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Tubular algebras are rather special algebras of global dimension 2 

with 6,8,9 or 10 simple modules, but their module categories seem 

to be of wider interest. For a definition, we refer to [8]; we note 

that typical examples are the canonical tubular algebras, these are the 

canonical algebras of type (2,2,2,2), (3,3,3), (4,4,2) and (6,3,2); 

a description of these canonical algebras by quivers and relations will 

be recalled below. The aim of this note is to outline that previous 

results of d'Este and the authors can be combined in order 

to obtain a rather complete description of the derived category Db(A-mod) 

of a tubular algebra A. For a definition of the derived category Db(A) 

(of bounded complexes) over an abelian category A we refer to the original 

article by Verdier [9]° We will freely use the notation and terminology of [8]° 

In a first step we note that it is sufficient to consider the case of 

a canonical tubular algebra. 

I. Reduction td canonical tubular algebras C 

Given a tubular algebra A, there exists a canonical tubular algebra C 

~fthe same type with an equivalence Db(A-mod) ~ Db(c-mod) of triangulated 

categories. 

Proof. According to [5,6], the derived category does not change under 

tilting. Let A be a tubular algebra of type T. According to [8], 5.7.3, 

there is a tubular extension B of a tame concealed canonical algebra, of 

extension type ~, and a left shrinking functor, thus a tilting functor 

A-mod > B-mod. According to [8], 4.8.1, we know that B °p is the one 

point extension of a tame concealed bush algebra of branching type T by a 

Coordinate module. According to [8], 5.7.2, there is a canonical algebra 

C' and a left shrinking functor B°P-mod > C'-mod. Let C = (C') °p, 

then C again is a canonical algebra, and of type T, and there is a 

tilting functor C-mod ..... > B-mod. Altogether, we have 

Db(A-mod) ~ Db(B-mod) ~ Db(c-mod). 
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2. Description of C-mod 

We consider now the case of C a canonical tubular algebra, say of 

type T. Actually, instead of dealing with Db(C-mod), we consider the 

category C-mod, since the categories Db(C-mod) and C-mod are equiva- 

lent (even as triangulated categories), according to [5,6]. Let us recall 

the structure of a canonical tubular algebra and the construction of C. 

Let k be an algebraically closed field. The canonical algebras of 

type (2,2,2,2) are defined by the quiver 

with ~' + BB' + yy' = o, ~' + XBB' + 66' = o, where X is some fixed 

element in k~ {o,I} (for different X,X', we usually obtain non-isomorphic 

1 l X and X~l algebras, the only isomorphisms are for X' = I-X, ~ ' I-X ' X-I --_ )" 

The canonical algebras of type (p,q,r) are given by the quiver 

¢~2 C~p-1 

(~i B2 ~ ~p 
O ... O~ 

Y Y 
2 r-i 

with ~p~p-I "'" ~I + flqflq-I "'" Bl + YrYr-I "'" YI = o ; the only tubular 

ones are those of type (3,3,3), (4,4,2) and (6,3,2). Given a finite 

dimensional algebra A, with Q = Hom(A,k), considered as an A-A-bimodule, 

Hughes - WaschbHsch [7] have introduced the (infinite dimensional) algebra 

= I 
Q°" "'° 0 

A(i-l ) Q(i) 

A(i) Q(i+l) 
Go 

A(i+l) " 
° 
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of all double-infinite matrices having only finitely many non-zero entries, 

on the main diagonal being from copies A(i) of A, those on the upper 

next diagonal being from copies Q(i) of Q, with i 6 Z, and with multiplica- 

tion given by the A-A-bimodule structure on Q, and zero composition 

Q@ Q > 0. The quiver A of C, where C is a canonical tubular algebra, 

is given as follows: 

21 51 

¢ 0o~'~--" o ~  2 3 / 3 o ~ ' - "  4 ; ~ .  53/~'~ o~'--~ 7o~-- 

24 54 

h / 21.~¢__ 31 
C 

/ o o~21~__ - 33 j o~,~ 

61~ 7 1-~,,,... z----., 1,-/ 
62"4--- 72 8o'~--.-- 9o..,.. 
634--- 73 

/ 21~'-- 31 ( 41 
\ ~---~ ¢x.X ~-~ . 

-'- ~0o~._.. 1 o ~ 32 • 5o-~_... 

~"x23~-- 33- 43/ 

7 < 8 ~ 9 

-" 82 (: 10o~.._ •.. 
6° ~x~x73 ~ 83 ~ 93 j 

~ /21~-31~-414-51~--61~ 

-- 0oX.__1 1 ( 42 / 

53J...- 33+-.---- 

9 1 7 ~ 8 (  I'¢~--101"¢"- 1 1 < - ' 1 2 1 ~ ' -  

- 112-: ... 
103 ( 123'~" 

In case C is of type (2,2,2,2), (3,3,3), (4,4,2), or (6,3,2), let 

us denote by d the number 2,3,4, or 6, respectively, and let d' = d+l. 

We denote by A3n the full subquiver of A given by the vertices (nd') ° 

and (nd'+|)o , it is a copy of the Kronecker quiver. We denote by A3n+! 

the full subquiver given by the vertices a., with nd'+!< a < nd'+d, and 

all possible i; it is a subspace quiver of type T. Finally, we denote 

by A3n+2 the full subquiver given by the vertices ai, with 

nd'+2 < a < (n+l)d', and all possible i; it is a factorspace quiver of 

type T. If m J m' are integers, let Amm , be the full subquiver of A 

given by the vertices in the union of all Am,,, with m J m" J m'. 
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Similarly, let A be the full subquiver of A given by the vertices 
m~ 

in Am, with m < m', and A the full subquiver of A given by the 
- -~,m 

vertices in Am, with m' j m. We denote by C m the restriction of C to 

Am, and by Cmm, the restriction of C to Amm'" Note that the algebras 

C3n+i,3n+ 2 are isomorphic canonical algebras, the algebras C3n,3n+ ! are 

isomorphic "left squids", and the algebras C3n+2,3n+ 3 are isomorphic 

"right squids" [|]; all these algebras Cm,m+ I are tubular of type ~. 

With these notations, we can collect the information available for the 

category C-mod. 

