain from v a linear
automorphism of KO(A)/P(A) = KO(A), which we denote by v. Since v and
@A are linear automorphisms, it is sufficient to consider the case i =1,
and that x = pA(a) for some vertex a of A, But 3.1 gives
Py @)V = -q,(a) = p,(a)¢,.)

We denote the projection of K (A) onto K (A) with kernel P(A) by "A’
and given an A—module X, let d1m AX (dim X)W . Note that éiﬂé vanishes
on all projective A—modules and takes values in K {(A). Also note that éiEA
is an additive function on the stable Auslander- Relten quiver of A. Let I
denote Heller's suspension functor on A—mod, thus ILX & I/X, where I 1is an

injective envelope of X.
3.4, For any A-module X, we have dlm IX = ~d1mAX

(For, let IX = I/X, with I an injective (= projective) A-module. Use the addi-
tivity of dimA on exact sequences and that dimAI = 0). Combining 3.3

and 3.4, we obtain:

3.5. For any g-module X, we have dimA;X = dimA;X = (dimAX)¢A.
(Proof: It is well~known that T = 2_26, see [4], thus
. A~ . AL-2~ . A . . AX
dim™tX = dim & "vX = dim vX, according to 3.4, Since dlm vX dim X)v,

we can apply 3.3 and obtain the second equality).

The last assertion seems to be remarkable since it shows that up to P(A),
we can determine the dimension vector of 1X by using the Coxeter trans-—
formation ¢A of A, without any further restriction. For A of finite
global dimension, we will give a different interpretation of this result,

at the end of the paper.
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4, Description of C-mod in terms of dimC.

We return to the case of the canonical tubular algebras C. As above,
we identify C with C(o), and denote by Xg the usual quadratic form on
K (C); of course, this is just the restriction of X to KO(C). We

consider the projection 17, : Ko(é) ~w»-KO(C) with kernel P(C).

C

4.1. If x,y € K (C

o m,m+1) for some m € %Z, then

KW YTL> = <K, ¥>.

Proof. The case m = 1 1is trivial. Let us consider the case m = 0.
For any x € Ko<col)’ the difference x-xr, is an integral multiple of

= yop((d+1)o), with X sY, € Z.

C

p((d+l)o), say x-xm, = xop((d+1)o), and  y-ym,

For any C-module M, we have
<§((d+1)0),dim Mo = dim Hom(P((d+1) ),M),

since %((d+1)0) is projective. Thus <§((d+l)o),y> =0 for all veg Ko(col)'
Similarly,

<dim M,g((d+})o> = dim Hom(m,ﬁ((d+1)o),

for any C-module M, since §((d+l)0) is injective. Thus <z,§((d+1)o)> =0

for all =z € Ko(C}Z)’ Thus

<X,y> = <X +xop((d+1)o),ywc+yop((d+1)0)>

C
= <EmoLYTL> P <xxc,p((d+1)0)> +xb<p((d*1)0,y>

= <XTTC ayﬂ'c:’

This finishes the case m = 0. Dually, the case m = 2 also holds. The
general case now follows using 3.3: Let m = 3n+#t with O <t < 2, n €%,

and x,y € K (C Then xv °, yv " € K (C Since <-,-> 1is

m;m+l)' t,t+])'

v-invariant, and the restriction of <-,-> to KO(C) is @C—invariant,

we have

n n -1 -n_
<KV LYV > = <XV mL,YV T

[}

<X,y>

]

-n -n_ _
<wa®C ,yﬁcéc > = <ch,yﬂc> s
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this finishes the proof. As a direct consequence, we obtain

4.1%. The restriction of T to X (¢ ) 1s an isometry from

. o “m,m+l
(R, (C e) X LK€ 1)) onto (R (C),x.)-

Proof. The surjectivity follows directly from the form of the elements

ﬁ(a) which generate the kernel P(é) of Moo Since KO(C } and
K (C) have the same rank, the restriction of 7 to K (C
o C o m,mtl

m,m+1
Y 1is an

isomorphism, thus an isometry according to 4.1.

c _ c_ _cC ) _ c
Let hY = hyﬂc,l = <hY’ > ¢ KO(C) —> L, and KO(C)Y = Ker 1Y. we

Y
easily verify:

c c c _ 1
Paper = B By = by hg = - g(hythy)

(for n = o, the first two equalities are trivial,the third is an easy cal-
culation. The general case follows from 3.3, using the fact that both h]

and h are ¢ -—invariant). Since T, ™Waps KO(C ) 1isomorphically

2 C m,m+]

onto KO(C), it follows that for Y o= m-*%u with integers m,o,B,
0 < a < B, the vector hi is the minimal element of KO(C) which is a
positive rational multiple of (B~a)dmh; + adm+]h$+]. In particular, all

