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Let k be an algebraically closed field and A a finite-
dimensional k-algebra (associative, with 1). We consider finite-dimensio-
nal left A-modules, and call them just modules; the category of all
A-modules will be demoted by A-mod. Any module can be written as a (finite)
direct sum of indecomposable modules, and the theorem of Krull-Schmidt
asserts that such a decomposition is essentially unique: it is unique upto
isomorphism. For many purposes it therefore is sufficient to deal only
with indecomposable modules. The main problems of the representation
theory of finite-dimensional algebras are the following:

- to develop methods for constructing indecomposable modules,

- to look for suitable invariants in order to be able to identify indecom-
posable modules,

- to show that a given list of indecomposable modules is complete: that

it contains a representative of any isomorphism class.

Typical invariants of a module M are the socalled Jordan~
Holder multiplicities:the algebra A has only finitely many simple modules,
say EI""’En’ and we may denote by (éiE.M)i the multiplicity of Ei
occurring in a composition series of M (this is well-known to be an in-
variant of the isomorphism class of M). The vector dim M obtained in
this way is called the dimension vector of M, So one may ask for a des-

cription of the possible dimensionvectors of indecomposable modules for a

given algebra, and, having fixed a particular dimension vector, for a des-
cription of all indecomposable modules having this dimension vector.

One of the first questions ﬁsually will be that about the num-
ber of isomorphism classes of indecomposable modules. There may be only
finitely many isomorphism classes of indecomposable A-modules, and then A
is said to be representation-finite. Examples of representation-finite

algebras are first of all the semi-simple ones, but also the algebras of
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all upper triangular matrices of given size, and there is a vast litera-
ture on representation-finite algebras. In case there are infinitely many
isomorphism classes of indecomposable A-modules, there are actually always
one-parameter families of isomorphism classes of indecomposable A-modules,
as was conjectured by Brauer and Thrall. If there exists a two—parameter
family of isomorphism classes of indecomposable A-modules, A is said to
be wild, otherwise tame, The study of representation-infinite algebras

is still in the beginmning, only some types of examples seem to be well
understood. We will present below several results which are independent of
the representation type and exhibit some examples of tame algebras. In
addition, we will pose a number of open problems which seem to be worth-

while to study.

A general reference for the terminology used here are our
lecture notes [Ri2]. Those notes should also be consulted for the precise
attribution of most of the results presented here. Only in case we deal
with results which fell out of the scope of [Ri2] or which where not
yet available at that time, we will indicate the source. Our aim in these
lecturesis to give an introduction to the representation theory of finite-
dimensional algebras. In particular, we are going to direct the interest
towards the main results presented in [Ri2]. In addition, we will report
on some recent investigations which are contained in the papers [RV],
[Ri3], [Ha] and [HR].



LECTURE 1
THE AUSLANDER-REITEN QUIVER

It will be necessary to consider besides categories of the
form A-mod also some related categories, for example full subcategories
of A~mod (which are closed under direct sums and direct summands), or the
categories of representations of partially ordered sets, or derived cate-
gories. Always, the categories which we will deal with will be k-additive
categories (thus, additive categories with k operating centrally on the
Hom-sets and such that all Hom(X,Y) are finite-dimensional k-vector-
spaces) with gplit idempotents; and we call such a category a Krull-

Schmidt category (note that in a Krull-Schmidt category, any object is a

finite direct sum of indecomposable objects, and such a decomposition is
unique up to isomorphism).

We start with the basic notioms. Given an indecomposable ob-
ject in a Krull-Schmidt category we call amap f ¢: X —> Y a source map
for ¥ (the usual name would be "minimal left almost split map') provided
the following three conditions are satisfied: first, £ is not split mono;
second, given any map £' : X — Y' which is not split mono, there is
n:Y—Y with f'= fn; and third, any ¢ : ¥ —> Y with £ = fT
is an automorphism. There is the following dual notion: Given an indecom-
posable module Z, we call amap g : Y —> 2 a sink map for Z (or a
"minimal right almost split map") provided, first, g is not split epi;
second, given any map g' : Y' —> Z which is not split epi, there is n
with g' = ng; and third, any &: Y — Y with g = zg is an automor-
phism. In case we deal with K = A-mod where A is a representation-
finite algebra, it is not surprising to see that source maps and sink maps
exist. The following remarkable theorem asserts that they always do exist

in module categories, independent of the representation type:

THEOREM (M. Auslander, I. Reiten). Let A be a finite-dimen~
sional k~algebra. For any indecomposable module M, there exists a source
map and a sink map in A-mod, and both are unique up to isomorphism.

Let Z be indecomposable with sink map g : Y — Z. Either
7 1is projective, then we may take for Y the radical rad Z of 2 and-
for g the inclusion map. Or, if Z is not projective, then g is epi,
its kernel Ker g is indecomposableand will be denoted by TZ, and the

inclusion map TZ —* Y 1is a source map.
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Dually, let X' be indecomposable with source map
£' ¢+ ¥ — ¥'. Either X' is injective, then we may take Y'= X'/socX',
and £' the canmonical epimorphism.. Or, if X' is not injective, then
f' 1is mono, its cokernel Cok f' is indecomposable and will be denoted
by t7X', and the canonical epimorphism Y' —> T7X' is a sink map.
Starting with a non-projective indecomposable module Z, or
with a non-injective indecomposable module X, we obtain a non-split exact

sequence

£ g
0 > X > Y > 2 > 0

with f - a source map for X, and g a sink map for Z, with X = 1Z

and Z = 7 X. Sequences of this kind are called Auslander-Reiten sequences.

Now, in such an Auslander-Reiten sequence, both modules X, and ' Z are
indecomposable, whereas Y usually is not. We decompose Y = @ Y. i with
all Yi indecomposable, and rewrite the sequence above in the form
(fi)i‘ (g )

i —_— 27 o0 .

(%) 0 —X
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The maps fi t X —— Yi are irreducible (we recall the definition below),
and we obtain in this way sufficiently many irreducible maps starting

in X. The maps g; ¢+ Y; —* Z also are irreducible, and we obtain in
this way sufficiently many irreducible maps ending in Z.

Consider a general Krull-Schmidt category K. If M,M' are
indecomposable objects in K, denote by rad(M,M') the set of non-inver-
tible maps M —> M'. If M,M' are arbitrary, say with decompositions
M=8 M., M' =@ M& into indecomposables, let rad(M,M') = 16 rad(M .
We obtain in this way an ideal rad in the category K. We define ~
radd(M,M') as the set of maps M —> M' which can be written as compo~-

sitions of d maps all belonging to rad, and let rad” = 0 radd

deW
If M,M' are indecomposable objects, the maps in rad(M,M' )*\radz(M M")

are just the 1rreduc1b1e maps, and the factorspace Irr(M,M') =

rad(M,M! )/rad M,M")Y is called_the bimodule of irreducible maps.

We have noted above that in the module category A-mod, an
Auglander-Reiten sequence (%) displays sufficiently many irreducible maps
starting in X or ending in Z. In fact, assume that M is indecomposable,
and that Irr(X,M) is of dimension d. Then, precisely d of the sum-

mands Yi of Y are isomorphic to M, say Y, = = Yd.= M, and the
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residue classes of the maps fl""’fd form a basis of Irr(X,M), where-
as the residue classes of the maps BlaveesBg form a basis of Irr(M,Z).

In particular, we always have
(k) d.imk Irr(tZ,M) = dim, Trr(M,Z)

for M,Z indecomposable, and Z not projective.

With these preparations, we are going to define the Auslander-
Reiten quiver PA of A. We have noted in the introduction that the main
object of the representation theory is the study of the set of isomorphism
classes of indecomposable modules, and we denote this set by (PA)O. We
want to endow this set with more structure in order to gain insight into
its properties, and the theory expounded above shows that we may consider
it as the set of vertices of a socalled translation quiver. Now, a quiver
is nothing else than an oriented graph with possible multiple arrows and
loops, thus of the form Q = (QO,Ql,s,e), where QO,Q1 are two sets, and
sye Q] > Qo set maps; the elements of Q0 are called vertices or
points, those of Q1 arrows, and given a € Ql’ then s(a) 1is called its
starting point and e(o) its end point, pictured as follows:

a » - * ’ . L [
s(o) — e(a)., A translation quiver T 1s a locally finite quiver with an

additional bijection T = T @ P; n—a-Pg of two subsets of T such that for
y € Po’ z € P;, the number of arrows from y to 2z coincides with the
number of arrows from Tz to v. (In case we actually fix bijections o
from the set of arrows y —> 2z onto the set of arrows TZ —* ¥y, We
speak of a polarized translation quiver). A translation quiver may be

thought of as beingbuilt from small units, the socalled "meshes"

they are defined for any z € Pé (some of the y, may coincide). The

vertices in r0-r5 are called projective vertices, those in Po‘\Fg

are called injective yvertices. We return to the case of a finite-dimensio—

nal algebra 'A. The isomorphism class of a module M will be denoted

by [M]. We.have already noted that the vertices of T, ave of the form
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[X], with X an indecomposable module. For X,Y indecomposable, the
number of ‘arrows [X] — [¥] in Iy is given by dim, Irr(X,Y), thus
there is at least one arrow (X] - [Y] iff there exists an irreducible
map X -—> Y. As translation we use the function 7, with t{2Z] = [t2]
which is defined for Z indecomposable and non projective. The formula
(**) asserts that indeed we obtain in this way a translation quiver, the

Auslander-Reiten quiver PA of A. Of course, the projective vertices

of PA are just the vertices of the form [P], with P indecomposable
projective, the injective vertices are those of the form [Q] with Q
indecomposable injective. We observe that Iy has only finitely many pro-
jective and finitely many injective vertices, and these numbers coincide.
The structure of the Auslander-Reiten quiver r,y of finite-
dimensional algebras should be studied rather carefully. Usually, PA will
decompose into several components and one may ask for the possible trans-
lation quivers occurring as components of Auslander-Reiten quivers., If X
is an indecomposable module, and T a component of :A’ containing [X],
we just will say that X belongs to TI'. The components which do not con-
tain projective or injective vertices will be said to be regular; of
course, all but finitely many components are regular. Since Ty is always
locally finite, any component is either finite or countable. In fact, for

representation~-infinite (and comnected) algebras, there are no finite com-

ponents:

THEOREM (Auslander). Assume A is conmected, and that T 1is

a component of PA containing only modules of bounded length. Then A is

representation finite and I, =T.

This strengthens Rojter's theorem which had established the
first Brauer-Thrall conjecture ("bounded representation type implies
finite representation type"). It also gives an effective method for show-
ing that a given finitg list Ml""’Mn of indecomposable modules is com~
plete: it is sufficient to show that given an irreducible map M, —X
or X =~ M, with X indecomposable, then X already occurs in the list.
The completeness may be shown inthe following way: first, one checks that
all indecomposable projective modules occur in the list; second, that the
list is closed under T and contains all indecomposable summands of the
corresponding Auglander~Reiten sequences (i.e. if Mj is not injective,

and (%k) is an Auslander-Reiten sequence with X = Mj, then Z and all
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the ¥, should belong to the list). We observe that this procedure re-
frains from the necessity of decomposing large modules, an operation which
would produce a lot of difficulties. The only modules to be decomposed

are those occurring as middle terms of Auslander-Reiten sequences {(and,
according to a theorem of Bautista-Bremmer for representation—finite alge-
bras, these are direct sums of at most four indecomposable modules).

We pose the following problem:

Problem 1. Let T be a component of some Auslander-Reiten
quiver, and d a natural number, Is the number of isomorphism classes

of indecomposable modules X im I' of length d always finite?

Given any quiver A, one may construct a translation quiver
ZA as follows: the set of vertices of ZA is given by Z XAO; for any
arrow o : a —> b in A, there are the arrows (z,2) : (z,a) —* (z,b)
and (z,0)' : (z,b) —> (2+l,a) for all z €%, and the translation is
defined by Tt(z,a) = (z~1,a). This is a regular translation quiver, and
any regular translation quiver can be obtained from some ZA, even.with A
a tree,as factor quiver ZA/G with respect to some automorphism group G
of ZA, Note that for A an oriented tree, we obtain isomorphic transla-
tion quivers when changing the orientation, thus, in this case, we do not
have to specify the orientation. Of particular interest for representation
theory are the translation quivers ZA , m: and ZD_, where A: has
as vertices the integers, and edges i——i+l, for i €Z, the graph A
is the full subgraph of A: given by the non-negative integers, and I

is obtained from A_ by adding a vertex 0' and an edge 0'—1. Thus,

[~}

e d "‘"'0"‘0""0"" (RN ]

[++]

Am 0—‘0 O LER] 0 O LX)

IDOO >-—o— ces  =O—0~ e

The automorphisms of ZA_ are of the form T°, with n €Z, and for n 2 1
we denote mm/<'rn> just by mw/n. Components of the form Z&m/n

with n > 1 will be called regular tubes, those with n = 1 are said to

be homogeneous tubes.
The regular components of a hereditary algebra A are all of

the form ZA  or mm/n, with n > 1, they are tubes in case A 1is tame,

R T
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and then almost all are homogeneous, whereas all regular components are of
the form ZA_, in case A is wild [Ril].For the group algebra kG of a dihe-
dral 2-group G, with k of characteristic 2, there are countably many com~
ponents of the form Z&:, dll other regular components are homogeneous tubes,
the number of homogeneous tubes is equal to the cardinality of k [BSh].
For a semidihedral group G, and k again of characteristic 2, there are count-
ably many components of the form m:, of the form Z]i)m,and of the form
ZA /23 the remaining ones are homogeneous tubes, the number of such com-
ponents again is equal to the cardinality of k. We will see in the next
lecture that for nearly all finite quivers A., there are algebras having
a component of the form ZA.

A vertex x of a translation quiver which satisfies ™ = %
for some n > 1 1is said to be periodic. Of course, all vertices of

ZA_/n are periodic. And there is the following converse

PROPOSITION. If a regular component of an Auslander-Reiten

quiver contains a periodic vertex, then it is a regular tube.
We pose the following problem:

Problem 2, Let A be any finite-~dimensional algebra, Is it
true that all but finitely many components of PA are of the form ZA ,
[+4]

mw/n, ZA , and ZID_? Is it true that all but at most countably many
components of T, are of the form Z&  and ZA /17

We note that the first question has a positive answer for
group algebras, according to the investigations of Webb [W]. Note that a
positive answer to the first question implies that at most finitely many
components of PA can have multiple arrows, and consequeﬁtly that for
M,M' indecomposable, dim Irr(M,M') < 1, except for at most countably many
modules M,M', On the other hand, it is easy to construct examples of
components with multiple arrows: We later will discuss preprojective com-
ponents, and there is no difficulty to exhibit such components with an
arbitrarily large number of arrows between two vertices. In the next lec-
ture, we will see that in the same way we also may construct regular com—
ponents with an arbitrarily large number of arrows between two vertices.

Given a polarized translation quiver T, there is defined its

mesh category k(T), as follows: first, we construct the path category kI
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of T, it is an additive category whose indecomposable objects are just
the vertices of T, the space Homkr(a,b) of morphisms from a to b is
the k-vectorspace with basis the set of all paths from a to b in T,
and the composition of morphisms is induced from the usual composition of
paths. The mesh category k(T) is the factor category of kI' modulo the
ideal generated by the socalled mesh relations: these are the elements of
the form £ o(a)o, the summation being done over all arrows o with fixed
non-projective endpoint.