We fix some m E Z. Since C is a tame hereditary algebra, we may 
m 

speak  o f  p r e p r o j e c t i v e ,  r e g u l a r ,  and p r e i n j e c t i v e  C - m o d u l e s .  The min imal  
m 

p o s i t i v e  r a d i c a l  v e c t o r  o f  Ko(Cm) , c o n s i d e r e d  as  an e l e m e n t  o f  Ko(C),  w i l l  

be d eno t ed  by h . Le t  T be t h e  module  c l a s s  g i v e n  by a l l  C-modules  w i t h  
m m 

r e s t r i c t i o n  to  C b e i n g  n o n - z e r o  and r e g u l a r .  Le t  P be t h e  C -modules  
m m -~,m 

w i t h  r e s t r i c t i o n  to  C m b e i n g  p r e p r o j e c t i v e ,  and ~m t h e  C -modu les  w i t h  
m~ ~ 

restriction to C being preinjective. Then 
m 

C-rood = Pm v Tm v % , 

Tm is ..... a tubular family separating Pm from ~m' being obtained from the 

tubular f a m i l y  of  Cm by r a y  i n s e r t i o n s  and e o r a y  i n s e r t i o n s ,  and a l l  modules  

i__nn T m are actually Cm_l,m+l-mOdules. 

Proof. We use [3]. Since C is a tubular extension and a 
m-l,m+] 

tubular coextension of the tame hereditary algebra Cm, the category 

Cm_l,m+l-mod can be written in the form 

P' V T v Cm-l ,m+l-m°d = m m 

where T is the tubular family obtained from the tubular family of C by 
m m 

-modules ray insertions and coray insertions, where P'm contains only Cm_l, m 

with restriction to C m being preprojective, and ~ contains only 

Cm,m+1-modules with restriction to Cm being preinjective, and Tm separates 

P' from ~. Note that the restriction of any indecomposable module in T 
m m 
to Cm is non-zero, since the simple projective Cm_1,m_1-modules belong to 
p, m' the simple injective Cm_], m_l-modules belong to ~. Thus P'm contains 

all Cm_], m-modules with restriction to Cm preprojective, and ~ contains 

all Cm,m+l-modules with restriction to C m preinjective. We obtain Cm_l, ~ 
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from Cm_1,m+ I by the successive one-point extensions using modules with 

restriction to Cm_|,m+ I belonging to % ; in this way both P' and T 
m m 

remain untouched as unions of components of the Auslander-Reiten quiver, 

whereas the additional modules together with those in % give %, and T m 

separates P'm from %. We obtain C from Cm_l,~ by successive one-point co- 

e x ~ n s i o n s u s i n g  modules with r e s t r i c t i o n  to Cm_l,~ belonging to P'm, thus 

now T and ~ remain untouched, and the additional modules together with 
m ~m 

those in P' give P . 
m m 

Before we proceed, let us desribe in more detail the structure of the 

tubular families Tm. They are indexed over the projective line ~i k, thus 

T = V Tm(p). Note that any indecomposable module in T is either 
m m pE~]k 
T-periodic or else projective-injective. First, consider the case m = 3n+I. 

In this case, all but one of the tubes are stable, thus contain only C3n+1- 

modules. The remaining one, say for the index p = ~ is obtained from a 

stable tube in C3n+1-mod of rank d-1 by inserting one ray and one coray. 

The tube T (=) has a unique projective-injective vertex, and all other 
m 

vertices are stable. We indicate the shape of T (~) for the various cases, 
m 

replacing any vertex by the corresponding dimension vector in Ko(Cm_1,m+1) ; 

of course, the vertical boundary lines have to be identified in order to 

obtain a tube. 

Ir = (2,2,2,2) 

.oo 

~2 / \ 3 / \ 12 
2 3 2 

0420 . . . . . . . . . . .  1631 . . . . . . . . . .  0420 
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I I ,/'\,/'\, 

,4221 .......... 02,,0 ......... 1422, 

'\/'\ ,", 
I i i.-" 
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/ 

1211 
1 

= (3,3,3) 

.~o ..° 
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t , / 2 1 \  / 1 1 \  / , 1 \  
I 0  11  11  I 0  

O l l O 0  . . . . . . . . . . .  12110 . . . . . . . . . .  02111 . . . . . . . . .  O l l O 0  

10 II \ 1 1 / /  ] I  IO 

12111 
II  
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T = (4,4,2) 

642 642 < 753 642 642 
0840 . . . . . . . . . .  0840 . . . . . . . .  110 5 I . . . . . . . . .  0840 . . . . . . . . . .  0840 

6 4 2  .42, / 6 4 2 \  / ; , , \  / . 2 \  / ,  
) ~ 532" 642 " 642 542 
I . . . . .  0740 . . . . . . . . . .  084 I . . . . . . . . . .  1840 . . . . . . .  0730 . . . .  I 

) ) /532\ /~4~ /04~\ /~2\ , 
4~2 ~3, \~,, ,42 432 

0~30 ........... 074, ......... 08,0 ...... ,,30 ........... 0830 
432 5,2 /s,, /~42 4,2 
' \~32/ \42) \ 4 , ,  \4,2/, 
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, /43~\ /~2, /4 , ,  /432 
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4 3 2  432 3~, /3,, /,2,\ /, 
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,1o ,,, .... . / 1 , ,  ,oo 
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T = (6,3,2) 
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In the stable category C-mod, we obtain from T (~) a standard stable tube 
m 

of rank d. Consequently, in C-mod, we obtain from T a standard stable 
m 

tubular family of type T. In particular, all non-projective indecomposable 

modules in T are r-periodic of period d. 
m 

The case m = 3n+2 is similar to the case m = 3n+]; actually, the 

algebras C3n_],3n+ 3 are opposite to those of the form C3n,3n+ 2. 

So let us consider the case m = 3n. In this case all stable tubes of T are 
m 

homogeneous (i.e. of the form ~ /|). For T = (2,2,2,2), there are four 

non-stable tubes, everyone containing just one projective-injective vertex. 