[ . C
hY belong to the radical radxc of Xg Note that hY = hY+3 for all
y € @, and that any non-zero element of radXC can be written in a unique
way as a positive integral multiple of some hg, with 0 < y < 3. It seems

convenient to visualize the plane radXC as follows:

h
.
(1<y<2) e

We recall that @C has order d, and given x € KO(C), we denote
d-1 i
O{x) = T x@c. Since O(x) is @C-invariant,it belongs to radxc. Let
i=o
KO(C)O the set of elements x € KO(C) with 0(x) = 0. Note that KO(C)O
is a linear subspace of dimension 4,6,7, or 8, respectively (it is the

d-1 .
kernel of the surjective linear map 0 = X ¢é : KO(C) — radxc). Recall
i=o

that an element x of KO(C)0 is called a root of Xc provided xc(x) = 1.
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4,2. All roots of Xc lie outside of KO(C)O.

Proof. Let x be a root. We can write x in the form y + uh, + vh3/2
with u,v € Z, and y vanishing on the vertices dl and (d+1)o~ With x
also y 1is a root, and we claim that O(y) € d'radxc =Zdh, + Zdh3/2.

Since O(h]) = dh, O/h:,”,2 = dh3/2, it then follows that

0(x) ¢ d-radxc, in particular, 0(x) # 0. Let A' be the full subquiver

of A] obtained by deleting the vertex d!, thus A" 1is of the form

D4’:Eﬁ’ E7, or ES’ respectively, and y 1is a root for A', In particular,
the absolute valueof the coefficient y(lo) of y at 10 is bounded by d.
Given a vertex x of A", denote the corresponding base vector by e(x).

Note that O(e(lo)) = - hl’ and O(e(x)) = h3/2 for the remaining vertices x

of A'. It follows that O0(y) = - y(lo)h] + wh3/2, where w= I y(a).
a#*l
. o
Thus, if 0 # !y(lo)z < d, then O(y) € d'radxc. If 2y(10)) = d, then we
consider the root z =7y - y(lo)hl’ and it is sufficient to show that

0(z) ¢ d'radxc. Thus, consider a root 2z with support in A1 n AZ' Since

A! n A2 is the disjoint union of quivers of the form ‘&S’ with s < 5, and
1 n éz, it follows that
0(z) = wt13/2 with w =2 z(a), and 1 < |w| < 5, thus also in this case

0(z) ¢ d*rady,. a

since O(e(x)) = h3/2 for all vertices x € A

4.3. K (€)= {x € K (O | <y,x> = 0 for all vy € rady }.

Proof., Let x € KO(C), with <y,x> = o for all y € radxc. Then

i i . . . .
¢ = <y,x¢c>, since <-,~> is @C—lnvarlant and

y@c =y for y € radxc. Thus <y,0(x)> = 0o for all vy € radxc. However,

0 = <y,x> = <y¢é,x¢

0x) € radxc implies that 0(x) = o, since <-,-> 1is non-degenerate on
- 42 .
],h2> = d%), therefore x € KO(C)O. Since
both spaces KO(C)o and {x|<y,x> =0 for all y € radXC} have codimension 2,

radxc (for, <hy’hY> = o0, and <h

it follows that we have equality.

Let 1C = <hC,—> : K (C) —Z, and K (C) = Ker 1C. This a family of
Y o o Y Y

Y .
. . ¢
hyperplanes of KO(C), with I(o(C)Y = Ko(c)y+3/2' Tt hY \
linearly independent (thus, if Y-8 1is not an integral multiple of Eﬁ, then
. +
KO(C)Y n KO(C)5 = KO(C)O, according to 4.3. Also,let KO(C)Y be the set of

elements x of KO(C) with O(x) a positive multiple of hg. We have

and hC are

KO(C); = KO(C)g provided Y-8 1is an integral multiple of 3. We obtain in

this way a decomposition of KO(C) into pairwise disjoint subsets

+
K (C) = KO(C)O v U KO(C)Y .
o<y<3
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+ +
4.4. For any Yy € @, we have KO(C)Y = KO(C)_Y u KO(C)O V] KO(C)Y'

. c i C.i _.1i C
Proof. Given x € Ko(c)y’ then <hY,x¢C> = <hy®c,xéc> = <hy,x> = 0,

thus with x also 0(x) belongs to Ko(c)y' However, KO(C)Y n radxc is
the subgroup generated by hs, therefore 0(x) is a multiple of hs.