A component T of the Auslander-Reiten quiver PA of an
algebra A will be said to be standard provided the full additive subcate-
gory of A-mod whose indecomposable objects are the modules in T is equi-
valent to k(I). In this and the next lecture, we will provide methods for
constructing standard components, but we should stress already here that

standard components seem to occur only scarcely.

Problem 3. Let A be any finite-dimensional algebra. Is it

true that any standard regular component is either a regular tube or of

the form ZA, with A a finite quiver without oriented cycles?

Given a translation quiver T, it will be of interest to con-

sider integer valued functions on the set FO of vertices of T. A func-

tion £ : Po —3 7% ig called an additive function on T provided

£(z) + f(rz) = L f(s(a))
e(o)=2z

for any non-projective vertex z. A typical example of an additive func-—
tion on an Auslander—Reiten quiver TA ig the length function which at-
taches to each vertex [X] the length of the module X. This function has
additional properties,givingrise to the following definition: an additive

function f on the translation quiver T is called a length function

provided
f(x) > 1 for all x €T,
f(p) =1+ I £(s(a)) for any projective vertex P,
e(a)=p
f(qg) =1+ 1 f(e(a)) for any injective vertex q.
s(a)=q

We note however that on an Auslander-Reiten quiver PA, there usually will

exist length functions different from the function [X]r— length(X).

S S
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A translation quiver T 1is said to be preprojective provided

the following three conditions are satisfied:
(1) There is no cyclic path in T.
(2) Any Tt-orbit contains a projective vertex.

(3) There are only finitely many t~orbits.

There is the following criterion for preprojective translation

quivers occurring as components of Auslander-Reiten quivers of algebras:

PROPQSITION, A prepojective translation quiver admits at most

one length function. A connected preprojective translation quiver occurs
as a component of some Auslander-Reiten quiver PA if and only if it

admits a length function.
Also, there is the following result:

PROPOSITION. A preprojective component of an Auslander-Reiten

quiver r, always is standard.

Given a Krull-Schmidt category K, we construct full subcatego-
ries dK’ for d an integer > -1, or d = », as follows: Let _]K be the
subcategory <o>, If d—lK isalready defined, let dK be the full subcate-
gory of all objects Z of K which have the property that any indecompo-
sable object Y with rad(Y¥,Z) + 0 belongs to d-lK‘ Finally, let K
be the union of all dK’ d € N. In case K = A-mod, the indecomposable
modules in OK are just the simple projective modules; and an indecompo-
sable module belongs to lK if and only if it is projective and its radi-
cal is semisimple and projective. Clearly, if [X] — [Y] is an arrow
in PA, and Y belongs to _(A-mod), then alsoc X belongs to _(A~mod).
Actually, given a tramslation quiver I, we may define in a similar way
full translation subquivers dP, where d 1s an integer > -1, ord = =
(by definition, 1T is the empty quiver, a vertex 2z of T belongs to
dP if and only if every vertex y with an arrow y —* z belongs to
d_]P, and _I' is the union of all dP, d € W), and it is easy to see
that a vertex [X] of PA belongs to dPA if and only if X belongs to
d(A--fmod), for any d. We are interested in the question under what. condi-
tions wola is a component, or at least a union of components of TA'
Note that wPA is non-empty if and omly if there exists a simple projec-

tive A-module., Always ool A is a preprojective translation quiver, and
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any compoment of T, which is preprojective, is contained in ol A* The
following criterion is easily verified: ooI'A is a union of (preprojective)
components if and only if the following condition is satisfied:

(P) If P is an indecomposable projective A-module, and some
indecomposable direct summand of rad P belongs to J(A-mod), then rad P
belongs to _(A-mod).

An immediate comsequence is the following: assume the radical
of any indecomposable projective A-module is indecomposéble or zero, and
that there exists at least one simple projective A-module, then °°I‘A is
non—empty and a union of preprojective components of PA‘

Examples of classes of algebras which have preprojective com-
ponents are the following:

- the hereditary algebras
- the concealed algebras (see lecture 2)

- the canonical algebras (see lecture 3).

One should observe that the Auslander—Reiten quiver of an
algebra A usually will not have any preprojective component at all, but
even for A being connected, there may be more than one preprojective

component, as the following example shows:

®)
o‘:" )
B
1

Ti

o 101 =0, Yooz =0

(Here, and in the following, it often will be convenient to exhibit an
algebra A by a quiver with relations, this means that the opposite alge-
bra A°P is obtained from the path algebra of the quiver by factoring
out the ideal generated by the given relations. In this way, the category
A-mod is just the category of all representations of the quiver which
satisfy the given relations! We should recall that a representation V of
a quiver Q is given by a set of (finite-dimensional) vectorspaces Voo
indexed by the vertices x of Q, and linear maps V, @ Vs(u) — Ve(a)’

indexed by the arrows o of Q.)
Let us outline the actual construction of a preprojective

component by considering the following example:
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First, one has to determine the indecomposable projective modules and
their radicals., Any vertex =x of the quiver Q of A determines a
simple module E(x) (if we consider E(x) as a representation of Q, the
vectorspace indexed by x is k, all others are 0), and we denote by
P(x) the projective cover of x (considering P(x) as a representation
of Q, the vectorspace P(x)y is obtained from the free vectorspace with
basis all paths from x to y as a factorspace by taking into account
the given relations). In this way, we obtain all simple and all indecompo-
sable projective modules. Note that for any representation V of Q, the
dimension of Vx is just the Jordan-H8lder multiplicity of E(x) in vV,
and it seems to be rather suggestive to arrange the entries of the dimen-~
sion vector in the form of the quiver, Actually, it will be convenient to
denote V just by dim V, provided V is the only indecomposable module
with this dimension vector. (The indecomposable modules in °°(A-mod)
always have this property, an account of this result will be given in the
second lecture). In our case, we obtain the following list of indecompo-

sable projective modules and their radicals:

X a b c d e f g h
o 0 i o o] () o o
o i 1 o o o <] 1

P (x) Tooo®  looe®  looo® liee® Mi10® Mi11° 116 iy
o o o o o o 1 o

rad P(x) 0 P(a) P P(a) P(d) Ple) PCe) 1.}

The module P(a) is simple projective, and all rad P(x), x 4 a, are in~
desomposable, thus the criterionmentioned above asserts that A-mod has a
preprojective component,



We are going to construct inductively d(A—mod) and ,T,.
The indecomposable modules in o(A.-mod) are the simple projective ones,
(In our case, orA consists of the single vertex [P(a)]. In particular,
ol A will be connected.) Suppose we have already constructed d(A-mod),
and ,T,, for some d > o. We single out the indecomposable modules X

in d(A--mod) which satisfy the following properties:

i) x = [X] is an injective vertex of dPA’ and there 1s an arrow

Xx —ry in drA’ with y not belonging to d—]FA'

ii) If M 1is an indecomposable module in d(Armod) with an arrow

[M] — x in T,, then either M is an injective A-module, or else
[M] is not injective in ,T,.

iii) If X is a direct summand of rad P, with P indecomposable pro-

jective, then P belongs to d(A.—mod).

Suppose X satisfies i), ii), iii). Consider the vector

~dim X +ZdimY ,
£ L o

where the summation extends over all arrows o : [M] — {Ya] starting
in [X]. In case this vector is not positive, X is injective, thus the
t-orbit of [X] in r, ends in [X]. Or else, this vector is the dimen-
sion vector dim 17X, and "X Dbelongs to d+1(A--mod); in this case, we
obtain [t"X] as a vertex of T, outside aTar With t[tx] = [x]
(the arrows ending in [T7X] are uniquely determined by the condition on
d+1FA to be a translation quiver). Im this way, we will obtain several
new vertices in d+lTA all of which are non-projective. In case there
exist indecomposable projective modules P mot belonging to d(A-mod),
we have to check whether there exists such a P with rad P in d(A.--mod).

Thus assume P is indecomposable projective, does not belong to d(A-mod),

N,
rad P = @ Yil with all Yi indecomposable, and pairwise non-isomorphic,

and all Y. in d(A-mod). In this case, [P] is a vertex of d+lPA out-
side 4T and there are n, arrovs [Yi] —- [P]. This finishes the
construction of d+er' Let us consider our example: suppose we have alrea-
dy constructed SPA’ namely the part depicted below by solid arrows, and
we are going to construct 6PA' There are three indecomposable modules X

which satisfy the conditions 1), ii), iii), namely those with dimension

19
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vectors ©100°* llloo’ and 22210, and the calculation of dimension vec-
o +] 1

tors shows that none of these is injective (of course, this could be

checked also directly!). In this way, we obtain three non-projective ver-

tices in 6TA outside SPA' Also, the indecomposable module Y with
o

dim Y = 11:10 is just rad P(h), thus 6PA contains in addition

o
[P(h)], and there is just one arrow ending in [P(h)], and this arrow

starts in [Y¥]:

olo

/\/\

!lo

ooo//ro‘m\\\%mo//"loo \\\\“llo////# h
\,/ \m/ \.,
NSNS

0
l o : o ° 2
it llo "'-3- o 221 e T 221
i | 1

]

o 1

N ) 11://1 116°
V. \\\‘
: i /

[+]
o H
110° I
1 o

Q

o
A

3 Continuing in this way, we obtain the complete component. In
our case, the component turns out to be finite, thus it is the whole Aus-
N lander-Reiten quiver Tye Actually, as soon as we know the position of

i the projective vertices, we may as well work solely with the length func~
tion: it only remains to determine whether any vertex is an injective one,
g and this can be read off from the values of the length function. In our

Y case, we obtain the following values of the length function:

20
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Looking at the Auslander-Reiten quiver TA of an algebra A,
the indecomposable A-modules seem to be converted into mere vertices of
a graph. So, an obvious question is under what conditions one may recover
the modules from the combinatorial data. In case we deal with a preprojec~
tive component T, everything works out very well: Let X be an indecompo-
gsable module. We decompose AA = @ Pi’ with Pi indecomposable (and pro-
jective), and A may be identified with the endomorphism ring
End(AA) = End (@ Pi)’ thus A 1is given by the various Hom(Pi,Pj) and

their compositions. As a k—space, there are the canonical isomorphisms
Im Hom(AA,X) ~ 6 Hom(Pi,X),

and the A-module structure on X corresponds to the operation of

@ Hom(Pi,Pj) on © Hom(Pi,X), using the composition of maps. Assume now
that X belongs to I'. Then, any P, with Hom(Pi,X) + 0o also belongs
to T, since I 1is a preprojective component. Also, T is standard, thus
we may calculate in k(') all the non-zero Hom(Pi,X), all Hom(PS,Pt)
where both Ps’Pt belong to T, and all the corresponding compositions.
We may reformulate this as follows: Let e be an idempotent of A such
that all the indecomposable direct summands of Ae belong to T, whereas
none of A(l-e) belongs to T. Then, first of all, (1-e)Ae = o, therefore
A(l-e) 1is a twosided ideal, and the algebra A/A(l-e) ™~ eAe can be cal-
culated in k(I'). Also, given an indecomposable module X in T, we have
(1-e)X = o, thus X as an A-module is in fact an A/A(l1-e)-module, and

X, as an A/A(1~e)-module, can be calculated in k(I'). Let us return to
the example considered above. We have calculated the values of the length
and we see that there is a unique, indecomposable module of maxi-

The explicit calculation of dimension vectors

function,
mal length, namely T-7P(e)-
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2
shows that dim T-7P(e) = 23232 . As a quiver representation, this module
2

is given by four 2-dimensional, three 3-dimensional, and one 4-dimensional
vectorspace. Later in this lecture, we will draw attention to these vec-
torspaces and suitably defined subspaces.

Translation quivers do not only arise in the representation
theory of finite-dimemsional algebras, but also for many related struc~
tures. We will conmsider in this lecture a second case: the Auslander-Rei-
ten quiver of a finite partially ordered set. First, we recall the main
notions of the representation theory of partially ordered sets, Let S
be a finite partially ordered set. An S-space is of the form
V= (Vw;vs)s €g’ where V is a vectorspace, all Vs’ s € 8, are subspa-
ces of V , and V SV, for s < t. The space V  is called the total
space of V, its dimension is denoted by gigm V.Amap £ : V—W of
S-gpaces is given by a k-linear map fw 2V, W, satisfying
stw EEWS, for all s € S; the restriction of fm to V. will be denoted
by £:V, —> W, and we may write f = (f3£). It will be convenient to
consider besides § also the partially ordered set s obtained from $
by adding a new element ® with s <« for all s € S. We denote by

2(8) the category of all S-spaces with finite-dimensional total space. It
is a Krull-Schmidt category with short exact sequences, a short exact se-—
quence is of the form (f,g), where £ : V' =V, g : V — V" are maps
of S-spaces such that all the sequences

£ 8
0 — v! —Er vy ¥ —0

are exact, for t € s*. 1f (f,g) is a short exact sequence, then £ may
be called a proper mono, and g a proper epi. Note that £ : LARE e

is proper mono if and only if fm is mono and V;fS = Véf n v, And,

g : V— V" is proper epi if and only if all g, s € S, are epl. For

s € S+, we define an S-space Ps(s) by (Ps(s))t = k for all t > s,

and = O otherwise,.These S-spaces behave similar to the indecomposable
projective modules: they are the only indecomposable S-spaces which have
the usual 1lifting property with respect to all proper epis. Similarly, we
may consider the indecomposable S-spaces which have the extension property
with respect to the proper monos: they are denoted by Qs(s) with

s € S U {w'}. Here, (Qs(w'))t =k for all t € S+, and, for s € S, we
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have (Qs(s))t = k provided t f s and = 0 otherwise. Since 2&(8) is k
a Krull-Schmidt category, we may speak of source maps and sink maps in

2(8), and there is the corresponding result which seems to be due to Bau-

tista: i

THEQREM. For any indecomposable S-space V, there exists a i

source map and a sink map, and both are unique up to isomorphism.

Let Z be an indecomposable S-space with sink map g : Y — Z.
Either 2 = Ps(m), then Y =0, 0r, Z = Ps(s) for some s € S, then ¥
has one-dimensional total space; im particular, Y is indecomposable. Or,
if 7 1is not of the form Ps(s) for any s €S+, then there is an exact
sequence (f,g) of S-spaces, say with f : X — ¥, the S-space X 1is
indecomposable and £ 1is a source map.

Let X' be an indecomposable S-space with source map
f£' : X' —> Y', Either X' = Qs(w'), then Y' =0. Or, X' = Qs(s) for
some s € S, then Y' has one-dimensional total space; in particular, Y'
is indecomposable. Or, if X' is not of the form Qs(s) for any
s € SU{w'}, then there is an exact sequence (f',g') of S-spaces, say
with g' : Y' —> Z', the S-space Z' is indecomposable and g' is a
sink map.
Of course, as in the case of a module category, the short ex-
act sequences (f,g) with £ : X —* Y a source map, g : Y— 2 a
sink map, are called Auslander-Reiten sequences, we write X =1TZ, Z = T X,
and there is the same relation between such an Auslander-Reiten sequence
and irreducible maps starting in X or ending in 2. In particular, the
Auslander-Reiten sequences in 2(S) show that we may define a translation
quiver Iy in the same way, as we have defined the Auslander—Reiten qui-
ver of an algebra, and Tg is called the Auslander-Reiten quiver of the
partially ordered set 5. Note that the function gigm is an additive
function on PS.

Tn contrast to the case of an algebra, the Auslander—-Reiten
quiver of a finite partially ordered set S always has a preprojective
component and this component is just  Tg. The reason is very simple: the
projective vertices of [Ig are of the form [Ps(s)], s € S+, there is a
unique source in Ig» namely [Ps(m)], and any other projective vertex
has a unique direct predecessor in Tg, since, as we have seen, the 5-

space Y occurring in the sink map Y ——e-PS(s), for s € § , is indecom-



posable. The translation quivers of the form mPS can be characterized
as follows.