For T = (p,q,r), there are three non-stable tubes, containing p-|, q-i, 

and r-I projective-injective vertices, respectively. In the stable category 

C-mod, we obtain from the non-stable tubes in T four standard stable tubes 
m 

of rank 2, in case ~ = (2,2,2,2), and three standard stable tubes of 

rank p,q,r, in case ~ = (p,q,r), thus again T gives rise, in C-mod 
m 

to a standard stable tubular family of type ~. Again we want to indicate 

the shape of the exceptional tubes Tm(P). In case the stable rank 

of Tm(P) is p, the modules in Tm(P) are defined over a subalgebra given 

by the restriction of C to a full (convex) subquiver of the form 

C~ 

(*) OK O ... O~ O ... O~ O 

with 2p vertices (p to the left and 

and there are the following relations: 

P to the right of the double arrow), 

(**) ~B = O, B~ = O, a p+2 = O. 

Of course, any algebra with quiver (*) and relations (**), different from 

the Kronecker algebra, has precisely one non-stable tube. For example, for 

the quiver (*) with both four vertices to the left, and to the right of 

the double arrow, and the relations (**), the non-stable tube is of the 

following form (again, the vertical boundary lines have to be identified): 
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0 0 0 . 2 2 . 0 0 0  . . . . .  1 t l . 3 3 . 1 0 0  . . . . .  0 1 t . 3 3 . 1 1 0  . . . .  0 0 1 . 3 3 . 1 1 1  . . . .  0 0 0 . 2 2 . 0 0 0  

- - - 0 0 0 . 2 2 . 1 0 0  . . . . .  1 1 1 . 3 3 . 1 1 0  . . . .  0 1 1 . 3 3 . 1 I t  . . . .  0 0 t .  2 2 . 0 0 0  - - -  

0 0 1 . 2 2 .  100  . . . .  0 0 0 . 2 2 ,  1 1 0  . . . .  1 1 1 . 3 3 .  I 11 . . . .  Ol 1 . 2 2 . 0 0 0  . . . . .  0 0 1 . 2 2 .  t 0 0  

- - -  0 0 1 . 2 2 . 1 1 0  . . . . .  0 0 0 , 2 2 . 1 1 t  . . . .  1 1 1 . 2 2 . 0 0 0  . . . . .  0 1 1 . 2 2 .  I 0 0 - -  - 

0 t l . 2 2 . 1 1 0  . . . .  0 0 1 . 2 2 . 1 1 1  . . . . .  0 0 0 . 1 1 . 0 0 0  . . . . .  1 1 1 , 2 2 , 1 0 0 - - ~ - -  0 1 1 . 2 2 . I 1 0  

- - - 0 1 1 . 2 2 . 1 1 1  . . . . .  0 0 1 . I 1 o 0 0 0  . . . .  0 0 0 . 1  l . l O 0  . . . . .  1 1 1 . 2 2 . 1 1 0  - - -  

1 1 1 . 2 2 . 1 1 1  . . . . .  0 1 1 . 1 1 . 0 0 0  . . . . .  0 0 1 , 1 1 , 1 0 0  . . . . .  0 0 0 .  . 1 1 0  . . . . .  1 1 1 . 2 2 , 1 1 1  

I I 
. - - -  l l l . l l . O 0 0  . . . . .  O l l . l l .  . . . . .  0 0 1 . 1 1 . 1 1 0  . . . .  0 0 0 . 1 1 . 1 1 1  . . . .  - 

1 1 1 . 1 1 . 1 0 0  0 1 1 . 1 1 , 1 1 0  0 0 1 . 1  . 1 1 1  

We consider now simulteneously the various m E Z. Let Mm,m+ l be 

the set of Cm,m+l-mOdules with restriction to Cm being preinjective, and 

with restriction to Cm+ 1 being preprojective, thus 

and 

Mm,m+l = Pm+l N ~m' 

C - m o d  = V T v V M m , m +  1 .  
mEZ m mE~ 

The categorical structure may be visualized as follows: 

T -  1 M - l ,  o 

c" - 

T o  I M o , l  
rll 

C._j ~ 

with maps only from left to right (and inside the individual module classes). 

Note that the indecomposable modules in T have support in A those 
m m-l,m+l' 

in Mm,m+ l have support in Am,m+ l . In particular, all indecomposable 

C-modules have bounded support. 
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We remark that our account on the decomposition of C-mod into the 

module classes T and M follows closely the treatment given by 
m m,m+l 

Gabriella d'Este in her Oberwolfach talk 1981 [2]. The module classes 

M have been described in section 5.2 of [8]. As a first invariant 
m,m+l 

of an indecomposable module X in Mm,m+l, its index has been defined 

in [8], it is an element of 9 + . In our case, it seems more advisable to 

consider instead the A-index, obtained from the index by changing the norma- 

lisation; the A-index of a module in M is an element of the rational 
_m+l m,m+l 

interval ~m = {Y E ~ I m < ~ < m+l}. The definition of the ^-index will be 

given below. 

Recall that we have denoted by h the minimal positive radical vector 
m _m+l 

of Ko(Cm). Let dm = d, for m ~ O(mod 3), and = I otherwise. Given y E ~m ' 

be the minimal positive say y = m + ~ with integers O < ~ < B, let hy 

vector in Ko (~) which is a rational multiple of (B-~)dmh m + ~dm+lhm+ l . 

[Note that this definition of h differs in two ways from that in 
Y 

First of all, y is renormalized, as mentioned above, it is the A-index of 

Second,our minimality condition implies that the coefficients of hy are 

relative prime; in contrast, in [8] ~,B were supposed to be relative 

prime, and then Bhm+~hm+ ] was considered.] 

Ko(C) , there is defined the usual bilinear form <-,-> by On 

[ 8 ] .  

h . 
Y 

<e(a),e(b)> = E (-l)idim Exti(E(a),E(b)), 
i~o 

where E(a) is the simple C-module corresponding to the vertex a of A, 

and e(a) = dim E(a). Note that the sum is indeed finite, since the restriction 

of C to any finite subquiver of g has finite global dimension, and we can 

evaluate Extl(E(a),E(b)), by restricting to any full convex subquiver con- 
^ 

taining both a and b° The corresponding quadratic form is denoted by X, 

thus X(X) = <x,x>. For any y E Q, we denote by l the linear form 
Y 

Iy = <hy,-> : oK (C) > Z. Also, let Cy be defined as follows: For 

y = m E Z, let Cm = Y ~m = Cm,m+l " Cm_1,m+l, and for E ~m +I with m E Z, let Cy 

With these notations,let 

Ko(C) Y = Ko(Cy) fl Ker I T. 