Conversely, we know already that K (C) < X (C) . Thus, let O(x) be a
non-zero multiple hc. If <hC ,xg wguza Ee zZro, then by the previous

v+1
consideration, 0(x) is a multiple of h$+1, impossible. Thus, there are

integers u,v with u # o and <uhC+vhC  ,x> = 0. Now, uhC + vhc is
Y oytl ¢ Y Y+l
a nonzero element of radxC, thus a multiple of some hG' The consideration

above shows that 0(x) is a multiple of hg, thus hg = ihs, and therefore

<t’,x> = 0.
Y

In order to determine the structure of (Ko(c)y’XC| Ko(c)y)’ we use the

following consequence of 4.1 and 4.1":

4.1" For any vy € @, the map T, Waps Ko(é)Y onto K(C)Y’ and this

is an isomorphism and an isometry (with respect to the restrictions of ¥

and XC) in case v ¢ Z.

4,5. For any vy € 0, the restriction of X; to Ko(C)Y is the radical

product : Xg of t quadratic forms of type E; s 1 < s < t, where
s

-1
T = (nl,...,nt).

; . m+ ]
Proof. We may assume vy § Z, since KO(C)Y = KOEC)Y+3/2° ALet Y € Qm .

According to [8], we know that the restriction of ¥ to KO(C)Y =
K (C ) N Ker 1 is of the stated form, thus the same holds for the
o m,m+] Y

restriction of Xg to Ko(c)y’ according to 4.1".

4.6, Let vy € @, and X a non-projective module in Ty. Then
dim®x belongs to KO(C):.

Proof. Since dimc is additive, and vanishes on projective modules, we
can assume that X 1is indecomposable. We use the equality dimC%X = (dimCX)d>C
established in 3.5. If the component containing X does not contain an indecompo-

d-1 .

sable projectivemodule,then X dim X is a positive integral multiple of hy.
i=o0

Thus, assume Yy € Z, and that the component containing X contains the inde-

~

composable projective modules Pl""’Ps’ say with dimension vectors ﬁi = dim Pi’
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s
and let p= I P A glance at the various possible cases immediately
i=1
d-1 N
yields that always X dim 7 X - p is an integral multiple of hy.
i=o

A

(Actually, it is sufficient to check this for X = rad PI’ and then to use
induction on the distance from the mouth of the tube). Application of e
gives the desired result.

For vy € Z, we now can formulate precisely in which way dimc and Xe

control T .
Y

4.7. Let vy €Z. The map dimc maps the set of indecomposable modules
in TY onto the set of roots and radical vectors in K (C) For any
root x in K (C) v’ there is precisely one 1somorphlsm class of 1ndecomposable
modules X in TY with EEE;X x. For any radical vector x in K (C)
there is a one-parameter family of indecomposable modules X in TY w1th

dimCX =

Let us define an increasing map o : § — @ by

B-a
m+l + T 0 <2 <8
o(m+%} = for
m+2+§z:g 0<o<B <2

where m,0,8 € Z, B # o. Note that o(m) = m + % and G(m'+%Q = o(m+2).

The reason for introducing this map is the following property:

4.8. th - - hg, for any vy € Q.
C 4 1 t 1 —_
Proof. Denote dmhm by hm’ and note that hm + hm+] + hm+2 = (8, and
v ] — - [ 1 .
h hm+3 for all m € Z. Let h(m,a,B) = (B ot)hm + ahm+1. First, let

O < 20 < B. Then

h(m,a,8) + h(m+1,B~a,28~3a) = (B—a)h% + ah&+l + (B—Za)h;+] +(B—a)h$+1

= (B—a)h& + ah&+l + (B—ZQ)h‘ + (B*a)(—h'—h' )} =0.

m+!



174

Similarly, for O < a < B < 2a,
- - 1 - '
h(m,a,BR) + h(m+2,2a-8,3a-8) = (B a)hé-+ah$+l-+ahm+2 + (20 B)hm+3
- — ' ' ittt _ L.
(B a)hm4-uhm+l-+a( hm hm+])+-(2a B)hm 0.

Note that for vy = m + %— with m,a,B €Z, O <o < B, and B * O, the vector
h.  is the minimal vector in K (C ) which is a positive rational multiple
Y o m,mt+l

of (B-—ot)dmhm + udm+lhm+1' Since T, maps Ko(cm,m+1

KO(C), the vector h$ is the minimal vector in KO(C) which is a positive

) 1isomorphically onto

rational multiple of h(m,0,B). The assertion now follows from the calcu-

lations above.

The mapping o can be used in order to express the shift given by
Heller's suspension functor. Given a module class X in a—mod, we denote

by X the corresponding object class in C-mod.