Given a preprojective translation quiver T with a unique
source w, there exists a unique additive function hP such that

hr(m) =1, and hT(P) = I hr(s(a)), for any projective vertex p # o
e(o)=p
of T (the existence and unicity is shown by induction on d € W, where

T'= d

ver I with a unique source is called a left hammock provided hP takes

I', and then follows for T = _T). A preprojective translation qui-

values in INI and satisfies hr(q) > L hr(e(a)), for all injective
s(a)=q

vertices q¢ of T, and, in this case, hP is called the hammock function

on T, A left hammock T is said to be thin provided hP(p) = 1 for any

projective vertex p of T.

PROPOSITION. ([RV]) If S is a finite partially ordered set,

then mPS is a thin left hammock, and the hammock function on mrs is

just the function Qigw. Conversely, any thin left hammock occurs in this

way .

In particular, we see that the preprojective component T

of PS has no multiple arrows. We may pose the following problem:

Problem 4. Let X,Y be indecomposable S—spaces. Is always
dim Irr(X,Y) < 1?

As in the case of an algebra, a component T of TS may be
said to be standard provided the full additive subcategory of £(8) whose
indecomposable S-spaces are the S-spaces belonging to I is equivalent
to k(T).

PROPOSITION, Let S be a finite partially ordered set. The

component T -always is standard.

The actual construction of _4&(S) and °°I’S is done in the
same way as in the case of an algebra. Again, it is convenient to work
with .integral vectors: given an S-space V, let
gigs V = (dim Vs dim.VS)S €g? and we will arrange the entries dim Ve
(s € 8) in the form of §. (Recall that the first component dim V,
of gigs V also has been denoted by gigm V.)., For example, consider the
partially ordered set S

24
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For the example we have chosen here, it turns out that mTS actually is
finite, and (as in the case of an algebra) this implies wFS = FS’ thus
there are only finitely many isomorphism classes of indecomposable S-spa—
ces (of course, in this case, S is said to be representation finite).
The complete Auslander-Reiten quiver PS together with its hammock func—

tion dim 1looks as follows:

1
1/ \] 2NN l/ \2/ \1 "‘\I
\1/ \1 1/\ /\2/'\l /\2/ \2/ \l 1/’\.lz'
\1/'\1 I/ \2/ \2’ \2’ \2/ N, \2/ \2/ \1 lﬁ \1/
\/\/\/\/\/\/\/\/\/\/‘\/’\/
[l 2201+ 225 =291 =323+ =22 ] r2 o] >2+]+]
\lﬁ \2/ \l/ \lf \2/ \2 \2/ \l/ \I/ \2’ \l/
AN S NANANSN S N NS

Also here, we may ask whether it is possible to recover an
S~space from the component it belongs to, and its position in this compo-
nent. Again, we will see that this is possible in case we deal with pre-
projective components! Given any S-space V, we may consider the vector-
space Hom(Ps(m),V) and its subspaces Hom(PS(m),PS(S))Hom(PS(s),V),
defined for any s € S. In this way, we actually obtain an S-space
(Hom(P (w),V); Hom(P (w), P (s))Hom(P (s),")) s €S We choose a non-zero
element E € (P (m)) = k, the evaluatlon at £ gives an isomorphism
Hom(P 4 (w) ,V) ~ v, Whlch maps the subspace Hom(Pg(w),P (s))Hom(P (8),V)
onto VS, for any s € §, thus

V= (Vm;v’s)S €g ™ (Hom(P 4 () V) ;Hom(PS(w) ,Ps(s))Hom(PS(s) V) es

If V belongs to _A(8), then Hom(PS(s),V) can be non-zero only in case
Ps(s) belongs to _2(5), and, since mTS is standard, we can calculate
for any Ps(s) in _2(8) the spaces Hom(PS(w),Ps(s)),Hom(PS(s),V), and
the composition, inside k(. T;), whereas for Ps(s) outside 2%(8), we
have both Hom(PS(s),V) = 0 and Homk(rs)([PS(s)],EV])= 0. Altogether,

we conclude that for V in _T(8), we have

V=V V) e ﬂ"’(Homk(l,S) (p(w),v) ;H"mk(rs) (p(w) ,p(s))Homk(TS) (p(s)sv)g ¢

where p(s8) = [Ps(s)] for any s € S+, and v = V], Of course, we should

26
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keep in mind that the partially ordered set S itself can be recovered
from k(I') only partially, what we can recover is the full subset
{s€es| Ps(s) € _A(8)}, it is a filter in S. Given any S-space V, let
us define its support SV as the set of all s € § such that

X Vt :'V , with the induced ordering. Clearly, we may recover V if we
t<s

know just Vw and the subspaces VS, s € SV‘ For example, in the special

case considered above, the S-space V= T—6PS(]0) has as support the

71 IS'
6 77

of S8, so it is completely determined by its total space which we may

subset

assume to be Homk(r (p(w),v), and the subspaces
Homk(r )(p(w),p(s))Homk(r )(p(s),v) for s=1, 6, 7, 7', and 8', Let us
dlsplay the vertices p(s) for s=wuw, 1, 6, 7, 6', 8'; and, in addition,

the vertex v inside PS:

p(l) p{6) o o o o
pluw \o p(7)ﬁ \o/ \o o/’ \o/ \o o/ \o
NN o \o/’ N NN v
NN i NN SNTN NS \0/ NN, AN
\040}040-\#‘0{:03040}0-{’PO}O{O}V{:O}O{’-’O}OdOBOfO}O—/:OEQ/
N S NN ANSSNININS NS NN
;BG'\dﬂ &,4‘\g’\%/ N NSNS

Note that the dimension vector of V, considered as an

§y-space, is (3;2%?).

A finite left hammock is just called a hammock. For left

27

hemmocks, there is the following result on the growth of the hammock func-

tion along a T-orbit, and we will outline below that this implies that

any hammock is thin,

PROPOSITION. ([RV]) Let H be a left hammock, and x a

! # ] e *
vertex of H. If =x is injective, then hH(x) =1, If x 1s not injec-
tive, then hy(x) 2 h (T x) + 1.

G
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This result has many consequences. First of all, given an in-
jective vertex q of a left hammock H, then q can be starting point
of at most ome arrow, and if there is an arrow
q —r y, then also hH(y) = 1, Consequently, a hammock has a unique sink.
it follows easily that the opposite tramslation quiver H* of a hammock
H, is a left hammock again, and in fact, a thin one., Thus, by symmetry,

a hammock is always thin. We conclude that the hammocks are just the Aus-
lander—Reiten quivers of the representation-finite partially ordered sets.

As an application, let us outline a relation between the
Auslander-Reiten quivers of representation-finite algebras and represen-—
tation-finite partially ordered sets. In fact, first consider only

representation-directed algebras; by definition, these are those represen—

tation-finite algebras A whose Auslander-Reiten quiver Ty has no
oriented cycles, or equivalently, those algebras A for which PA is a
preprojective translation quiver. Let P(x) be an indecomposable projec-
tive A-module, say P(x) = Ae(x) £for some primitive idempotent e(x)

in A, and let A.x = A/<e(x)>, where <e(x)> is the twosided ideal of A
generated by e(x). Of course, the Ax-modules are just those A-modules M
satisfying Hom(P(x),M) = 0, thus those A-modules M which do not contain
E(x) = P(x)/rad P(x) as a composition factor. Given A-modules M,N and
two maps f,g : M ~— N, define f£ > 8 iff £ -g factors through an
Ax—module, thus iff the restriction of £ ~g vanishes on e(x)M, and this
is equivalent to Hom(P(x),f-g) = O. The factor category of A-mod obtained
in this way is denoted by H(x), its objects are the same as those of

A-mod, and
HomH(x) (M,N) = Hom(M,N)/ ; .

Note that the indecomposable objects in H(x) are given by those inde~

composable modules M - with Hom(P(x),M) # 0. If we denote by H(x) the
full translation subquiver of T, with vertices of the form [M], where
M is an indecomposable module satisfying Hom(P(x),M) # O, then one sees
rather easily that H(x) is equivalent to k(H(x)), since A-mod is equi-
valent to k(PA). Let us investigate the translation quiver H(x): With

Ta
has a unique source, namely [P(x)]. Consider the function

also H(x) is a preprojective translation quiver, and obviously H(x)

[M] — dim Hom(P(x),M) on H(x). Since P(x) is projective, this is an
additive function even on all of T'). Also dim Hom(P(x),P,(x)) = 1, where-

as for P(y) inde-



!
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composable projective, and [P(y)] # [P(x)], we have dim Hom(P (x) ,P(¥))
= dim Hom(P(x),rad P(y)). It follows that this function is just hH(x)'
Consequently, hH(x) takes values in INI. Also, for Q indecomposable
injective, we have dim Hom(P(ﬁ),Q) > dim Hom(P (%) ,Q/soc Q), thus hH(x)
satisfies all the properties of a hammock function, thus H(x) 1is a
finite left hammock, thus a hammock. We can now use the previous result
which asserts that H(x) is the Auslander-Reiten quiver TS(x) of some
representation finite partially ordered set. Thus, there is the following

theorem:

THEOREM. ([RV]) For any indecomposable projective module
P(x) of a representation-directed algebra, there exists a partially or-—
dered set S(x) such that H(x) and 2(S(x)) are equivalent categories,

and H(x) and rS(x) isomorphic tramslation quivers.

Note that the hammock functiom on H(x) is
[M] ~ dim Hom(P(x),M), whereas the hammock functien on rS(x) is
A F—*—gigm Vv, and the unicity of hammock functions asserts that these
functions are equal when we identify H(x) and rs(x). There is the fol-

lowing corollary:

COROLLARY. If M is an indecomposable module over a repre=
sentation-directed algebra, them all entries of the dimension vector

dim M are bounded by 6.

Proof. The entries of dim M are (dim M)x =
dim Hom(P(x),M): thus, if QEQQ'M)X # 0, then [M] is in H(x), and
QEEE'M)X = hH(x)([M])' On the other hand, a well-known theorem of Klejner
asserts that the total space of an indecomposable S-space, where § is
representation finite, is bounded by 6. Since S(x) is representation
finite, we can use this theorem: the hammock function on PS(x) is boun-
ded by 6.

The rather strange bound 6 first appeared in the theorem of
Klejner. There is a general result due to Ovsienko from which one may de—-
duce the assertion of the corollary without difficulty. There are also
other proofs of the corollary known which however seem to be more awkward.
Note that the proof above shows that the assertion concerning modules is

a direct consequence of that concerning S-—spaces.
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n
Assume now that A is basic, let AA = @& P(x), thus
x=1
P(1),...,P(n) is a complete list of the indecomposable projective modules.

For any x, let S(x) be the partially ordered set given by the theorem,
with H(x) = 2(5(x)), and H(x) afFS(x). If M is an indecomposable mo-
dule, let Mﬁ = Hom(P(x),M), and we identify M with & Mx' If M is
indecomposable and Mi # 0, then M is an indecomposable object in

H(x) = 2(S(x)), and the dimension of the S(x)}-space ﬁx corresponding

to M is dim M_» thus we may consider M itself as total space of this

S(x)~space, thus M, = (Mix;(Mx)S)S € 5(a)" Note the following:

1) We obtain all indecomposable S(x)-spaces in the form ﬁx’ with M
indecomposable (and Mk % 0).

2) If M 1is indecomposable, M& 4+ 0, then the isomorphism class of the
8(x)~-space ﬁk determines the isomorphigsm class of M uniquely.
3) Let n(x) be the sum of the dimensions of the total spaces of all
S(x)-spaces occurring in a complete list of indecomposable S(x)-spaces
(thus, the sum of all values of the hammock function hH(x))' Then

n

I n(x) is the sum of the dimensions of the modules occurring in a com~
x=1
plete list of indecomposable modules.

Indeed the direct sum ® M of all modules M occurring in a

complete list of indecomposable modules can be written in the form

g ] M%, and the dimension of g M, ist just n(x).
X

As an illustration of the theorem, we consider again the alge-—
bra A which has served before as example; as we have seen, this algebra
is representation-directed, If we focus on the hammock H(b) defined by

the vertex b, we obtain the following shaded part of %

VAN AN AN
\'o/p . f’ / \u/ ./
\0{::—’,- h,/
N 6{ 0
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but this is just the hammock which was exhibited above as the Auslander-
Reiten qu%ver PS of some specific partially ordered set, thus S = S(b).

In which way does one obtain S(x) in general? The elements
of 8(x) are the projective vertices of H(x), thus they are of the
form [U], where U is an indecomposable module, with Hom(P(x),U) # O,
and Hom(P(x),tU) = 0. The fact that the hammock H(x) is thin means just
that for such a module U, the space Hom(P(%),U) is l-dimensional. Given
two indecomposable modules U,U' with [Ul,[U'] in S(x), we have
[U] > [U'] in S(x) if and only if HomH(x)(U,U')#=0,thus if and only if
Hom(P(x) ,U)Hom(U,U') % 0.

Similarly, given an indecomposable module M with
Mx = Hom(P(x),M) # 0, and [U] € S(x), we can write down (ﬁk)[U] as
follows:

() [y] = Hom(P(x),U)Hom(U,M) € Hom(B(x),M) = M.

Take a projective presentation of U,

with X, = %, and e, ¥ 0 (note that, in general, a minimal projective

presentation will not satisfy these conditions!). Then

t

(M)[U] = {mo EMX }a mj Eijs 1 ij f_t With jEOYij mj = 0’ for all i}.

Let us outline the proof: since Hom(P(x),U) is 1-dimensional,
Hom(P(x),U0) = kso, and therefore Hom(P(x),U)Hom(U,M) €, Hom(U,M) .

Our presentation induces an exact sequence

t
0 — Hom(U,M) — @ Hom(P(xj),M) —

Hom(P (Yi) M)
j=o0 i

1

naes

Here, n € Hom(U,M) is mapped to the tuple (son,...,etn) which satis-
n=0 for all i. Now, any element in Hom(P(x),U)Hom(U,M)

fi I v.s E.
ies j Yis €
can be written in the form €N with n € Hom(U,M), thus define mﬁ = ejn.
t
Conversely, assume there are given mﬁ € M, with Z Y3 mg = 0, for
i j=o

all i. The exactness of the sequence above gives n' € Hom(U,M) with
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n% = ejn' in particular, mé belongs to soHom(U,M) = Hom(P (x) ,U)Hom(U,M).
We return to our specific exampie, and consider the A-module

2
M= T-7P(e), with dimension vector dim M = 23232. We want to determine
2

the S(b)-space ﬁb‘ A comparison of the position of [M] 1in the hammock
H(b) reveals that [M], considered as an element of H(b) = TS(b) is
just [T_GPS(b)(IO)]. For any s € S(b), let U(s) be the indecomposable
module with [U(s)] in H(b), and [U(s)] = [Pg(s)] as an element of
H(b) = PS(b)‘ We recall that the support of T-6P5(b)(10) ig the full
subset of S(b) given by the elements {1,6,7,7',8'}, and that the dimen-
sion vector of TrﬁPs(b)(lo), restricted to its support, is (3;2?%). We

are dealing with the following displayed modules:

7

gp) //k\’/p /P\ E%B) %\,/P\a/fk\Vﬁq\b/f\\{/q\b/P /ﬁk\g/ﬁ\ /f
P(b) ucr) o
ZERRZRIXHHIALIKAKK
RS ERHSRARSRS
G 5t ORI

The recipe for determining (ﬁb)[U(s)] easily yields the following:

s | am v @) yees s | aimue| @) e
1 .
1 1
1] 1.0 ™, 8'1 1! %My
(o] o}
o] o]
71 1.te lotee, @ nemy 7] 1,0 “lelg lo, + m)
111 18 (83Mg N OM, 121 UpBy By (By 0q + My
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For example, in dealing with U(7), we use the presentation

| 0 By =
P(a) & P(e) 5> P(b) ® P(f) @& P(g) —* U(7) — O,

thus (ﬁb)[U(7)] is given by the elements X, € Mb guch that there
exist Xy € M., %, € Mg satisfying

It follows that x = X € My belongs to (MB)[U(7)] if and only if
-1 -1 -l

Altogether, we see that the hammock approach to representation
directed algebras leads to an intrinsic interpretation of the use of sub-
space metﬁods.