For y ~ Z, define T as the module class given by the indecomposable 
¥ +! 

C-modules X with dim X E Ko(C) Y. Thus, if y E ~ (with m E Z), 
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~hen Ty is given by the indecomposable Cm,m+l-mOdules X with <hy,dim X> = O; 

and we call these the Cm,m+l-mOdules with A-index y. Then, [8] asserts that 

=~+ Ty, Mm,m+l I 

and that T 
Y 

by the restriction of X to 

rates Py from ~, where 

is a standard stable tubular family of type ~, and is controlled 

Ko(C) Y. Also, Ty is separating, and it sepa- 

(+) 
6<. t , ,t,<6 

[According to [8], T separates 
Y 

Using the separation property of 

separates P from Q.] 
Y 

P N Cm,m+l-mOd from q N Cm,m+l-mOd. 

T m and Tm+], it easily follows that Ty 

Altogether, we see that 

C-mod =~ T 

where all Ty are separating tubular families, separating P from ~, 
Y 

with Py and ~ given by (+) and that the stable tubular type of any T ' y 

is ~. 

We should add the following remark. By definition, for y ~ ~, the module 

class Ty is given by all indecomposable C-modules X with dim X E Ko(C) Y- 

If y = m E ~, and X is an indecomposable module in Tm, then clearly 

dim X E Ko(C)m ; however, not all indecomposable C-modules X with 
^ 

dim X E Ko(C)m will belong to Tm, one needs in addition the condition that 

the restriction of X to Am is non-zero. (For example, E(2 I) is a 

Co-module and s a t i s f i e s  <ho,dim E(21)> = O, however, E(21) belongs to Tt /2) .  

We end this section by determing the position of the simple C-modules. 

This will be needed in section 4, and it also gives a reason for the chosen 
^ 

normalization of the A-index. Note that for any simple C-module E, there is 

precisely one integer m such that E has support in A N A (For the 
m m+]" 

vertices (nd')o, take m = 3n-l, for (nd'+l)o, take m = 3n, and for the 

vertices a. with nd'+l < a < nd'+d, take m = 3n+l). 
I 



166 

Lemma: Let E be a simple C-module, with support in A n A 
m m+l" 

Then E considered as a C-module, belongs to Ty with y = m+~. 

Proof. One only has to verify that <hm+hm+1,dim E> = O. 

We have obtained in this way an explicit description of C-mod, and there- 

fore also of C-mod. All components of C-mod are stable tubes of rank a 

divisor of d, they form separating standard ~ik-families of type ~, and the 

set of these families may be indexed over 9, in a rather natural way. Since 

Db(C-mod) ~ ~-mod, this could finish our investigation. However, the description 

of Db(C-mod) outlined above is given in terms of K (C), and it seems advisable 
O 

to use more intrinsic invariants. 
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3. The additive function dim A on A-mod. 

Consider an arbitrary finite dimensional algebra A. The algebra A has 

countably many subalgebras A(i) isomorphic to A, and given a vertex a 

of A, we denote by a(i) the corresponding vertex of A(i). In this way 

we obtain all vertices of A. In particular, Ko(A ) = i~ Ko(A(i))" We 
^ 

identify A with A(o). We denote by v the canonical shift isomorphism, 

sending A(i) to A(i+l), thus a(i) to a(i+l). It induces a self-equi- 

valence on A-mod, again denoted by ~. Given a vertex b of A, denote by 

P(b) the indecomposable projective A-module with top the simple A-module 

corresponding to b, and let p(b) = dim P(b). Note that P(b) is also an 

indecomposable injective A-module, and it~ socle is the simple A-module 

-lb. ^^ = ^ ^ corresponding to ~ Since ~P(b) P(~b) for all vertices b of A, 

it easily follows that $ is the Nakayama functor for A. We denote by P(A) 

the subgroup of Ko(A) generated by the dimension vectors p(b), with b 

a vertex of A. If we denote by PA(a) the dimension vector of the indecom- 

posable projective A-module with top corresponding to a, and by qA(a) that 

of the indecomposable injective A-module with socle corresponding to a, we 

have 

qA(a)$i-I 3.1. p(a(i)) = + PA(a)$i 

(Applying ~ to an element x of Ko(A) , we write 

since we think of x as a row vector.) 

to the right of x; 

Assume now the Cartan matrix C A of A is invertible over ~ (for 

example, this is satisfied in case gl.dim.A<~). Recall that the columns 

of C A are given by PA(a) T, the rows by qA(a), and that for an invertible 

Cartan matrix CA, the Coxeter matrix is defined by ~A = -CATCA" First, 

we note that under our assumption of C A being invertible, 

3.2. K o(A) = K o(A) @ P(A) 

^i 
(For, using 3.1 for i ~ 1, we see that all these ~ PA(a) belong to 

K (A) + P(A), therefore K (A(i)) c Ko(A ) + P(A). Using 3.1 for i < o 
0 0 - -  

^i-l (A) + P(~) therefore it follows that all ~ qA(a) belong to K ° 

Ko(A(i-1)) ~ Ko(A) + P(A).) Next, we observe the following: 

i 
For any x E Ko(A) and all i E Z, we have x~ i^ ~ X~A(mOd P(~)). 3.3. 
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Proof: Since P(A) is stable under ~, we obtain from v a linear 

automorphism of Ko(A)/P(A) = Ko(A)' which we denote by $. Since ] and 

~A are linear automorphisms, it is sufficient to consider the case i = 1, 

and that x = PA(a) for some vertex a of A. But 3.1 gives 

PA(a)~ = -qA(a) = PA(a)~ A.) 

We denote the projection of K (A) onto K (A) with kernel P(A) by ~A' 
O 

^ °A x and given an A-module X, let dim = (dim X)~ A. Note that di# vanishes 

on all projective A-modules and takes values in K (A). Also note that dim A 
O 

is an additive function on the stable Auslander-Reiten quiver of A. Let E 
^ 

denote Heller's suspension functor on A-mod, thus EX ~ l/X, where I is an 

injective envelope of X. 