4,9, For any vy € Z, we have Z(Iy) = Icy'

Proof. It is sufficientAto show Z(I&) c IOY, since o 1is invertible
and ¥ a self-equivalence on C-mod. Consider first the case vy = m € Z.
Let X be an indecomposable non-projective module in Tm. If E is a
simple submodule of X, then its support must lie in Am—]’ according to the
lemma at the end of section (1) (and using the fact that Hom(Td,Tm) =0

for § > m). Thus, the support of the injective envelope of X, and also

the support of X, have to be contained in Am—l 2" Assume IX belongs
s
to T_,. Since the simple C -modules belong to the T, with
B 1 1 3 m—1,m+2 5 8
§ =m -~ 5> M T 5 WH S, m o+ 5, we must have B8 <m + 5 Of course, also

m

in

£. On the other hand, according to 3.4, dimCZX = -dimCX, thus

d-1 c 1 d-1 c i
L @dimIX)e; = - I (dim e,
i=o i=

is a positive multiple of —hi = hgm. It follows that the difference of 8

and om =m + %— is an integral multiple of 3. Since in addition we know

that m < B < m + %—, it follows that B8 = om.

.. . + .
A similar argument works in case vy ¢ Z. Let vy € QE ], and X inde-

composable in TY. The socle of X has support in Am, thus the support
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7 .
,m+3” Let X belong to TB’ thus B < m + 5. Since

any indecomposable injective module I with Hom(X,I) * o belongs to some

of X dis in A
m

TG with § > m+l, we see that m+l < B < m + %. As above, the difference
of B and om has to be an integral multiple of 3, and now m + % <om <m + gn
Again, it follows that the only possibility is B = om.

Of particular interest is the case Y = m € Z, since it provides us with
the description of Im in terms of roots and null-vectors, similar to that
in 4.7. 1In this way, we can extend 4.7 to all vy € @ (of course, we also
may use a case-by-case investigation, using the structure of the non-stable

tubes as exhibited in (I1).

Theorem. Let Yy € §. The map giQF maps the set of indecomposable non-
projective modules in TY onto the set of roots and radical vectors in
KO(C);. For any root x in KO(C):, there is precisely one isomorpgism class
of indecomposable (and non-projective) modules X in TY with dim'X = x.
For any radical vector x 1in KO(C);, there is a one—parameter family of

indecomposable (and non-projective) modules X in TY with dimCX = X.

Proof. We only have to consider the case vy = m € Z. We use the Heller

suspension functor £ which gives an equivalence of T and T =T .
—m —om om

According to 3.4, there is the following commutative diagram

é‘{
Q
=]

dim l dim
K (©F —— k(@
o ’m o ’om
Of course, the map -1 1is an isometry from (KO(C),XC) to itself, and it

+ + .
maps KO(C)m onto Ko(c)om' Since om € Z, we can apply 4.7 to Tcm’
and the assertion for Tom carries over to the corresponding assertion

for T .
—m

. . “ . . C .
We can visualize the category C-mod in terms of dim as follows, using

the plane radxC as index set:
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\ M3R+ 1, 3n+2 /

TW\ / o
=
M3n+l,3n+2 M3n+2,3n+3
3
T3n
&

Also, we indicate the shape of the support of Tm and M

-~ oy
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5. The derived category Db(C~mod)

Consider again an arbitrary finite dimensional algebra A. It has been
shown in [6] (and is easy to see) that we can identify K {A) and the
Grothendieck group K (D (A~mod)) of D (A~mod) as a trlangulated category.
(The Grothendieck group of a triangulated category A is given by F/R,
with F the free abelian group with basis the set of isomorphism classes
[X] of objects X of A, and R the subgroup of F generated by the
elements [X] - [Y] + [Z], where X > Y > Z > TX 1is a triangle in A).

Given an object X' in Db(A~mod), we denote by dim X* the corresponding
element in K (D (A-mod)) = KO(A). Note that there is a canonical embedding
of A-mod into D (A-mod) (as the full subcategory of complexes concentrated
in degree zero), and the vestriction of dim to this full subcategory coincides
with the usual dimension vector function. Also, for an arbitrary complex X-,
we have dim X* = I (—1)i dim Xi.

i

Assume now that A has finite global dimension. In this case, it has
been shown in [6] that Db(A—mod) and A—Egg_are equivalent as triangulated
categories, and that there exists such an equivalence n which is the identity
on A-mod (embedded into Db(A—mod) as the complexes concentrated in degree
zero, and embedded into A-ggg as A(o)-mod). There is the following commu-

tative diagram

D (A-mod) -m*v-——~+ A-mod

X,

K, &)

Proof. Both dim and gigé coincide on A-mod with the usual dimension-
vector function. Any object in Db(A-mod) can be obtained by forming successive
mapping cones, starting from objects in A-mod. Therefore, it is sufficient
to show that éigé is additive on triangles. However, the triangles in
A-Egg are obtained by starting with a map X — Y, and an injective envelope I

of X in A-mod, and forming an induced exact sequence in A-mod

0 X I X 0
l \
0 Y z X 0
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Then, X»>Y » 2 » ZX 1is a triangle in A-mod, and the lower exact sequence

gives

din'z = diny + dim’Ix

i’y - dinfx.