Let us add that the hammock approach is mnot restricted to re-
presentation-directed algebras. In case we deal with a representation~-
finite algebra A, we may use the well-established covering techniques.
Actually, we will consider an arbitrary algebra A and an indecomposable
projective A-module P(a) provided there are only finitely many isomor-
phism classes of indecomposable modules M with Hom(P (a) ,M) % O, Of
course, in this case, all indecomposable modules M with Hom(P(a),M) * O
belong to a single component. We use the filtration of Hom(P(a),M)
given by the subspaces M(d) = radd(P(a),M). The dimension of
M(d) /M(d+1) counts the multiplicity of Jordan-Hélder factors of M of
the form P(a)/rad P(a) which can be reached from P(a) by means of maps

d+l. We define a tramslation quiver H(a) as

in radd, but not in rad
follows: its vertices are the pairs ([M],d), where M is an indecompo-
sable module with M(d) # M(d+1). There are only arrows

([M1,d) — ([N],e) for e = d+l, and the number of arrows is equal to
dim,_ Irr(M,N). Finally, ([M],d) is projective if either d <1l,or both d>2
and (M) (d-2) # (M) (d-1)3; and t([M],d) = ([M],d-2), otherwise. For A
representation-directed, the translation quiver comstructed in this way

is canonically isomorphic to the previously constructed hammock. Always,
the translation quiver H(a) is a hammock, thus, there exists a represen—

tation-finite partially ordered set S(a) with H(a) = PS(a)'

33
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We end this lecture with two problems.

Problem 5. Which representation~finite partially ordered

sets do ocecur in the form 8S(a)?

Note that there are examples of representation-finite partial-

1y ordered sets which cannot be realized in the form S(a).

Problem 6. Let A be a representation—finite algebra. Is
it possible to construct the partially ordered sets S(a) without prior
knowledge of PA? And, what kind of relations do exist between the vari-

ous S(a)?
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LECTURE 2

SEPARATING SUBCATEGORIES: CONNECTING COMPONENTS AND SEPARATING
TUBULAR FAMILIES

A full subcategory of A-mod which is closed under direct sums

and direct summands will be called a module class., We will focus our atten-

tion to an interesting phenomenon, the existence of separating subcate-
gories: for some kinds of algebras A, it turns out that there exist mod-
ule classes P, S, @ in A-mod such that any indecomposable A-module be-
longs to P or S or ¢ (thus, P, S, @ exhaust the category A-mod),
that Hom(X,Y) = O provided one of the following conditions is satisfied:
X€Q, YEP; or XEO, YES; or XES, YE P, and finally, given
PEP,Q€Q, then any map P —> Q can be factored through an object in
S. In this case, we call S a separating subcategory, separating P from

Q. We may visualize these subcategories P, S, € in the following way

O

with possible maps only going from left to right,

We are going to list some properties of separating subcate-
gories. In order to do so, we will need some further definitions. A se-
quence (Xo’xl""’xm) of indecomposable modules with rad(Xi_I,Xi) + 0,
for all I<i<m, will be called a path of length m in A-mod. In case
there exists a path (XO,X],...,Xm) in A-mod, we will write Xo'j_Xm.
Note that for any path [Xo] —_— [XI] —> vee = [Xm] in T,, the se-
quence (Xo’Xl""’Xm) is a path in A-mod, whereas, obviously, the con-
verse usually will not be true, Note that for a given path (Xo’xl""’xm)’
the modules Xi may not even belong to the same component of PA. A sub-
category M of A-mod is said to be path-closed provided for any path
(XO,XI,...,Xm) in A-mod, with X ,X in M, all X, belong to M, A mod-
ule M 1is said to be sincere provided any simple module occurs as a com-
position factor of M, Note that any faithful module is sincere, but it is
easy to construct sincere modules which are not faithful (unless A is
semisimple): just take the direct sum of all simple modules. In general,
there even will exist indecomposable sincere modules which are not faith-
ful,

Assume now that S separates P from Q. Then P, S, @ all
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are path closed, P is closed under T, whereas O is closed under To.
Also, S is closed under T if and only if P is closed under t , and

S 1is closed under 1 if and only if @ is closed under 1T, If A 1is
connected, and S # {0}, then P and Q are uniquely determined by S.
Assume now in addition that all projective modules belong to P and all
injective ones to Q. Then S contains sincere modules, and rather strong
homological properties are satisfied by P, S, Q. Namely, if X belongs
to P or to S, then proj.dim.,X < 1. (The proof rests on the well-known
criterion that proj.dim M < 1 if and only if Hom(I,tM) = O for any in-
decomposable injective module I), Similarly, if Y belongs to S or to
0, then inj.dim. Y < 1. Since any submodule of a projective module be-
longs to P, and the modules in P have projective dimension at most 1,
we see that proj.dim M < 2 for any module M, thus ﬁhe global dimension
of A 1is at most 2,

The algebras which we will exhibit in this lecture often will
have finite global dimension, usually the global dimension will be rather
small., One of the important features of algebras of finite global dimension
is the possibility of using quadratic forms. We demote by K,(A) the
Grothendieck group of all A-modules modulo all short exact sequences. It
is a free abelian group of finite rank, with the set of simple modules as
a basis. With respect to this basis, we may identify K, (A) with Zn,
and the element of K, (A) corresponding to the module M is just dim M,

Assume now that A has finite global dimension, say gl.dim,A = d. Then

it is easy to see that d
<dimM, dimN> = I (-1)“dim Ext™(4,N)
i=0

(with Ext® = Hom) is well defined and extends to a bilinear form on KO(A).
The corresponding quadratic form will be denoted by ¥ = Xpo thus x{x) =
<x,x> for x € KO(A), but one should observe that <=-,-> usually is non-
symmetric, There is an easy way to calculate <-,->, Denote by P, the
projective cover of the simple module 859 12 i<n, and let Cy, be the

n X n-matrix with i-j-entry given by dim Hom(P(i),P(j)), thus the j-th

column is just (dim P(j))T. This matrix C, is called the Cartan matrix

A

for A. For A of finite global dimension, C

" is invertible (even over Z),

and

<x,y> =xC 1y

for x,y € K,(4),
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The first examples of non-trivial separating subcategories to
be known were found for hereditary algebras. Let us dwell for a moment on
these algebras, so suppose A is a (finite-dimensional) connected heredi-
tary algebra, thus the path algebra A = kA of some finite connected
quiver without oriented cycles. As we have mentioned in the first lecture,
A always has a preprojective component and this compoment is unique and
embeds into ZA. We denote by P the module class whose indecomposable
modules belong to the preprojective component; the modules in P will be

said to be preprojective. Now, kA is representation-finite if and only if

A is of type An, D_, Eg, E,, or Eg, and in this case, P = A-mod, So
assume kA is not representation-finite. Then, the preprojective component
is of the form WA (= the full tramslation subquiver of ZA given by all
vertices (z,x) with =z €WN). By duality, there is a similarly defined
module class ¢, modules in @ will be said to be preinjective (with kA,

also kA* 1is a hereditary algebra, and a kA-module belongs to ) if and

only if its k-dual is a preprojective kA*-module), and the component of

T
A
(- IN)A, There always are additional modules which have no indecomposable

containing the indecomposable preinjective modules is of the form

summand in either P or @, they will be said to be regular, and we de-
note by R the full subcategory of all regular modules. Then R is a

separating subcategory, separating P from Q. Taking into account the
particular shape of the preprojective and the preinjective component, we

may think of A-mod as being of the following form,

()

Of course, the regular components contain only regular modules, and the

indecomposable regular modules all belong to regular components. We have
mentioned in the first lecture that for these regular components, there are
only very restrictive possibilities: they are regular tubes, in case A is
an Euclidean quiver (En, Nn, ﬁ6’ ﬁ7 or IES), or else they are of the form
ZA_ . Note that kA is tame if and only if A is Euclidean. The actual
construction of the regular tubes in this case will be outlined later in
this lecture,

Consider now again an arbitrary finite-dimensional algebra A,

An indecomposable module M will be said to be directing provided there
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does not exist a path (Xo’xl""’xn) of length n > 1 with Xo==M==Xn.

Directing modules have very pleasant properties: Let M be directing, then:

(1) End(M) = k, Bxt (M,M) = 0 for all i > 1,
A direct consequence of (1) is the following:
(1" Tf A has finite global dimension (so that X is defined),

xA(dim M =1,
(2) dim M determines M uniquely (more precisely: if also N

is indecomposable, and dim M = dim N, then M and N are isomorphic;

note that the module N is not assumed to be directing).
(3) The annihilator of M in A is generated, as an ideal, by
idempotents. As a consequence, if M 1is sincere, then M is actually

faithful.

(4) If M is sincere, then proj.dim.M < 1, inj.dim.M < 1, and
gl.dim.A < 2,
(5) If M 1is sincere, there are only finitely many indecomposable

modules X with both XA M and M KX.

0f course, one should keep in mind that for any indecomposable
module N, we may look at the classes P(N) = {XI X £ N} of all pre-
decessors and Q(N) = {X] N % X} of all successors of N with respect
to €<, and N will be directing if and only if N is the only module
which belongs both to P(N) and to Q(N). The property (5) now asserts
that for M sincere and directing, all but at most finitely many indecom-
posable modules will belomng to P(N) U Q(N).

Whereas the properties (1) to (4) of directing modules can be
verified directly, we do not know any direct proof for (5). We will in-
vestigate below the algebras which have sincere directing modules rather
carefully, and (5) will be an immediate comsequence of these investiga-
tions; actually we will obtain an explicit bound. The main technical tool
will be the tilting theory.

What are examples of directing modules? First of all, any in-
decomposable module in _(A-mod) is directing: in particular, any inde-
composable module belonging to a preprojective component is directing.
0f course, there is the dual assertion: any indecomposable module belong-
ing to a “preinjective" component is directing. We later will see that it
is possible to comstruct also regular components which only contain direct-
ing modules. First, let us explain the main principles of tilting theory.

By definition, a tilting module is a module T satisfying
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the following three properties: its projective dlmen51on is at most 1,
the T-codimension of AA is at most one, and Ext (T,T) = 0 ({(we say that
T-codim M < m provided there exists an exact sequence

00— M —> Mb — M]-a-> ces —> Mﬁ-——o 0

with all M. being direct sums of direct summands of T); in the defini-
tion of a tlltlng module the second condition may be replaced by the fol-
lowing: T has at least n pairwise non-isomorphic indecomposable direct
summands where n is the number of simple A-modules (actually, the other
conditions force that such a module can have at most n pairwise non-iso-—
morphic indecomposable direct summands!) We should indicate that these con-
ditions refer to T as an A-module, and write AT instead of T, since we

will have to deal at the same time with T considered as a right B-module

B’ where B = End(AI) There is also the dual mnotion of a cotilting moduie
S (its injective dimension is at most one, the §~-dimension of any 1nJect1ve

cogenerator is at most one, and Ext (s,8) = 0).
Given any module M, let G(M) be the full subcategory of all

modules generated by M, and C(M) that of all modules cogenerated by M.
Also recall that a pair (F,T) of full subcategories of A-mod is said to
be a torsion pair provided F consists of all modules X with Hom(Y,X)=0
for all YET, and T consists of all modules Y with Hom(Y,X) =0 for

all X€EF; in this case, the modules in F are said to be torsion free,

those in T are said to be torsion (observe that our notation (F,T) of

a torsion pair presents first the class of torsion free, then the class of
torsion modules, in contrast to a fairly standard usage in ring theory,
however our notation seems to reflect better the underlying theme of "non-
zero maps going from left to right"). The torsion pair (F,T) 1is said to
be split provided any indecomposable module belongs to F or to T. Now

we may formulate the main result of tilting theory:

THEOREM (Brenner, Butler). Let ,T be a tilting module, and
B = End( T) Then the k-dual BS D(T ) of Ty is a cotilting module,
End(TB)—-A the pairs (C(T , G(Ai)) and (C( s), G(T S)) are torsion
pairs, and G(AI) is equivalent to C( S), and C(T T) is equivalent
to G(T;S).

Let us write down explicitly functors which provide the equiv-
alences asserted in the theorem, note that they are restrictions of func-—

tors which are defined on the complete module categories. First of all,



40

there is the functor Hom ( T A-mod —> B~mod, it vanishes on

=)t
C(t T), has image C( S), andBlts restriction to G(AT) glves the equiva-
lence G( T) —_— C( S) Similarly, there is the functor Ext (A B -):
A-mod —> B-mod, it van1shes on G(A?)’ has image G(TBS), and its restrie-
tion to C(TAﬁ) gives the second equivalence C(TAI) —_ G(TBS). As
reverse functors, use the restriction of A:BGD—- to C(BS), and of
Tor (A:B’ -) to G(tBS).
PROPOSITION: Let A be a hereditary algebra, ,T a tilting

A
module, B = End(AT), and _S = D(TB). Then the torsion pair
(C(BS), G(T;S)) is split.

B

An algebra of the form B = End(AT), with AT a tilting module,
and A hereditary, will be called a tilted algebra. The proposition above
asserts that in this situation, we can recover all indecomposable
B-modules N from indecomposable A-modules. For, if N belongs to C(BS),
then N = Hom (A , X) for some indecomposable A-module X in G(
whereas, if N does not belong to C( S), then N belongs to G(T S),

and therefore N = Ext ( X) for some indecomposable A-module X in

>
C(TA?). In this way, we ﬁfialn a bijection between the indecomposable
B-modules and certain indecomposable A-modules, namely those which are
either torsion, or torsion free with respect to our torsion pair.

There is the following criterion for an algebra B in order
to be a tilted algebra. A module class S in B-mod will be calleda slice
provided S is path closed, contains a sincere module, and if, in addi-
tion, the following property is satisfied: given any Auslander-Reiten
sequence 0 —> X ~> Y ~> Z ~> 0 in B-mod, then at most one of X,Z be-
longs to S, and one of X,Z belongs to S in case an indecomposable
direct summand of Y is in S.

The module category of a tilted algebra always contains a slice:
Let A be hereditary, AT a tilting module, and B = End(AT). Denote by
S the set of B-modules of the form HomA(ATB’I)’ where I is an injec-
tive A-module., Then S is a slice in B-mod. We may describe § also
BS = D(TB). Then 8 is the set <BS> of all modules
which are direct sums of direct summands of S5, therefore BS is called

B
a slice module. (Thus, slice modules are the cotilting modules with hered-

alternatively: Let

itary endomorphism rings, and actually a module with hereditary endomorph-

ism ring is a tilting module if and only if it is a cotilting module.)



41

PROPOSITION: Let S be a slice in B-mod. Then S = <BS> for

a slice module BS; in particular, B is a tilted algebra.

This shows that B is a tilted algebra if and only if B-mod
contains a slice.