3.4. For any A-module X, we have dimAEx = -dimAx. 

(For, let EX = I/X, with I an injective (= projective) A-module. Use the addi- 

tivity of dim A on exact sequences and that dimAl = o). Combining 3.3 

and 3.4, we obtain: 

3.5. For any A-module X, we have dimA~x = dimASx = <dimAX)~A • 

(Proof: It is well-known that T E-2v,^ = see [4], thus 

dimA~x = dimAE-2vX = dimAvx,-- according to 3.4. Since dimASx = (dimAX)~, 
& 

we can apply 3.3 and obtain the second equality). 

The last assertion seems to be remarkable since it shows that up to P(A), 

we can determine the dimension vector of ~X by using the Coxeter trans- 

formation ~A of A, without any further restriction. For A of finite 

global dimension, we will give a different interpretation of this result, 

at the end of the paper. 
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4. Description of C-mod in terms of dim C. 

We return to the case of the canonical tubular algebras C. As above, 

we i d e n t i f y  C wi th  C(o) ,  and denote  by ×C the  u sua l  q u a d r a t i c  form on 

K (C); of course, this is just the restriction of X to K (C). We 
o o 

consider the projection ~C : Ko(C) ----+ Ko(C) with kernel P(C)o 

4.1. If x,y E Ko(Cm,m+ I) for some m E ~, then 

<X~c,Y~c> = <x,y>. 

Proof. The case m = 1 is trivial. Let us consider the case m = o. 

For any x E Ko(Col), the difference x-x~ C is an integral multiple of 

p((d+l)o) , say x-x~ C = XoP((d+l)o) , and Y-Y~c = Y0P((d+l)o)' with Xo,Y ° E Z. 

For any C-module M, we have 

<p((d+l)o),dimM> = dim Hom(P((d+1)o),M), 

since ^P((d+l) o) is projective. Thus <p((d+l)o),y> = O for all Y E Ko(Col) .  

S i m i l a r l y ,  

<dim M,p((d+l) o) = dim Hom(M,P((d+1)o), 

for any C-module M, since P((d+l) o) is injective. Thus <z,p((d+l)o)> = 0 

for all z E Ko(CI2). Thus 

<x,y> = <X~c+XoP((d+l)o),Y~c+Yo ~((d+l)o)> 

= <X~c'Y~c> +Yo <XWc'P((d+l)o)> +xo<p((d+l)o'y> 

= <x~ C,y~C > • 

This finishes the ease m = O. Dually, the case m = 2 also holds. The 

general case now follows using 3.3: Let m = 3n+t with O ! t j 2, n E Z, 

and x,y E Ko(Cm,m+i). Then x -n, y -hE Ko(Ct,t+ I). Since <-,-> is 

v-invariant, and the restriction of <-,-> to Ko(C) is ~c-invariant, 

we have 

-n -n -n -n 
<x,y> = <x~ ,y~ > = <x~ ~c,y~ ~C > 

-n -n = <X~c,Y~c > = <X~c~ C ,Y~c~c > 
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this finishes the proof. As a direct consequence, we obtain 

4.1'. The restriction of ~C to Ko(Cm,m+1) 

(Ko(Cm,m+l),X I Ko(Cm,m+l)) onto (Ko(C),XC). 

is an isometry from 

Proof. The surjectivity follows directly from the form of the elements 

p(a) which generate the kernel F(C) of ~C" Since Ko(Cm,m+ I) and 

Ko(C) have the same rank, the restriction of WC to oK(Cm,m+l) is an 

isomorphism, thus an isometry according to 4.1. 

C 
L e t  h C = h y ~ c , l  = < h e , - >  : Ko(C)  _ - - - + Z ,  a n d  K (C) = Ke r  l I 

y y o y y 
easily verify: 

w e  

h C , h C = h C = _ ~ ( h l + h 2 )  
3n+l  = h l  3n+2 h 2 '  3n  

(for n = o, the first two equalities are trivial,the third is an easy cal- 

culation. The general case follows from 3.3, using the fact that both h l 

and h 2 are ~c-invariant). Since ~C maps Ko(Cm,m+l) isomorphically 

onto Ko(C) , it follows that for y = m+~, with integers m,~,B, 

O < ~ < B, the vector h C is the minimal element of K (C) which is a 
- Y h C + ~d h C o positive rational multiple of (B-U)dm m m+l m+l" In particular, all 

h CY belong to the radical radxc of XC. Note that h CY = hCy+3 for all 

y E ~, and that any non-zero element of radxc can be written in a unique 

way as a positive integral multiple of some hC, with 0 < y < 3. It seems 
y 

convenient to visualize the plane radxc as follows: 

h 

( t < y < 2 )  
h h / 

(o<~<1) ~ (2<~<3) 
h 

I ° 

We recall that ~C has order d, and given x E Ko(C) , we denote 

d-I 
0(x) = X x~. Since 0(x) is ~c-invarian~it belongs to radXc. Let 

i=o 

Ko(C) ° the set of elements x E K (C) with 0(x) = O. Note that Ko(C) ° 
O 

is a linear subspace of dimension 4,6,7, or 8, respectively (it is the 

d-I 
i 

kernel of the surjective linear map 0 = l ~C : Ko(C) > radxc). Recall 
i=o 

that an element x of Ko(C)o is called a root of XC provided Xc(X) = I. 
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4.2. All roots of X C lie outside of Ko(C) o. 

Proof. Let x be a root. We can write x in the form y + uh] + vh3/2 

with u,v E Z, and y vanishin~ on the vertices d] and (d+])o. With x 

also y is a root, and we claim that 0(y) ~ d.radx C = ~dh I + ~dh3/2. 

Since 0(hl) = dh;, O/h3/2 = dh3/2, it then follows that 

0(x) ~ d.radxc , in particular, O(x) # O. Let A' be the full subquiver 

of A; obtained by deleting the vertex d;, thus A' is of the form 

~4' ~6' ~7' or ~8' respectively, and y is a root for A'. In particular, 

the absolute value of the coefficient y(!o) of y at ] o is bounded by d. 