— -~ . . C
As a consequence, we see that the description of C-mod in terms of dim
as given in (3) 1is just the description of Db(C—mod) in terms of dim,

and this is the description which we were aiming at.

We add a remark concerning Auslander-Reiten triangles in Db(A—mod), where

A 1is a finite dimensional algebra of finite global dimension. A triangle

u v w
X* —> Y* ——> Z° —> TX" 1in Db(mod A) is called an Auslander—Reiten triangle

provided X°,Z' are both indecomposable, w % o, and the following equivalent
conditions are satisfied: (i) for all f : X' — V°, f not split mono,
there exists f£' : Y* — V* with uf' = £} (ii) for all g : W — Z°,

g mnot split epi, there exists g' : W — Y with g'v = g; (iii) for all
hl H Ui - 2, h] not split epi = h]w = 0, and (iv) for all Ahz : TX* — U,
h2 not split mono = wh2 = 0. The Auslander~Reiten sequences in A-mod give
rise to Auslander-Reiten triangles in A—ggg, and therefore in Db(A—mod).

In this way, the existence of Auslander-Reiten triangles in Db(A—mod) has
been established in [6]. However, we also may copy the existence proof for
Auslander-Reiten sequences, as outlined in [4], in order to show directly the
existence of Auslander-Reiten triangles in Db(A-mod), and, at the same time,
obtain the pumerical criterion of 2.5.

There is a natural transformation ay D Hom(Y,~) —> Hom(-,vY), where v
is the Nakayama functor, and D the duality with respect to the base field Kk,
such that ty is invertible, in case Y 1is projective. An object in
Db(A—mod) can be written in the form P*, where P* 1is a bounded complex
of projective A-modules. Now assume P* 1is indecomposable in Db(A—mod), and
let ¢ € D Hom(P',P") be a non-zero linear form on Hom(P',P') = End(P*)
which vanishes on the radical rad End(P*,P*). We consider the image aP.(@)
of ¢ under Gp.s it is a non-zero map P'—> VP' which has the following
properties: Given an indecomposable object X' in Db(A-mod), and a non-
invertible map £ : X' —> P°, or a non-invertible map n : vP*— X', then
EaP.(w) =0, or a,.(p)n = o, respectively. Let C(T-]aP,(m)) be the mapping
a, (o)

(o)) ———>-P'———-12-—---————> vP*

cone of T_laP.(w). It follows that T_]vP' «wﬁ‘C(Tmla

is an Auslander-Reiten triangle.

P
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We denote T—lvP’ by tP°. We have dimAvP’ = (dimAP')C;TCA therefore

dim e = dinT VP = -dinpr = - (dimAP')C;TCA - (dimAP')@A.

Appendix: The category T(C)-mod.

Our investigation of a-mod also establishes the structure of the category
T(C)-mod, where T{(C) 1is the socalled trivial extension of C. We recall
that T(C) = C ¢ has the additive structure C & Q, and the multiplication
is defined by the formula (cl,ql)(cz,qz) = (CICZ’CIQZ+?IC2)’ for CpsCy € C,
?1,q2 € Q. Alternatively, T(C) may be considered as C/v. Here, we consider
C not as an algebra, but rather as a locally finite-dimensional k-category,
and a/v is the quotient in the category of all locally finite-dimensional
k-categories,see [10]. Since the indecomposable a-modules have bounded support,
and Vv acts freely on the set of isomorphism classes of indecomposable a-modules,
it follows that T{(C)-mod can be identified with 6—mod/v. (This was pointed
out by G. d'Este in [2]y for a recent general account, see [I1]). As a
consequence, the indecomposable T(C)-modules are in one-to-one correspon-—

dance with the indecomposable é-modules X in Ty, with 0 <y < 3.

Note that the algebras T(C) have the following property: given any Auslander-—

Reiten sequence

Q > X o> Y > L —==> ()

in T(C)-mod, then the middle term Y 1is the direct sum of at most two indecompos-

able direct summands.
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