Slices are separating subcategories! More precisely, let 8
be a slice in B-mod, say S = <BS>, where BS is a slice module. Then S
separates C(TBS) from G(TBS). Let us outline the proof. We have noted
above that (C(BS), G(T;S)) is a split torsion pair. Since the notion of
a slice igs self-dual, we see that similarly (C(TBS), G(BS)) is a split
torsion pair, and the definition of a slice implies that G(BS)fIC(BS)==S,
and also that G(r;S) s;G(BS). It follows that C(TBS), S, and G(tgs)
exhaust A-mod, and that the various zero-map conditions are satisfied.
It remains to be seen that any map f: P —> Q with P 1in C(TBS), Q in
G(TES), factors through a module in S. Note that for any P in C((tg8),
there exists an exact sequence 0 — P ~> §' — 8" — 0, with both 8',S"
in S (thus, S-codim P < 1). [Let gS = D(AI), where A 1is hereditary,-
B,X), with X in G(AT)'

Choose an injective resolution 0 -—> X — I'—> I" — 0 of X, and apply

AT a tilting module, and let P = HomA(AT

F = HomA(ATB,—Q. Since ExtA(AT,X) = 0, the sequence 0 —> FX — FI' -
— FI" —> 0 still is exact. It remains to observe that both FI', FI"
belong to S.] With Q also 7 Q belongs to G(TES), thus Hom(t Q,S™)=0,
therefore Extl(s",Q)==0. But this implies that £ can be factored through
the given inclusion P —> §'.

Assume now that B is a connected tilted algebra, and let S
be a slice in B-mod. Since B 1is connected, the indecomposable modules
in 8 all belong to a fixed component T, and we want to look at such com-
ponents for a while. Let gS bea slice module, with § = <gS>> and we
may assume that A = Eqd(BS) is basic. Since A is hereditary, basic and
connected, A = kA for some finite connected quiver A without oriented
cycles. Now, S is equivalent to the category A-inj of all injective
A-modules, and A-inj can be identified with the path category of A. On
the other hand, constructing inductively the r-translates, and the
" ~translates of the indecomposable direct summands of S, we see that they
exhaust the compoment TI. It follows that T is isomorphic to a full trans-
lation subquiver of ZA . Also, if we denote by S the module class whose
indecomposable modules are those belonging to T, then it is easy to see

that S is again a separating subcategory.
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A component T containing the indecomposable modules of a
slice S will be called a connecting component. The reason is the follow-
s>, End(BS) = A = kA, A? = D(SA), and consider the func-

1
ExtA(ATB, |
belonging to G(A:) go under F to modules in S N C(BS), the prepro-

ing: Let S = 3

= U '
tors F HomA(AIB, ) and F

Il

—). The preinjective A-modules

jective A-modules which belong to C(TA$) go under F' to modules in
Sn G(T;S), thus S, in some sense, connects the preinjective and the pre—

projective component of A-mod:

TT1 ‘
A-mod C(r,T) e ;04D (T =01,
Il T /
S

F ¥
SI b'r Sl
529N\ %2 )
B-mod C(BS) G(r Bs) (Bs = @ si)
8 © UT“Sn

n

Actually, in case (A is representation-infinite and) no non-zero direct
summand of A? is preinjective, then all preinjective A-modules belong to
G(A:)’ and F gives an equivalence between the full subcategory of all
preinjective A-modules, and S N C(BS). Similarly, if (A is representa-
tion~infinite and) no non~zero direct summand of AT is preprojective,
then all preprojective A-modules belong to C(TAI), and F' gives an
equivalence between the full subcategory of all preprojective A-modules
and SN G(T;S). In particular, for AT regular, T is isomorphic to ZA,
thus regular. On the other hand, if AT is not regular, them T cannot
be a regular component. (For, if AI has an indecomposable preinjective
direct summand, say T,, then [Fﬂ%} will be a projective vertex of T.
Similarly, assume that Tj is an indecomposable preprojective direct
summand of T; if T.

J
vertex of T, if T: is projective, then [F(vTj)] is an injective vertex

is not projective, then [F'(TAIj)] is an injective

J
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of T, where vTj is the injective envelopeof Tj/ rad Tj).
in order to show the existence of components of the form ZA,

it is sufficient to exhibit a regular tilting A-module, where A = kA.

PROPOSITION: Let A be a finite-dimensional connected hered-

itary algebra, say A = kA for aquiver A.There exists a regular tilting
A-module if and only if A is neither of Dynkin nor of Euclidean type,
and has more than two vertices.

One direction of the proof is rather easy: In case A is of
Dynkin or Euclidean type, one may prove without difficulties that ZA does
not allow an unbounded additive function, thus it is impossible to have a
component of an Auslander—-Reiten quiver of the form ZA. For A =kA,
where A has precisely two vertices, (and at least two arrows), any non-
zero regular module X can be shown to satisfy Ext!(X,X) # 0, thus, also
in this case, there cannot exist a regular tilting module. The converse
implication is shown by conmstructing effectively regular tilting modules,
see [Ri3). The argument shows that there cannot exist any algebra at all
with a component of the form ZA, with A of Dynkin of Euclidean type.
Since it is known that the Auslander-Reiten quiver of an algebra never comn-

tains a cyclic sectional path [BS], we obtain the following Corollary:

COROLLARY: Let A be a finite connected quiver, and |A0|¢ 2,
Then, ZA can be realised as a component of the Auslander-Reiten quiver
r

A
neither of Dynkin nor of Euclidean type.

of some algebra A if and only if A has mo oriented cycle and is

Problem 7. Let A be a quiver with two vertices, and at least
three arrows, but no oriented cycles. Is it possible to realise ZA as a

component of some PA?

We return to the investigation of sincere directing modules,
say let M be a sincere directing B~module. Denote by S(M~+) the module
class in B-mod such that an indecomposable B-module X belongs to S(M~)
if and only if first M< X, and second, there does not exist an indecom-
posable non-projective B-module 2 with both M= tZ and 2 £ X. Simi~
larly, denote by S(+M) the module class in B-mod such that an indecom-
posable B-module Y belongs to S(+M) if and only if Y=< M, and no in-
decomposable non-projective B-module Z satisfies both Y £ tZ and
7 < M. Then one may show quite easily that both S(4-+) and S(+M) are
slices. In particular, B is a tilted algebra. Let P, S, 0 be the module
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classes in B-mod with S separating P from @, and such that the in-

decomposable modules in S are those which belong to the same component
as S(M+>) and S(-NM). Ifl we realize S(+M) as the set of images of the
injective A-modules under a functoxr F: HomA( ATB,---), where A 1is heredi-

tary, ,T a tilting module, and B = End(,T), we see that N <M for all

indecomﬁosable B~modules N in the image of F. This shows that N X M
for all indecomposable modules in P, Similarly, M X N for all indecom-
posable modules in §. It follows that the indecomposable modules N with
both N &M and MK N belong to S. Let A = kA, where A is a quiver
with n vertices. The component of T, given by the modules in S embeds
into ZA, and the number of vertices in ZA which are incomparable with

a fixed vertex is bounded by n—(-t-l-%l——)- . This shows that there are at most

5 indecomposable modules N satisfying both N <M and M ZN.

Let us stress that any indecomposable module ina connecting com-
ponent is directing; in particular, the regular connecting components are
regular components which only contain directing modules!

As we have seen, the structure of a connecting component is
known, at least if it is a regular component. Of course, we are also inter-

ested in the remaining components of a tilted algebra.

PROPOSITION. A regular component of a tilted algebra which is

not a connecting component is either a regular tube or of the form ZA,.

Problem 8. What are the possible structures of non-regular

components of tilted algebras?

Of special interest are the endomorphism rings B = End( AT)’
where A again is hereditary, connected, and representation-infinite, and
AT is a tilting module which is, in addition, preprojective. In this
case, B will be called a concealed algebra. Note that for a preprojective
tilting module AT (with A hereditary), all but only finitely many in-
decomposable A-modules belong to G( AT), and therefore all but finitely
many indecomposable B-modules belong to C(BS), (where B = End( A’L‘) and

BS = D(TB)) .
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We see that a concealed algebra B has two non-regular components, one
is a preprojective component (the images of the indecomposable preprojec-
) wunder F), the other a preinjective component (the

modules which are either images under F of the indecomposable preinjec—

of the indecomposable preprojective

tive modules in G(AI

tive A-modules or images under F'

modules in C(TAT)), and the remaining components of Ty correspond,

under F, to the regular components of PA' Thus, the module categories

of concealed algebras look like Meoncealments" of the module categories

of hereditary algebras.

The tame concealed algebras play a particula
infinite algebras A

r role in represen-—

tation theory, they are the minimal representation—
Of course, an algebra A is said

itself is representa-

which have a preprojective component.

to be minimal representation-infinite provided A

tion-infinite, whereas all proper factor algebras of A are representa~

tion-finite. Also, it is mot difficult to see th
ve component has a factor

at any connected, represen=

tation-infinite algebra C with a preprojecti

algebra which is a tame concealed algebra. The tame concealed algebras

have been classified by Happel and Vossieck, and the list of these alge~

bras has been reprinted nearly everywhere, so we content ourselves by

mentioning only some of its features: these algebras may be divided into

different types, according to the type of the corresponding hereditary
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algebra. The only tame concealed algebras of type ﬂ%l are the hereditary

algebras of type ﬁ%ﬂ; there :are four kinds of tame concealed algebras of

type IDn H

ses O

sae

e O

e ) ¥ %4

Here, the unoriented edges may be oriented arbitrarily, and, as relationms,
one has to take the sum of all paths from some vertex to another, provided
there are at least two such paths. In addition, there are finitely many al-

~

gebras of types ]E~6, ]E7, ]ES, given by quivers with 7, 8, or 9 vertices,

~r

respectively. The number of isomorphism classes of algebras of types ZE6,
i%,iﬁ% is 56, 437, and 3809, respectively. One of the reasons for the
general interest in the list of Happel-Vossieck is its usefulness for
checking finite representation type; in particular, the socalled Bongartz
criterion makes use of this list (so the list is sometimes also referred
to as the bazar of Bongartz~Happel-Vossieck).

From the presentation above, one may have obtained a feeling
of unsymmetry between the preprojective and the preinjective component of
a concealed algebra B, but this is misleading: Also the preprojective com-
ponent is a connecting component, gince B can be written also as the
endomorphism ring of a preinjective tilting module. In particular, we see

that an algebra may have slices in two different components.

PROPOSITION: A (tilted) algebra B has at most two components

containing slices, and if two, then B 1s a concealed algebra.

For the proof of this proposition, one needs additional tech-

niques which we will report on in the third lecture. These techniques will
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shed more light on the connecting components and clarify the use of tilt-—

ing functors.

Our next topic are the separating tubular families. Given an

algebra A.o and an Ao—module Rb’ the one-point extension AO[RO] of A.0

: A R
by R, 1is the matrix algebra A IR 1 = [00 ko] , its elements are the

matrices [g ;] with a € AO, b €k, T €R,, subject to the usual addi-
tion and multiplication of matrices. The AD[RO]-modules can be written as

triples X = (Xo’xw’YX)’ where Xo is an AOHmodule, Xw a k-space, and
% Ro?Xw ~—>X is Ao—l:f.near. The Ao[Ro]—module E(w) = (0,k,0) is simple
and injective, and conversely, any algebra with a simple injective module

can be written as a one-point extension.
We consider an algebra A.o with a sincere directing Ao—module

W,» In particular, A, has global dimension at most 2, and we denote by C,

its Cartan matrix. As we have seen above, Wo belongs to a slice, say

<5,>> where S, 1is a slice Ao-module, and we can assume that its endo—

'morphism ring is basic, thus of the form kA . Note that the vertices of A

correspond to the isomorphism classes of indecomposable summands of 53 in

particular, one of the vertices of A corresponds to [Wo]. We say that

W is a wing module of type (nl,...,nt) provided the underlying graph

of A is the star Tp ,...,ng and [W]

star. (The star T, 0 i{s obtained from the disjoint union of copies
],oo-, t

of Ani, 1< i<t, by choosing one endpoint in each [Ani, and identifying

these endpoints to a single vertex, the center of the star). So assume now

corresponds to the center of the

that W, is a wing Ao~modu1e. The connecting component of A,-mod contain-

ing W, has, in the vicinity of W,, the following shape:

We have shaded the "wings" of W, these are given by those indecomposable
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modules which are successors of indecomposable modules in‘ S(+Wo), and

predecessors of indecomposable modules in SCWO%J. We will say that W,

is dominated by the Ao-module R, provided, first of all,
. o -1.T, .
dim R0 = (dim Wb)(I*-Co Co),
and second, for any 0 # A: R —> W, the Ao[Ro]—module W(A)==(Wo,k,k)

satisfies proj.dim.W(A) < 1. It is easy to construct algebras with wing

modules, but not every wing module is dominated by some module. In case

o
is a maximal root, W, is always dominated by a projective module. Also

W 1is a wing Ao—module where Ab is representation—finite, and dim W,

other examples of dominated wing modules are known. In particular, the
structure theory for the module categoryof a canonical algebra, as explained

in the next lecture, rests on the use of certain dominated wing modules.

The separating subcategories which we are going to construct

will be tubular families. By definition, a module class T is called a

regular tubular P k-family of type (n],...,nt), provided T is equivalent
to the mesh category k(I'), where T is the disjoint union of tramslation
quivers T(p), p EIPIk, each TI(p) being a regular tube, and such that ¢t
of these tubes are of the form ZA_/ n., 1<i<t, whereas the remaining

ones all are homogeneous. Note that such a tubular family consists of var-

ious components T(p), one for each p € P k, with T(p) equivalent to

1
k(I(p)). We will say that T is a separating family, say separating P

from Q, provided T is a separating subcategory, and, in addition, any
map £:P—>Q, with P in P, Q in @ may be factored through an ob-
ject of any of the module classes T(p), p Eimlk. Now we may state the main

theorem:

THEOREM. Let W_ = be a sincere directing Ab—module, which is
a wing module of type (nl,...,nt) and which is dominated by the Ao—module
R+ Let A= AO[RO], and w = dim W_+ dim(0,k,0) € K (A). Denote by c,
the linear form 1, = <w,—> on KO(A). Let Pw’ Tw’ Qw be the module

clagses in A-mod whose indecomposable modules are those indecomposable X

which satisfy 1w(dim X) <0, =0, or > 0, respectively. Then TW is a
separating regular tubular]P1k~family of type (nl,...,nt), geparating PW

from Qw‘

to a tube in A~mod. We write <~, ~>5 for the bilinear form and %o for

Let us show in which way a wing of W, in A -mod gives rise

the quadratic form on K (A). The condition d:i.mR0 = (dimwo)(I -I-C:;l CE)

fadd &
: 14

m..b'. s e g
et AN ;*]
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1]

. . . ~T,.. T
<d1mRo, _t_i_l_m_Wo >o (dlmRo-) Co (dlmWo)

{

. =T, =1 . T
(dimW ) (C 7+ € ) (dinW )

it

2 % (dimW ) =

Taking into account also the second condition on R,, it follows quite

easily that dim Hom(RO,Wo) = 2, A wing of Wo in Ao—mod is of the follow-

ing form:
Wiy W W
33 N n-i ,n- nn
\. /' NIV « 7/ v
' W23 ﬂwn-Z,n—l wn—-1
/ N \w /’
wl3\ o m=2n
v 7 N 7
) n-1 /WZn
win

where all W, i3 are indecomposable Aj-modules, Wy, =W, and the exhibited
maps are irreducible. Again, using the domination conditions, one can show
that dim Hom(Ro,Wij) =1 for i=0, 1<j<n-l, and for 2% i<n, j =n,
whereas Hom(Ro,Wi.) =0 for 2<ignmn-l, 2<j<n-1, Up to scalar multiples,
there is a unique non-zero map p: R, —> LA which factors through W,,.
We may consider A ~mod as a full subcategory of A-mod, identifying the
Ao-module X, w:.th the triple (X 0,0). Also, given an A ~medule Y 0 e
write YO for the A-module (Y , Hom(R Y ) e), where e:Rj x Hom(R, Y, )—>

Y o is the evaluation map., In A-mod, we obta:.n from the diagram above the

following one:

iy ", Wiy Wt n-t Win
WS AT N /

It is not difficult to see that the maps exhibited in the diagram again are



50
irreducible, thus we look at part of a component 7T(p) of A~mod. A calcu-
lation shows that the dimension vector of the Auslander-Reiten translate
TA-I_J-“ is just dim W, Since W,, is uniquely determined by its dimen-
AW“ = Wnn’ thus Wan
module of period n. In this way, the component T(p) turns out to be a

sion vector, this actually shows < is a T-periodic

regular tube of the form ZA_/n.