Given a vertex x of A', denote the corresponding base vector by e(x). 

Note that 0(e(1o)) = - h], and Ù(e(x)) = h3/2 for the remaining vertices x 

of A'. It follows that O(y) = - y(Io)h I + wh3/2, where w = ~ y(a). 

a#| o 
Thus, if 0 # ly(]o) I < d, then 0(y) ~ d.radXc. If ly(|o) I = d, then we 

consider the root z = y - Y(lo)hl, and it is sufficient to show that 

0(z) ~ d.radXc. Thus, consider a root z with support in A; N A 2. Since 

A I N A 2 is the disjoint union of quivers of the form ~s' with s J 5, and 

since 0(e(x)) = h3/2 for all vertices x C A I N A2, it follows that 

0(z) = wh3/2 with w = ~ z(a), and I J lwi J 5, thus also in this case 
a 

0(z) ~ d'radXc. 

4.3. Ko(C) ° = {x E Ko(C) I <y,x> = o for all y E radxc}. 

Proof. Let x E K (C) with <y,x> = o for all y E radxc. Then 
o <y,x> i i o ' . 

<y,x~>, since <-,-> is ¢c-invariant and = = <Y¢c'X~c> = c 

Y¢C = y for y E radxc. Thus <y,0(x)> = o for all y E radxc. However, 

O(x) E radxc implies that 0(x) = o, since <-,-> is non-degenerate on 

radxc (for, <hy,h > = o, and <h|,h2> = d2), therefore x E Ko(C) o. Since 

both spaces Ko(C)o and {xl <y,x> = o for all y E radxc} have codimension 2, 

it follows that we have equality. 

Let IyC = <h$,-> : Ko(C ) > ~, and Ko(C) Y = Ker iC°y This a family of 

hyperplanes of Ko(C), with Ko(C) Y = Ko(C)y+3/2. If h CY and h~C are 

linearly independent (thus, if y-6 is not an integral multiple of ~),2 then 
+ 

Ko(C) Y n Ko(C) 6 = Ko(C)o , according to 4.3. Also,let Ko(C) Y be the set of 

elements x of Ko(C ) with 0(x) a positive multiple of h C. We have 
Y 

Ko(C) ~ = Ko(C) ~ provided y-~ is an integral multiple of 3. We obtain in 

this way a decomposition of K (C) into pairwise disjoint subsets 
o 

Ko(C) = Ko(C) o u U Ko(C) Y . 
o<y<3 
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4.4. For any y E 9, we have Ko(C)y = Ko(C)~ Y u Ko(C)o u Ko(C)$. 

C i C i i = <h$,x> = O, Proof. Given x E Ko(C)y , then <h ,X~c> = <hy~c,X~c> 

thus with x also 0(x) belongs to Ko(C) Y. However, Ko(C) Y N radxc is 

the subgroup generated by h C therefore 0(x) is a multiple of h C. 

Conversely, we know already that Ko(C)o c Ko(C) Y. Thus, let 0(x) be a 

non-zero multiple h C.Y If <h$+l,x> would be zero, then by the previous 

consideration, 0(x) is a multiple of h C impossible. Thus there are y+l' 
integers u,v with u * o and <uhC+vh C .,x> = o. Now, uh C + vh C is 

y 7+I y y+l 
a non~ero element of radxc , thus a multiple of some h~. The consideration 

above shows that 0(x) is a multiple of h~, thus h~ ~ ±h$, and therefore 

<h$,x> = O. 

In order to determine the structure of (Ko(C)y,Xc I Ko(C)y) , we use the 

following consequence of 4.1 and 4.1': 

4.]" For any y E 9, the map ~C maps Ko(C) Y onto K(C)7, and this 

is an isomorphism and an isometry (with respect to the restrictions of 

and XC) in case y ~ Z. 

4.5. For any y E ~, the restriction of ×C to Ko(C) ¥ is the radical 

product IrI 
N 

s Xs of t quadratic forms of type ~ns_;, I j s J t, where 

T = (nl,...,nt). 

Proof. We may assume y ~ ~, since Ko(C) Y = Ko(C)y+3/2. Let 7 E Q~+I 
^ 

According to [8], we know that the restriction of X to Ko(C) Y = 

Ko(Cm,m+1) N Ker Iy is of the stated form, thus the same holds for the 

restriction of XC to Ko(C)¥, according to 4.1". 

4.6. Let y E 9, and X a non-projective module in T . Then Y 
dimCx belongs to Ko(C)+.y 

Proof. Since dim C is additive, and vanishes on projective modules, we 

can assume that X is indecomposable. We use the equality dimCTx = (dimCX)~c 

established in 3.5. If the component containing X does not contain an indecompo- 

d-I 
sable projective module,then Z dim ~IX is a positive integral multiple of h . 

i=o-- 7 
Thus, assume 7 E ~, and that the component containing X contains the inde- 

composable projective modules P; ..... Ps' say with dimension vectors Pi = dim Pi' 



173 

S ^ 

and let P = Y Pi" A glance at the various possible cases immediately 
i=l 

d-I 
y i e l d s  t h a t  a l w a y s  Y d i m  }ZX - p i s  a n  i n t e g r a l  m u l t i p l e  o f  h . 

i=o-- Y 

(Actually, it is sufficient to check this for X = rad P|, and then to use 

induction on the distance from the mouth of the tube). Application of ~C 

gives the desired result. 

For y ~ Z, we now can formulate precisely in which way dim C and XC 

control T . 
Y 

4.7. Let y ~ ~. The map dim C maps the set of indecomposable modules 

in T onto the set of roots and radical vectors in Ko(C) +.Y For any 
Y 

root x in Ko(C)~,. there is precisely one isomorphism class of indeeomposable 

modules X in T with dimCx = x. For any radical vector x in Ko(C)~, ± 
Y 

there is a one-parameter family of indecomposable modules X in T with 
Y 

d i m C x  = x .  

Let us define an increasing map o : ~ ---+ ~ by 

o(m+~) = {m+|m+2 + + ~ 

O<2~<B 
2B-3~ - - 

for 

2~-B 
O<~<B<2~ 

3~-8 - - - 

3 1 
where m,~,B E ~, B # o. Note that o(m) = m + ~ and o(m+~) 

The reason for introducing this map is the following property: 

-- O (m+2) . 

4.8. h C = - h$ for any y E ~. 
oy 

Proof. Denote dm hCm by hm,' and note that h'm + hm+ I' + h'm+2 = O, and 

h'm = h'm+3 for all m E Z. Let h(m,~,B) = (B-~)h~ + ~hm+ I.' First, let 

0 < 2~ < E. Then 

h(m,~,B) +h(m+l,B-~,2B-3~) = (B-~)h m + ~hm+ I + (B-2~)hm+ I + (B-~)hm+ I 

= (B-~)h m + ~hm+ I + (B-2~)h'm+l + (B-~)(-h'-h'+.)m m i = O. 
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Similarly, for 0 < ~ < B < 2~, 

h(m,a,B) +h(m+2,2~-~,3~-$) = (B-a)h~+~h'm+l. +~h'm+z~ + (2u-B)hm+3 

! 

= (B-~)hm+ ~hm+ I + ~(-hm-hm+l) + (2~-B)h m = O. 

Note that for ¥ = m + ~ with m,~,B E~, 0 j ~ < B, and B # O, the vector 

hy i s  t h e  m i n i m a l  v e c t o r  i n  Ko(Cm,m+l) w h i c h  i s  a p o s i t i v e  r a t i o n a l  m u l t i p l e  

of (~-~)dmh m + ~dm+lhm+ 1 . Since ~C maps Ko(Cm,m+ I) isomorphically onto 

K (C) ,  t h e  v e c t o r  h C i s  t h e  m i n i m a l  v e c t o r  i n  K (C) w h i c h  i s  a p o s i t i v e  
o ~ o 

r a t i o n a l  m u l t i p l e  o f  h ( m , a , B ) .  The a s s e r t i o n  now f o l l o w s  f rom t h e  c a l c u -  

lations above. 

The mapping o can be used in order to express the shift given by 

Heller's suspension functor. Given a module class X in C-mod, we denote 

by X the corresponding object class in C-mod. 

4.9. For any y E ~, we have E(T_~) = Toy. 

Proof. It is sufficient to show E(_Ty) E T_oT, since o is invertible 

and E a self-equivalence on C-mod. Consider first the case 7 = m C Z. 

Let X be an indecomposable non-projective module in T . If E is a 
m 

simple submodule of X, then its support must lie in Am_l, according to the 

lemma at the end of section (1) (and using the fact that Hom(T6,T m) = 0 

for 5 > m). Thus, the support of the injective envelope of X, and also 

the support of IX, have to be contained in Am_l,m+ 2. Assume EX belongs 

to T B. Since the simple Cm_l,m+2-modules belong to the T 5 with 
1 1 3 5 5 

-- must have B < m + -~. Of course, also 6 = m - 2' m +-2' m + 2' m + ~ ' we - z 

m _< ~. On the other hand, according to 3.4, dimCEx = -dimCx, thus 

d-1 d-1 
Y (dimCEx)~i C =- .l (dimCx)~ 

i=o i=o 

is a positive multiple of -h C = h C . It follows that the difference of B 
3 m am 

and om = m + ~ is an integral multiple of 3. Since in addition we know 
5 

that m j B J m + ~ , it follows that B = am. 

A similar argument works in case y ~ Z. Let y E ~+I, and X inde- 

composable in T . The socle of X has support in Am, thus the support 
Y 
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7 
of EX is in Am,m+ 3. Let EX belong to TB, thus B ! m + ~. Since 

any indecomposable injective module I with Hom(X,l) # o belongs to some 
7 

T~ with ~ _> m+l, we see that m+| _< B _< m + ~. As above, the difference 
3 5 

of B and om has to be an integral multiple of 3, and now m + ~ J om J m + 2" 

Again, it follows that the only possibility is B = om. 

Of particular interest is the case y = m 6 Z, since it provides us with 

the description of T in terms of roots and null-vectors, similar to that 
-m 

in 4.7. In this way, we can extend 4.7 to all y f ~ (of course, we also 

may use a case-by-case investigation, using the structure of the non-stable 

tubes as exhibited in (1). 

Theorem. Let y 6 ~. The map dim C maps the set of indecomposable non- 

p r o j e c t i v e  modu le s  i n  T o n t o  t h e  s e t  o f  r o o t s  and  r a d i c a l  v e c t o r s  i n  
+ + 

Ko(C) Y. For  any  r o o t  x i n  Ko(C)¥ ,  t h e r e  i s  p r e c i s e l y  one  i s o m o r p h i s m  c l a s s  

o f  i n d e c o m p o s a b l e  (and  n o n - p r o j e c t i v e )  modules  X i n  T w i t h  dimCx = x. 
Y 

For  any  r a d i c a l  v e c t o r  x i n  Ko(C)$,  t h e r e  i s  a o n e - p a r a m e t e r  f a m i l y  o f  

i n d e c o m p o s a b l e  (and  n o n - p r o j e c t i v e )  modu le s  X i n  T w i t h  dimCx = x. 
Y 

Proof. We only have to consider the case y = m 6 ~. We use the Heller 

suspension functor E which gives an equivalence of T and T = T 
--m --om om" 

According to 3.4, there is the following cormnutative diagram 

T 

dim C 

Ko(C) ~ 

E 
~ T  

o-m 

~[d im C 

-1 > Ko (C) ~m 

Of course, the map -! is an isometry from (Ko(C),x C) to itself, and it 

maps Ko(C)~ o n t o  Ko (C)+~m" S i n c e  om ~ ~ ,  we c a n  a p p l y  4 .7  to  Tom, 

and the assertion for T carries over to the corresponding assertion 
ON 

for T . 
---Ill 

We can visualize the category C-mod in terms of dim C as follows, using 

the p l a n e  r a d x c  as  i n d e x  s e t :  
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M3n+l,3n+2 

M3n+ I , 3n+2 S 

T3n+l T3n+2 

I M3n+2,3n+3 

T 

Also, we indicate the shape of the support of T and M : m m,m+l 

~<iiil I 

I 

o°i>~ 
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5. The derived category Db(C-mod) 

Consider again an arbitrary finite dimensional algebra A. It has been 

shown in [6] (and is easy to see) that we can identify K (A) and the 
O 

Grothendieck group K (Db(A-mod)) of Db(A-mod) as a triangulated category. 
O 

(The Grothendieck group of a triangulated category A is given by F/R, 

with F the free abelian group with basis the set of isomorphism classes 

[X] of objects X of A, and R the subgroup of F generated by the 

elements [X] - [Y] + [Z], where X + Y ~ Z ÷ TX is a triangle in A). 