For any O % o € Hom(Ro,wo), let T(p) be the component which contains
W(p). Then T(p) 1is a regular tube and T(p) is homogeneous if and only
if p does not factor through an irreducible map Yo —> Wy, with Yo
indecomposable. Also, T(p) = T(p') if and only if p~p' in JPHom(RO,WO);
Thus, the index set for the tubular family constructed in this way is

P Hom (Ro’wo) = ]Plk.

As a typical application, consider the case of Ao = kA®,
wvhere A° is a quiver of type ]An’ ]Dn, IE6, IE7, or 1E8, and Wo the unique
maximal indecomposable A -module. Note that always W,
and, as we have mentioned above, dominated by some projective module R,.
It turns out that A = Ao[Ro] is the path algebra of a quiver of type

Kn’ f)'n, 1, ﬁ7, or &, , respectively (the quiver of A is obtained from

is a wing module,

A® by adding one vertex, and we obtain in this way the corresponding ex-—
tended Dynkin diagram). Now, the type of the wing module is (2,2,n-2),

in case A% is of type D, and (3,3,2), (4,3,2), (5,3,2) in case A is
of type 1E6, IE7, or IE‘.S, respectively. For A% of type An’ the type of
W, is of the form (p,q), with p+q = n+1, and depends on the orienta-
tion of A°. In all cases, it follows that A has a regular tubular
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family T = Tw of the same type, and T comprises just all regular mod--5
ules. The modules in P = Pw are the preprojective ones, those in @ = Qw
the preinjective ones. In this way, we obtain the complete structure of
the module category for any tame hereditary algebra. Any regular tubular
family is, as a category in its own right, an abelian category which is
serial (this means that any indecomposable cbject has a unique chain of
subobjects). In particular, the category of all regular modules over a tame
hereditary algebra is a serial abelian category.

There are also other cases of one—point extensions A==Ab[R0],
where a separating subcategory S, of Ab—mod gives rise to a separating
subcategory S of A-mod. Assume that there is given a subcategory So of
A -mod which separates Po from Qo' The first case to be mentioned is
that of R/ belonging to Qo' In this case, So’ considered as a subcate-
gory of A-mod, is still separating: denote by Q the full subcategory of
A-mod of all triples (Xo’xm’YX) with X, in Q. Then So separates Po
from @. The reason is that Hom(Rb,Mo) =0 for all M  in Po or So.
Here, two of the module classes Po’ So’ Qb are not changed at all when
going from Ao-mod to A-mod, however one should observe that the change of
Qo to @ may be drastically. There is a second, less trivial case, the

one-point extension A = Ao[Ro], where R.0 is a ray module in a component

which is contained in So.

A path x, —> X, =—> ... —> X —> x_ in a translation
1 2 n—-1 n

quiver T is said to be sectional provided tX;. ;| *X¥;_, for all possi-

ble i. A vertex v in T is said to be a ray vertex provided for any

i € N, there is precisely one sectional path of length i and starting

in v and such that the endpoints of the sectional paths of different

length are different. Thus, given a ray vertex v, we obtain a unique in-

finite sectional path
v =v[l1] — v[2] —> ... —> v[i] —> ...

with pairwise different vertices v[i], this path is called the ray start-
ing at v. An indecomposable module V will be called a ray module pro-
vided the component T to which V belongs, is standard, and [v] is a
ray vertex in I. If V is a ray module, the indecomposable module M
with [M] = [V1[i] will be denoted by VI[i].

Let Vo be a ray Ao—module and let I'° be the component to

which v, belongs. Let A = AD[VO], and denote by I the component
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of PA to which Vs considered as an Armoduie, belongs. Then T contains
all of T° and, in addition, the modules Vo[i]. The module V; is again

a ray module, and the ray starting in [VL] is given by
[vo] —_— [v0[2]] ——D e D [Vo[l]] ——— e e e

Since this ray comprises just those indecomposable modules which belong

to I' and not to TI°, we say that I' is obtained from r° by inserting

2 ray. Assume now that V, belongs to a separating subcategory So, say
separating Po from Qo’ and that, in addition, Hom(Vo,So) = 0 for all
indecomposable A,-modules S in So which do not belong to I°. This

last condition is always satisfied in case So is standard. Denote by S
the module class in A-mod which is obtained from So by adding the modules
Vo[i] (and closing under direct sums), let @ be the set of all A-modules
(Xo,Xw,YX), with X, having no direct summand in P or of the form Vo[i].
Then S 1is a separating subcategory, it separates Po from Q.

These last considerations may be applied to the case of Ab
being a tame hereditary algebra, and V, a regular ray Ab—module. We re-
call that the regular modules of a tame hereditary algebra form a regular
tubular family. Now, the ray vertices of a regular tube ZA_,/n are those
vertices which belong to the "mouth"; these are those vertices of ZA,/n
which are end points of precisely one arrow (and starting points of pre-
cisely one arrow), thus ZA_/n has precisely n ray vertices. Recall
that the category of all regular Ab-modules is abelian, and the simple ob-

jects in this category are just the ray modules.
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REPETITIVE ALGEBRAS

The third lecture is devoted to recent investigations of
Happel. As we have seen in the previous lectures, the regular components
of the Auslander-Reiten quiver of an algebra are usually rather well-be~
haved, whereas there are difficulties in dealing with non-regular compo-
nents. Of course, given any translation quiver T, one may delete tﬁe
7-orbits which contain projective or imjective vertices, in order to ob-
tain a better behaved translation quiver rs. Thus, instead of conside-
ring the Auslander-Reiten quiver Ty it has been customary to consider

the corresponding stable Auslander-Reiten quiver (PA)S, and to try to

recover I, from (PA)S' For example, Riedtmann's classification of the
representation-finite selfinjective algebras was done along these lines.
0f course, for a selfinjective algebra, the only vertices of PA which
do not belong to (I'A)S are those given by the indecomposable projective-
injective modules, so there are only few such vertices, and their posi-
tions can be uniquely determined from the knowledge of (I'A)S and the
restriction of the usual length function to (PA)S. On the other hand,
there may be whole components T of PA such that any T-orbit in T
contains a projective or an injective vertex, thus PS is empty in this
case, so it is impossible to recover T from r . For example, this is
the case for any preprojective or preinjective component, but also for
any component obtained from a regular tube by inserting rays. The latter
example shows that there may be more subtle ways of deleting vertices in
order to obtain a regular translation quiver from a non~regular one, how-
ever it always will be awkward to reinsert vertices. Let us outline a com-
pletely different strategy of investigating A-mod by considering solely
regular components.

We will consider in the sequel (associative) algebras R

(defined over k) which are mnot necessarily finite-dimensional and which

. are not required to have a unit element, however, we do require that
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R2 = R (here, R2 denotes the subspace of R generated by all products

T Ty, with T st € R). The algebras which we will encounter will at least
have sufficiently many idempotents, since they may be thought of as being
given by small preadditive categories. Any small k-preadditive category A
gives rise to an algebra ® A, with underlying vectorspace x?y HomA(x,y),
where X,y range over all objects of A, and where the multiplication is
given by the composition of maps in A whenever defined, and zero other-
wise. Of course, in ® A there are many idempotents, namely all the
identity maps of the objects of A, However, ® A has a unit element only
in case A has only finitely many objects. Note that an algebra R is

of the form @ A if and only if there is a complete set {ex | x € 1}

of pairwise orthogonal idempotents in R (the completeness means that

R = x?y exRey)-

Given an algebra R, a (left) R-module M is always supposed
to satisfy the condition RM = M (as above, RM denotes the subspace of
M generated by all elements of the form rm, with r € R, m € M). Note
that in case R has a unit element, the condition RM = M is equivalent
to the usual one on M to be unital, If {ex | x € I} 1is a complete set
of pairwise orthogonal idempotents, and M 1is an R-module, then, as a
vectorspace, M decomposes in the form M = @ exM. An R-module M is
said to be finitely generated in case there are elements Mypeeesly EM

R
rated! If R has a complete set of pairwise orthogonal idempotents and

with M = ZRmi. [Note that in general R itself is not finitely gene-

gR is finitely generated, then R actually has a unit element.]We de-
note by R-Mod the category of all R-modules, by R-mod the full subcategory
of all finitely generated ones. If A is a small k-preadditive category,
then © A-Mod is nothing else than the category of additive contravariant
functors from ® A into the category k-Mod of k-vectorspaces, and

® A-mod is just the full subcategory of all finitely generated functors.
[1f F : A—— k-Mod is a contravariant functor, the corresponding

® A-module is given by the vectorspace % F(x), where x ranges over all
objects x of A, and ® A operates on this vectorspace as follows:

for o € HomA(x,y), m € F(z), let om = F(a)(m) in case y =2z, and =0
otherwise. Conversely, given an ® A-module M, the corresponding functor
is defined as follows: any object x of A is sent to lxM’ any map

@ ¢ Xx—>y to the map lyM —— lxM given by left multiplication by a.]

The algebra R 1is said to be locally bounded provided there
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exists a complete set of pairwise orthogonal primitive idempotents

{e, ! x € I} with Re, and eR being finite-dimensional, for all

x € I. Assume that R is locally bounded, and let {ex | x € I} be a
complete set of pairwise orthogonal primitive idempotents in R. The
R-module Re will be denoted by P(x). One obtains in this way all pos-
sible indecomposable projective R-modules (there may be some dublications:
some of the P(x) may be isomorphic). Similarly, let Q(x) = Homk(exR,k),
one obtains in this way all possible indecomposable injective R-modules-
(again, may.be, with dublications). For a locally bounded algebra R, any
finitely generated R-module is of finite length, thus R-mod is abelian,
and the simple R-modules are of the form P(x)/rad P(x). Also in this case,
any finitely generated R-module has both a projective cover and an injec-
tive envelope in R-mod. It follows that R-mod Has Auslander-Reiten sequen-
ces, and we will denote by PR the corresponding Auslander-Reiten quiver.
From now on, given a locally bounded algebra R, the R-modules we will
deal with, always will be supposed to be finitely generated. We call an

algebra R a Frobenius~algebra provided it is locally bounded, and the

indecomposable projective R-modules coincide with the indecomposable in-
jective R-modules. (Observe that we deviate from the usual terminology,
even in case R being finite dimensional; the usual name in this case is
that R is "Quasi-Frobenius", or selfinjective; whereas Nakayama's
"Frobenius algebras" are finite-dimensional Frobenius-algebras which gatis-
fy some additional multiplicity condition).

Given a Frobenius algebra R, we denote by R-mod the stable

module category: its objects are the same as those of R-mod, namely the
finitely generated R-modules, and given two finitely generated R-modules
X,Y, the set of morphisms from X to Y in R-mod is denoted by
Hom(X,Y), and Hom(X,Y) = HomR(X,Y)LV, where f~g iff f - g factors
through a projective R-module. The residue class of amap f : X —r Y

in Hom(X,Y) will be denoted by £. Note that the isomorphism classes of
indecomposable objects in R-mod correspond naturally to the isomorphism
classes of the indecomposable non-projective R-modules, thus to the ver-—
tices of the stable Auslander-Reiten quiver (PA)S. The stable module

category R-mod preserves much information concerning R-mod,
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Lemma. Let R be a Frobenius algebra, and X,Y indecomposable
non-projective R-modules satisfying HomR(X,Y) # 0, Then there exists an inde~

composable (non-projective) R-module M such that HomR(X,M) ¥ 0,

HOER (M,Y) # 0.

Proof (Vossieck): First of all, assume there exists f : X — Y
which is epi. We claim that £ itself is non-zero. For assume f = f]fz,
vhere £, : X — P, f, : P —> Y with P projective. Since £ is epi, and
P is projective, there exists fé : P —> X with féf = f2, and therefore
£ = f£,£, = (££)f = (flf:}_)nf for arbitrary n € W. Since £ is not split
mono, and X is indecomposable,it follows that (flfé)n = 0 for large n,
thus £ = 0, a contradiction, Similarly, we see that any monomap g : X — Y

satisfies g = O.
In general, take an arbitrary non-zero map h : X —> Y, and

let M be an indecomposable direct summand of the image of h. Let f : X —
and g + M—> Y be the maps induced by h, thus £ is epi, g is mono.

As a consequence, we see HomR(X,M) * 0, HomR(M,Y) + 0.

It follows that for a Frobenius algebra R, a search for directing
modules and for separating subcategories in R-mod can be carried out in R-mod.

We will see below examples where we may use this technique.

Also, we should mention that for a general Frobenius algebra R,
and T a component of PR , the stable subquiver PS is still connected.
Of course, there is the following trivial exception: if R is a simple
artinian ring, then TR consists of a single vertex and no arrow, whereas
(I‘R)S is empty. [Also note the following slightly pathological case:
Assume that R has an indecomposable projective R-module of length 2.

If R is connected, then all the indecomposable projective R-modules are
of length 2, the remaining indecomposable R-modules all are simple, and
(Tg) =28 or mlln. Now, Z&; and ZA, /n  are connected as translation

quivers, but the only case which is connected as a mere quiver is 2&1/1.
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Of course, if R has no projective R-modules of length 2, and I 1ig
any component of FR, then F will be connected not only as a transla-
tion quiver, but as a mere qulver 1

Given any finite dlmen31ona1 algebra A, let us construct the
corresponding repetitive algebra A as proposed by Hughes and Waschbiisch
[EW]. It will be a Frobenius algebra and always infinite-dimensional
(except in the trivial case A = O which we may exclude). Denote by Q
the A-A-bimodule Q = Homk(A,k) (the bimodule actions are defined in
the obvious way: given a',a" € A, 9 €Q, then a'pa" 1is the k-linear
map which sends a € A to ¢(a"aa'). The underlying vectorspace of A
is given by

A= ® A\ ® ® Q) ,
i€z i€%
we denote the elements of A by (a 245 ) i where a; € A, q; €Q, of
course with almost all a. 109 b31ng zero. The mu1t1p11cation is defined
by

(ai’qi)i(al{’qi) = (a, a"al-i-]q qla]'.)l

We also may use the categorical description K =@ K which is derived as
follows: Choose a complete set {e | x € I} of pairwise orthogonal pri-
mitive idempotents.in A (of course, I is a finite set), let A be the
category with object set I, with HomA(x,y) = e Aey, for all x,y €I,
and with composition of morphlsms being the multiplication in A. Thus,
A = ® A, Define the category A as follows: as object set we take Ix Z,

instead of (x,n), where x € I, n €Z, we write x<n>, we define

ngey m=n,
Homy (x<n>,y<m>) = { Homk(eyAex,k) for m = n-l,
0 m ¥ n,n-1.

and the composition of maps is derived from the multiplication in A and
the A-A-bimodule structure of Q. [More precisely, the composition of
Maps  X<p> — y<n> — z<n> 1is given by the multiplication in A, the
compostion x<n> — y<n> — z<n-1> is given by the canonical map

e Aey ® Homk(e Ae ,k) — Hom(e Ae »k) which sends e aey ® ¢ to the

linear form e be > og(e aexae ), similarly, the composition
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x<n> —> y<n-1> —> z<n-1> 1is given by the canonical map
Homk(e Ae ,k) @ e Ae —_ Hom(e Ae ,k) which sends. ¢y © e ae, to the

y
linear form e be r—ﬁ-m(e ae be ) ] It follows that A = 8.A. Note that

~

there exists an 1nf1n1te cycllc group of automorphisms of both A and A,
given by shifting the indices, we denote by Vv a generator of this group,
namely the automoxrphism of A which sends (ai’qi)i to (ai,qi)i with

a:.L = a; 1,q = q; 1> and also the corresponding automorphism of A which

sends x<n> to x<nt+l>.
The A-modules can be written in the following way:

M= (Mi’fi)i’ where the M. are A-modules, all but finitely many being
* — M .

zero, the fi are A-linear maps fi = fi : Q g Mi —r Mi+1 such that

the conditions (C}@fi)fi+l = 0 are satisfied for all i,where always

i €Z. [To wit, given such an M = (M. f.)., consider @ M, as an A-module

using the scalar multmpllcatlon (a 29; ). (m ) (aimi+(qi- l)f 1)1,
where (ai’qi)i € A, and (mi)i ] Mi' For the converse, note that the
element j = (6 ). € A (where Gij is the Kronecker symbol) is an

idempotent, and actually the family {l | § €EZ} is a complete set of
pairwise orthogonal idempotents. Given an A-module M, we decompose M
with respect to this family, thus P% = lj-M.] It is easy to calculate the

indecomposable projective modules. Given x € I, n € Z, we obtain

PA(X) i=n
P(x<n>)i = QA(x) for i = n-l
0 i % n,n~l]

<n>
and fP(x n>) : Q8 PA(x) ——+_QA(x) the canonical isomorphism. 0f course,
this A—module is also the indecomposable injective module corresponding

to the vertex =x<n-i>, thus
P(x<n>) = Q(x<n-1>),

In particular, we see in this way that A is a Frobenius algebra.

There are countably many obvious embeddings of A-mod into
A-mod, indexed over Z. The -<n> embedding with index n will send M
to M<n>, where M<n>i for 1= n; and = 0 otherwise. Observe that the
composition of any of these embeddings =-<n> with the canonical functor
3rmod ——+.Arg9i is still a full embedding. [The reason is the following:

Given A-modules MI’MZ and a map £ : M, — M,, and suppose the corres—
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ponding map f<n> : M <n> — M, <n> factors through a projective module.
This implies that f£<n> actually factors through a projective cover P
of M,<n>. The indecomposable projective summands of P are of the form
P(a<n>) = Q(a<n-1>), and clearly Hom(M]<n>,Q(a<n—1>)) = 0.] The embedding
-<0> will be called the canonical embedding, and we will identify A-mod
with its image under =<0>, Note that in this way we have achieved a full
embedding of A-mod into the rather well-behaved category Erggg.

We should observe that the category A-mod may be defined al-
ternatively as the category of graded modules over some graded algebra.
To wit, let T(A) be the trivial extension algebra of A. The underlying

vectorspace of T(A) is A 6 Q (recall that Q = Homk(A,k)), and the

multiplication is given by
(a,q)(a',q") = (aa',aq'+qa’)

for a,a' € A; and q,q' € Q. The algebra T(A) with the displayed decom-
position T(A) = A ® Q is a Z-graded algebra, where A ® O are the
elements of degree O, those of 0 & Q the elements of degree 1. We
denote by T(A)-grmod the category of finitely generated Z-graded modules
over T(A) and morphisms of degree zero. Obviously, a finitely generated
Z~graded module is of the form (Mi’fi)f where the Mi are A-modules, all
but finitely many being zero, and the f; are A-linear maps

Q G‘Mi -+-Mitl satisfying (2 ® fi)fi+1 =0 for all 1. Thus

T(A)-grmod = A-mod.

We want to consider one example in detail. First, let us intro-
duce the canonical algebras C{\,p) where X = (lo,h],...,kt) is an
(t+1)-tupel of pairwise different elements in IPlk (and we may suppose
Ao = % Al = 0), and p = (po,pl,...,pt) an (t+l)-tupel of positive ‘
integers, and t > 1, Take the disjoint union of linearly ordered quivers

of types Ab +1""'AP +1° the arrows in the i-th quiver will all be de-
o t
noted by the letter o and identify all sinks to a single vertex, and

identify all sources again to a single vertex. Thus, we deal with the

following quiver A(X,p)
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with paths from the source to the sink of length Pys»+esPps respectively,
The canonical algebra C(A,p) is the opposite of the path algebra of

this quiver modulo the relations

0 *
A, T +a, +to, =90, for 2<1i<¢t,
o 1 i - -

[It may look fancythat we insist to deal with the opposite, since obvious-
ly the opposite of a canonical algebra is a canonical algebra again. The
reason is thatwe want to identify the category C(X,p)-mod with a cate~
gory of representations of A(\,p).] The Frobenius algebra F()\,p,q)

which we want to consider is defined as follows: We start with an (n+1)-
tupel A = (m,o,lz,,..,xt) of pairwisedifferent elements of IPIk,two (t+1)-
tuples p = (Po""’Pt)’ q = (qo,...,qt) of positive integers, take coun-
tably many copies A<n>, n € Z of the quiver A(A,p), countably many
copies A'<n>, n €Z of the quiver A(A,q), and identify the sink of
A<n> with the source of A'<n-1> and call this vertex a<n>, and the
sink of A'<n> with the source of A<n> and call this vertex b<n>, As
relations on this quiver A(MA,p,q) we use first of all those which make
all A<n>, A'<n> into canonical algebras, and, in addition the following
ones: Denote as above the arrows of any A<n> by g, (0 2iZft), and
denote those of A'<n> in the same way by Bi (0 € i £t). The additional

relations are the following ones (whenever they make sense):

' a;8; = o, Bje. = o for all o <1ic<t,

P, 4 Py 4 qa, P, q; 4

o,*1_ 1 "o o1 _ ,*1 %o
% B = o By s Bo @1 = By %

u qj pi~u+1
aiBj o = 0 for all 14 j, 1 <uc< P;
u qj p;-ut]
diBj a. =0 for all i+ j, 1<uc¢ qs
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and in this way, we obtain F(XA,p,q) (again as the opposite of the path

algebra modulo the listed relations).

ao BO ao
ene Q4= ¢ = Q——0k= 4y = OG- ., - Ot~ #9e
e =0 D ., A L = Danenn ¢RI '-'Q\ Qhme wre
EI“a<o>*1§;° o1 ‘ '°§;‘b<o>“§§° 81 EI‘3<1>‘EID a1 a b<|>*§I’
t % e % Bt - . —-04 ko-«——m— e —o{ k—
% Be %

It is easy to check that F(A,p,q) 1is a Frobenius algebra, and it may be
considered as the repetitive algebra A for many algebras A defined by
full subquivers of A(A,p,q) and the corresponding relations. For example,
as the notation suggest, we may take the full subquiver of all vertices
in A<o> UA'<o> different from a<l>.

We are going to show in which way we can use the techniques
presented in the last lecture in order to determine at least parts of the
category F{(A,p,q)-mod, for arbitrary 3,p,q. First, we consider the cano-
nical algebra C(A,p). Denote by P the additive subcategory of C(x,p)-
mod whose indecomposable objects are those representations of A(),p) for
which all maps a; are injective, and at least ome q; is not surjective,
similarly, let @ be the additive subcategory of C(),p)-mod with inde-
composables those representations for which all maps u; are surjective
and at least one oy is not injective. Finally, let T be the additive
subcategory whose indecomposables are the remaining ones (those for which
either all @y are bijective, or else some s is not injective and
some 0ss may be the same, is not surjective). We observe that T is a
separating tubular family of type p separating P from Q. [For, we
can apply the construction theorem for separating tubular families as
presented in the last lecture: C(A,p) is the one-point extension of a
hereditary algebra Al with quiver a star, by a certain Ab-module R,

11...1

(the dimension vector of Ro is of the form 2 1!1,,.1); the only non-
Il)l.l

serial indecomposable injective A -module is a wing A -module which is
dominated by R, > and it is not difficult to show that the module classes

P,T,0 established there have the description given above.] Let us write
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down explicitely the mouth of one of the exceptional tubes T(p) in T,

say, the one with index p = » and to be specific, in the case where

ooo 100 olo 001 000
o-o 0~0 o~ Ln]

\ /oﬁ\m /oﬁ\ /M\w
/ \/ \/ \/ \

here, we have to identify the dashed vertical boundaries. What happens
with this tubular family T when we consider C(\,p)-mod as a full subca-
tegory of F(A,p,q)-mod, identifying A(A,p) with A<o>?

First, consider the full subquiver

a Bo 8

0 [+]
c 'c-lamL Cot=1> o < c _<=1> QO =+ =), c2<o>+—-— c3<0> e Cq<°>

3
2 q vﬁ o o Bo
acop g Ot o Peos

taking into account besides A<o> also those arrows Bo of A<-1> which
do not end in the sink of A'<-1>, and those arrows B, of A<o> which
do not start in the source of A<o> (and the relations which live on
this subquiver). We obtain this algebra from C(A,p) by successive tubu-
lar extensions, followed by successive tubular coextensions, and these
extensions and coextensions change the tube T(») with index «, but leave
untouched the remaining tubes in T. The new tube with index « is ob-
tained from T(«) by first inserting q~1 rays, and then inserting the
same number of corays; there are q, -1 indecomposable modules which are
both projective and injective, namely the modules P(c <o>) = Q(c <=1>),
2<1icx< 94 Deleting these modules, we obtain a stable tube of the form

Zlm/(po+qo-l). Let us indicate the mouth of the new tube with index o
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for the case 9, = 3
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here again, the vertical dashed boundary lines have to be identified.
If we consider the full subquiver of A(A,p,q) given by all

vertices in A'<—1> U A<o> U A <o> different from b<-=1> and a<l>:

Oy 1 o —ch-—o\ ves et ¢ 4 =0t
Ot , , , =0 o\ 4—«... e /o-t—o-t-...-o-«—-o

a<o> b<o>

NN N WU

and all relations which live on this subquiver, we see that we obtain a

tubular family T<o> which contains the tubular family T of c(i,p)
and which is obtained by inserting q;~1 rays and also qi-l corays in-
to the tube T(li), 0 < i < t, This tubular family T<o> again is sepa-
rating. If we continue to form one~point extensions and one-point coexten-
sions in order to arrive finally at F(A,p,q), we see that the tubular
family T<o> remains unchanged, and still is separating. So denote by
P<o>, 0<o0> the module classes in F(A,p,q) which are separated by T<o>.
An F(p,p,q)-module P belongs to P<o> if and only if it satisfies the
following two properties: First of all, P has to live on the union of
all A'<l>, n ¢ -1, and all A<m>, m.g 0, and second, the indecomposable
summands of .the restriction of P to A<o> all have to belong to P.

What we have done starting with a<o>, we can do for any
A<n> and any A'<ns. We obtain tubular families T<n> and T'<n> whose
stable type is (po+q0-l,...,pt+qt~1), and corresponding module classes
P<n>, Q<n> and P'<n>, Q'<n>. Let M<n> = Q<n> N P'<n>, and

M'<n> = Q'<n> n P<n+l>, Then the following module classes
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exhaust F(A,p,q)-mod, and they have the following separation property:
any of these classes separates the additive subcategory given by the mo~-
dule classes to its left from the additive subcategory given by the module
classes to its right. Note that the modules im M<n> 1live on
A<n> U A'<n>, those in M'<n> iive on A'<n> U A<n+l>, the modules T<n>
live on A'<n~1> U A<n> U A'<n>, those in T'<n> 1live on
A<n> U A'<n> U A<n+l>, Altogether, we see that the indecomposable
F(A,p,q9)-modules have bounded support.

The structure of the module classes M<n> and M'<n> is
known only in particular cases. Consider the star

T = Tpo+qo—l""’pt+qt—l. In case T 1is one of the Dynkin graphs<Am, IDm,

]EG’ E, or IE g, then any M<n> and M'<n> is a single component, and
it is of the form ZI (in case T = A. »8ay p;tq, =2 for all i > 2
so that fE is not a tree, we have to spec1fy whlch orientation of UE

has to be taken: it is just that of A ).Thus, in this

P q ]sP|+q]"l
case the category TF()\,p,q)-mod has the follow1ng shape: there are the
tubular families T<n> and T'<n>, and in between there are sort of con-

necting components of the form ZI.

fef [effd Tt [T

Next con31der the case of T being a Euclidean graph, thus one of ﬂ)
~6’ IE7 and 338. In this case, all components in M<n> and in M'<n>
are again tubes, all even regular, these tubes form again IPﬁs-famllles
of type (po+qo—l,...,pt+qt-l) and the set of families in any M<n> and
in any M'<n> may be indexed in a rather natural way by the rational

numbers q with o < q < 1, see [HR].

oo oot

M1<=1> T<o> M<o> T'<o> M'<o> T<1>

We return now to a general Frobenius category. The category
R-mod usually is no longer an abelian category, but it carries some addi-

tional structure which seems to be similarly useful: it is the underlying
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category of a triangulated category. The notion of a triangulated catego-
ry was introduced by Verdier [V]. The relevant features of R-mod as a
triangulated category were observed by Heller [He], however the system

of axioms as proposed by Verdier was not yet available; the fact that
R-mod actually satisfies all the axioms required by Verdier was noted
only recently by Happel [Hal. We will not repeat all the axioms of a
triangulated category and refer directly to Verdier [V]. But let us
sketch some of the basic principles of triangulated categories in general,
and the way they are used when dealing with R-mod. First of all, a tzian-
gulated. category is an additive category A together with an automorphism
T of A and a set T of sextuples of the form (X,Y,Z,u,v,w) where
ttX—Y, v:Y—rZ,w:Z— T(X) are maps in A, the elements

of T being called triangles. 0f course, the set T is supposedto be
closed under isomorphisms (é map from (X,Y,Z,u,v,w) to x',y',2',u',vtw")
is of the form (f,g,h), where £ : X —> X', g: ¥ —Y', h : Z — Z'
are maps in A satisfying ug = fu', vh = gv' and wI(f) = hw'). In the
case of A= R-mod, one takes for T the suspension functor of Heller:
for any object X, choose an injective module I(X) with submodule X,
and let T(X) = I(X)/X. (There are some set-theoretical sutleties in or-
der to ensure that T actually is an automorphism of R-mod as required
and not only a self-equivalence). Given a map o : X —* ¥ in R-mod,

consider the induced exact sequence

Yoos T(X) —a— T(X) —* 0

X
l :
8

7 s T(X) — 0

h 4

o >
o

o > Y

h 4

where v = Ly denotes the inclusion, 7 = Ty the projection map. Then
(X,¥,Z,0,8,Y) is called a standard triangle, and, by definition T is
the class of sextuples which are isomorphic to standard triangles. For
example, with the standard triangle (X,Y,2,0,B,Y) above, also the iso—
morphic one (X,Y © I(X),Z,!uL],[_S],x) is a triangle (in R-mod, there

e—

is the isomorphism (1,[&],1) from the first to the second sextuple!)