Given an object X" in Db(A-mod), we denote by dim X" the corresponding 

element in Ko(Db(A-mod)) = Ko(A). Note that there is a canonical embedding 

of A-mod into Db(A-mod) (as the full subcategory of complexes concentrated 

in degree zero), and the restriction of dim to this full subcategory coincides 

with the usual dimension vector function. Also, for an arbitrary complex X', 

we have dim X" = E (-I) i dim X i. 
i 

Assume now that A has finite global dimension. In this case, it has 

been shown in [6] that Db(A-mod) and A-mod are equivalent as triangulated 

categories, and that there exists such an equivalence ~ which is the identity 

on A-mod (embedded into Db(A-mod) as the complexes concentrated in degree 

zero, and embedded into A-mod as A(o)-mod). There is the following co~u- 

tative diagram 

D b (A-mod) ' ~ > A-mod 

K (A) 
O 

Proof. Both dim and di# coincide on A-mod with the usual dimension- 

vector function. Any object in Db(A-mod) can be obtained by forming successive 

mapping cones, starting from objects in A-mod. Therefore, it is sufficient 

to show that dim A is additive on triangles. However, the triangles in 

A-mod are obtained by starting with a map X > Y, and an injective envelope I 

of X in A-mod, and forming an induced exact sequence in A-mod 

0 " ° > X + I ----+ ZX ~ 0 

0 ; Y ~ Z ~ 2X > 0 
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Then, 

gives 

X÷Y÷Z÷ZX is a triangle in A-mod, and the lower exact sequence 

di#Z = dimAy + dimAzx 

= dimAy - dimAx. 

As a consequence, we see that the description of C-mod in terms of dim C 

as given in (3) is just the description of Db(c-mod) in terms of dim, 

and this is the description which we were aiming at. 

We add a remark concerning Auslander-Reiten triangles in Db(A-mod), where 

A is a finite dimensional algebra of finite global dimension. A triangle 

u v w Db(mod X .... > Y" > Z" ~ TX" in A) is called an Auslander-Reiten triangle 

provided X',Z" are both indecomposable, w # o, and the following equivalent 

conditions are satisfied: (i) for all f : X' --+ V', f not split mono, 

there exists f' : Y" --+ V" with uf' = f; (ii) for all g : W" --+ Z °, 

g not split epi, there exists g' : W" --+ Y" with g'v = g; (iii) for all 

h I : U i --+ Z', hi not split epi ~ hlw = O, and (iv) for all h 2 : TX' --+ U~, 
^ 

h 2 not split mono = wh 2 = O. The Auslander-Reiten sequences in A-mod give 
^ 

rise to Auslander-Reiten triangles in A-mod, and therefore in Db(A-mod). 

In this way, the existence of Auslander-Reiten triangles in Db(A-mod) has 

been established in [6]. However, we also may copy the existence proof for 

Auslander-Reiten sequences, as outlined in [4], in order to show directly the 

existence of Auslander-Reiten triangles in Db(A-mod), and, at the same time, 

obtain the numerical criterion of 2.5. 

There is a natural transformation ~y : D Hom(Y,-) ~ Hom(-,~Y), where 

is the Nakayama functor, and D the duality with respect to the base field k, 

such that ~y is invertible, in case Y is projective. An object in 

Db(A-mod) can be written in the form P', where P" is a bounded complex 

of projective A-modules. Now assume P" is indecomposable in Db(A-mod), and 

let ~ E D Hom(P',P') be a non-zero linear form on Hom(P',P') = End(P') 

which vanishes on the radical rad End(P',P'). We consider the image ~p.(~) 

of ~ under ~p., it is a non-zero map P" > vP" which has the following 

properties: Given an indecomposable object X" in Db(A-mod), and a non- 

invertible map ~ : X'--+ p-, or a non-invertible map n : ~P'--+ X', then 

$~p.(~) = o, or ~p.(~)~ = o, respectively. Let C(T-I~p.(~)) be the mapping 

ap. (~) 
cone of T-l~p.(~). It follows that T-IvP ..... > C(T-I~p.(~)) ~ P" ~ ~P" 

is an Auslander-Reiten triangle. 
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We denote T-lvP" by TP'. We have diAgp" = (dimAp')CATCA 

diATp • = dimAT-Ivp • = -diA~p • = _ (diAp.)CATCA = (dimAp-)~A . 

therefore 

Appendix: The c a t ~  T(C)-mod. 

Our investigation of C-mod also establishes the structure of the category 

T(C)-mod, where T(C) is the socalled trivial extension of C. We recall 

that T(C) = C~(Q has the additive structure C @ Q, and the multiplication 

is defined by the formula (cl,ql)(c2,q2) = (clc2,clq2+qlc2), for Cl,C 2 6 C, 

ql,q 2 6 Q. Alternatively, T(C) may be considered as C/~o Here~ we consider 

C not as an algebra, but rather as a locally finite-dimensional k-category, 

and C/v is the quotient in the category of all locally finite-dimensional 

k-categories~see [I0]. Since the indecomposable C-modules have bounded support, 
^ 

and v acts freely on the set of isomorphism classes of indecomposable C-modules, 

it follows that T(C)-mod can be identified with C-mod/v. (This was pointed 

out by G. d'Este in [2]; for a recent general account, see [II]). As a 

consequence, the indecomposable T(C)-modules are in one-to-one correspon- 
^ 

dance with the indecomposable C-modules X in Ty, with 0 ~ y < 3. 

Note that the algebras T(C) have the following property: given any Auslander- 

Reiten sequence 

0 ~> X--> Y --> Z --> 0 

in T(C)-mod, then the middle term Y is the direct sum of at most two indecompos- 

able direct summands. 
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