Given any exact sequence

E = (0 — U -2 ¥ = W — 0)
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in R-mod, there is § : V —* IL(U) with e = by and therefore a

commutative diagram

o > U Ly » W > 0
o > U —2 T(U)-2> T(U) — o .

Note that E > w(E) = ~v yields a map w : Ext](W,U) —> Hom(W,T(U))
which is known to be bijective, On the other hand, we can rearrange these

maps to the following commutative diagram with exact rows:

L

» T(U) ——2— T(U) — o

> U
u [01]
i1, o oL
o .y Lenl, wer(u)y LTl 7(U) —— o

which shows that (U,V,W @ (W ,u, EE ,] xl) is a standard triangle. But

this standard triangle is isomorphic to (U,V,W,u,e,-9) = (U,V,W,u,g,w(E)),
thus also the latter is a triangle. Let us return to the standard triangle

(X,Y,Z,gﬁﬁjx) considered above, and the isomorphic triangle

(X,Y 8 I(X),Z,[ub],[_g],x). We observe that

B
Eo = (o > X [0“‘]> Y 6 I(X) [_QL Z > 0)

is an exact sequence, and the commutative diagram

B
0 >x[°“"]>YmI(x)L9-Lz—-——+o
Lk

0 > X > I(®) — T(X)— o

shows that W(Eo) = Y. This demonstrates that any triangle in R-mod is

isomorphic to a trianglg of the form (U,V,W,u,e,w(E)), where

E = (o + U sy —Ey > 0)

is an exact sequence,
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By the construction above, we see that any map u in R-mod
occurs as a first map in some triangle (X,Y,Z,u,v,w), and in case u is
an identity map, them Z is zero (in R-mod), this is one of the condi-
tions required in a triangulated category. Note that Z is determined
by u up to an isomorphism, but given two triangles (X,Y,Z,u,v,w) and
(X,Y,2",u,v',w'), there may be different maps hl’hz,: Z —2Z' in Rmod
with (I,I,h]), (l,l,hz) both being isomorphisms of triangles. The non-
unicity of maps when working inside a triangulated category is one of the
phenomena, which makes such a category completely different to an abelian
category! Given two triangles (X,Y,Z,u,v,w), (X',¥',2',u’,v',w') and
f:X— X", g+ Y~—7Y"' with ug = fu', then one of the axioms of a
triangulated category requires the existence of some h : Z — Z' (again
not necessarily a unique one) such that (f,g,h) is a map of triangles.
There are two other axioms which have to be checked. One of these, the
socalled octahedral axiom, starts with two composable maps, say
u; k] > Xps uy 3 X, —* X3, and triangles which have Up,Uy, and
uu, as first map, respectively, and shows the relation between these
triangles. The other ome is the most surprising: it provides a rotation-
symetry: given a triangle (X,Y,Z,u,v,w), then also (¥,Z,T(X),v,w,~T(u))
is a triangle (thereis also the converse, but this follows from the axioms).
This shows that the properties mentioned with respect to the first map of
a triangle have corresponding counterparts for the remaining maps. On the
other hand,.we also see that the properties mentioned with respect to the
second or the third map of a triangle hold true also for the f£irst map.

In particular, given a triamgle (X,Y,Z,u,v,w), up to isomorphism, we
may represent u by a monomorphism, or an epimorphism of R-mod, or we
may consider it as an element in Extl(X,T-lY).

In any triangulated category A, we may speak of Auslander—

Reiten triangles, these are triangles (X,Y,Z,u,v,w) with both X, and Z

indecomposable, w * o, and the following equivalent conditions are satis—
fied: (i) for all f : X — V, £ not split mono, there exists

£' + ¥ —> V with uf'=f; (ii) for all g : W-— Z, g mnot split epi,
there exists g' : W— Y with g'v =g; (iii) if h : U, —r 2, h,

not split epi, then hw = o3 (iv) if h, : TX = U,, h, not split
mono, then wh, = o. In case (X,Y¥,Z,u,v,w) 1is an Auslander-Reiten
triangle, the objects X and Z determine each other (up to iscmorphism),

and we write X =71Z, 2 =1 X, and T is called the Auslander-Reiten
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translation; also, if we decompose Y = © Yi with indecomposable objects
Y., then the induced morphisms X —* Y, are irreducible, and we obtain
in this way sufficiently many irreducible morphisms starting in X;
similarly, the induced morphisms Yi —r Z are irreducible, and we ob~
tain sufficiently many irreducible moxphisms ending in Z. We say that
A has Auslander-Reiten triangles, provided for any indecomposable object
of A there is an Auslander-Reiten triangle where it occurs in the first
position, and one where it occurs in the third position. For a triamgula-
ted category A with Auslander-Reiten triangles, we can introduce its
Auslander-Reiten quiver in the same way as for module categories, note
however that here we obtain a regular translation quiver!

Let us display the Auslander-Reiten triangles in R~mod ,
where R is a Frobenius algebra. Given any indecomposable non-injective

R-module X, let E = (0 — X £, Y -8 2 s 0) be an Auslander-Reiten

sequence starting in X. Then (X,Y,Z,f,g,w(E)) is an Auslander-Reiten
triangle in R-mod, and any Auslander-Reiten triangle is isomorphic to
such a triangle. In particular, we see that R-mod has Auslander-Reiten
triangles. In case R = E,where A is a finite-dimensional algebra, some
of the Auslander-Reiten sequences in A-mod are still Auslander-Reiten

sequences in A-mod, thus give rise to an Auslander~Reiten triangle in

A-mod:

———

Lemma. Let A be a finite-dimensional algebra, and

E = (0o —X £, Y&+ 72— 0) an Auslander-Reiten sequence in A-mod.

Then the following conditions are equivalent:

(i) E is an Auslander-Reiten sequence in A-mod.

(ii inj.dim.X = 1, proj,dim.Z = 1,

(idii) HomA(I,X) = o0 for any injective A-module I, and HomA(Z,P) = 0
for any projective A-module P,

Auslander-Reiten sequences with these equivalent properties

may be said to be conservative. The equivalence of the conditions™ (ii

and (iii) 1is quite well~known, For the equivalence of (1) and W

one may use a generalized version of [Ri2], 2.5.5. We note that for a

conservative Auslander-Reiten sequence E = (0 ——+ X «==> ¥ ~——> % + 0}

ii),

in A-mod, we have dimX = -(dim Z)CZTCA, provided CA is invertiBle.

68
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(The transformation ) = -CZICA which yields _c}_:'_.g_ X = (dim Z)q:A is
usually called the Coxeter transformation for A),

In particular, we see that the Auslander-Reiten sequences in-
side a sincere separating regular tubular family T of A-mod remain
Auslander-Reiten sequences in A-mod. Thus T remains a set of components
of Ermod. Actually, T also remains to be separating, but, of course, not
sincere. With T also the module classes.of Afmod obtained from T by
applying powers of the shift v are separating regular tubular families,
thus in this case A—mod has countably many separating regular tubular
families;

Similarly, assume that there is a slice S in A—mod,ﬁlet AS
be a slice module in S, and kA.= End(AS). As a module class in A-mod,

S still will be path closed and will satisfy the following property:
given any Auslander-Reiten sequence ¢ > X =~ Y —> Z —> 0 in K—mod,
at most one of X,Z belongs to S, and one of X,Z2 belongs to S in
case an indecomposable direct summand of Y is in S. It follows that S
belongs to one component I' of Krmod, and that the corresponding stable
translation quiver T is of the form T  =ZA.

We have seen above that for any Frobenius algebra R, the
stable category R-mod can be made into 2 triangulated category. There is
a more general result which includes this as a gpecial case: Instead of
dealing with the abelian category R-mod (and assuming that the projective
objects and the injective objects coincide), one may start with an arbitra-
ry exact category (A,8). (Here, A is an additive category, which is em-

bedded into some abelian category A' as a full and extension-closed sub-
u e

category, and S is the set of all sequences o yX —> Y =2 —r o0

in A which are exact when considered as sequences in A': given such an

element of S, the map u is called a proper mono, the map e a proper
epi.) Given an exact category (A,S), we say that P is S-projective
provided P has the usual lifing property with respect to all proper epis,

and we say that Q 1is S-injective provided Q has the usual extension

property with respect to all proper monos. We call S a Frobenius struc—
ture on A provided (A,S) is an exact category, the S-projective ob-
jects in A coincide with the S-injective objects, and there are enough
S-projective and enough S-injective objects (this means that for any

object X in A, there is a proper epi P ——*X with P S-projective,
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and a proper mono X —* Q with Q S-injective). The corresponding
stable category A has the same objects as A, and HomA(X Y) =
HomA(X Y)/~, with f~g iff f-g factors through an S-projective ob-
ject. There is the following general result [Hal: if 8 is a Frobenius
structure on A, then A is the underlying category of a triangulated
category,

A special case of this result is the following one: We start

with any additive category A. A sequence of the form

[]o] [0]

o— X +Hxggz 15y —* 0, and isomorphic omes, are said to be split
exact. Denote by C (A) the category of a11 bounded complexes over A
(a bounded complex is of the form X' (X ,»d ) where X' are objects
of A, 1ndexed over Z, all but only finitely many belng non-zero, and
di. =at ;s xl — ¥ are maps in A satisfying d Ll L5 for all

i €Z. Let S be the set of all sequences o — X'—r Y°' £ Zz' — o

i, i
in C (A) such that the sequences o > X £ > Yl g, Z > 0 are

split exact. Then S is a Frobenlus structure on C (A), and the usual
homotopy category gP (A) of cP (A) 1is just the stable category cP c (A
of C (A) with respect to S. The automorphism T required in the de-
finition of a trlangulated category is given by the Shlft T wich sends
the complex X° (X d ) to T(X') where T(X')* 1+1
%(X oy = dlfl. Thus, the well-known fact that the homotopy category
Kb(A) of bounded complexes over A can be made into a triangulated

and

category is a special case of the general result concerning Frobenius
structures.

In particular, we are interested in Kb(A—proj), where A 1is
a finite-dimensional algebra (and A-proj the full subcategory of A-mod
of all projective modules). In case A has finite global dimension, we
may define. the derived category pP (A} to be just &P (A-proj). More
precisely, pP (4) 1is usually defined as the triangulated category obtained
from KbCA-mod) by formally inverting all maps which induce an isomorphism
in cohomology, thus there is a functor o @ Kb(Aumod) —_— Db(A) with the
following properties: first of all, if X',Y' are bounded complexes,
£° ¢ X" —» Y' a map with Hi(f') an isomorphism for all i, then
®(f£') of the homotopy class f° of £' under ¢ is invertible in Db(A)-
Second, any other functor ¢' : Kb(Aemod) ~—>» 0 having this property
can be factored through . Now, Kb(A—proj) is a full subcategory of
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Kb(Armod),and, in case A has finite global dimension, the composition

of functors
b . b ¢ b
K (A-proj) &> K (A-mod) ———> D" (4)

is an equivalence of triangulated categors., Similarly, for A of finite

global dimension, also the composition of functors
kP (A-inj) & KP(A~mod) —=» DP(4)

is an equivalence of categories (here, A-inj 1is the full subcategory of
A-mod of all injective modules). Note that there are obvious embeddings

of A-mod into Kb(Armod), and using then &, into Db(A) which we may de-
note by —[n], where n € %Z. Given an A-module M, let M[n] be the com
plex with M[n]i =M for i=-n, and = o otherwise, or better, the
corresponding image under ¢ in Db(A). We will identify A-mod with

the image of the functor =[o]. Note that if

o — M —» 1° ---——*-I1 — vy —IF —r o0

» L * - » L L L [ b
is an injective resolution of M, then M = M[o] is isomorphic in D (A)

to the image of the complex

1

T
> g —> I e T e Ly =+ I —r 0 F ...

under ¢, Similarly, if

1

.. . s b
is a projective resolution of M, then M = Mlo] is isomorphic in D™ (A)
to the image of the complex

—>r o —+ P F — ., —* P_l —sP% >0 ...

. . b
under ®. Of course, the different embeddings -[n] of A-mod into D a)

are related by the powers of T operating on Db(AJ, we have
T(M[n]) = MIn+1]. For given A-modules M,N, we may identify

. i_

Hom MIn],N[n]) with ExtKﬁm'(M,N) (again, Ext® = Hom, and Ext™ = o
D7 (A)

for 1 < o). .

Let us exhibit the Auslander-Reiten triangles in D (A-mod) .

We denote by D = Homk(—,k) the duality with respect to the base field k.

. pPT— -
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The endofunctor v =D Hom, (-, of A-mod is called the Nakayama functor,
it defines an equivalence from A—proj to A-inj., For X,Y € A-mod, there
is a natural map Oy + D Hom(X,Y) = Hom(Y,VX) which is the composition
Gpy = aéYagY » where uiY is the dual of the map

Hom(X,AA) & Y — Hom(X,Y) which sends f 8y to (x b (xf)y), for

f: X ——é-AA, y€Y, x €X, and where o

XY
that for X a projective A-module, the map uéY, and therefore Cyy

is the adjunction map. Note

1tse1f, is bijective. We extend V to an endofunctor of C (A-mod), and
of K (A-mod), and we see that 1ts restriction to K (A-proji) prov1des an
equivalence v : K (A-proj) m—é-K (A-inj). Also, given X',Y' € C (A-mod),
there is the corresponding natural map Oy.y. 3 D Hom(X",Y") = Hom(Y",vX").
Assume now that A has finite global dimension, so that any object in
D (A) can be written in the form P°, where P' is a bounded complex of
projective A-modules. Assume that P° 1is indecomposable, and let
¢ € D Hom(P",P') be a non-zero linear form on Hom(P',P') = End(P') which
vanishes on rad End(P'). Consider aP’P’(¢)’ this is a non-zero map
P* —> vP* which has the following properties: if X' is an indecompo-
sable object of Db(A) and £ : X' — P' is non-invertible, or
n: VP —> X' is non-invertible, then EaP p* .(9) = o, or Opepe .(o)n = o,
respectlvely. Take a trlangle in Db(A) whose third map is Opepe (),
say (T Top: »Y,P75u,v,0,5.5.(9)), then this is an Auslander-Reiten trlangle,
and, up to isomorphism, one obtains all Auslander-Reiten triangles in p? (4)
in this way, Note that we see that the Auslander~Reiten translation on
Kb(A—proj) (s Db(A)) is given by the functor T := T lv.

Following Happel [Hal, we consider one example in detail.
Let A be a hereditary algebra. In this case (and only in this case), the
images of the various full embeddings =[n] : A-mod ~ pP (A) exhaust the
category pP (A): any indecomposable object of pP (A) belongs to one (and
only one) such subcategory. This is of course straightforward to see since
obviously any complex in C (A-proj) can be written as a direct sum of

complexes of the form ..., o —> P*~ I———+ P —> 0 ... with d a mono-~

morphism, and in Db(A) this complex is isomorphic to the complex
(Cok d)[-n].Note tHat (for A hereditary!) the embedding -[n] preserves

irreducibility of maps and that any Auslander-Reiten sequence

& . . . .
o X — Y —> Z—>0 in A-mod gives rise to Auslander-Reiten

triangles (X[n],Y[n],Z[n],f[n],g[n],hn) where h zZ[n] — X[n+1].
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Consequently, we may visualize Db(A) as follows: Take copies PA[n] of

PA, indexed by n € Z, and connect these copies together using additional
arrows and extending the tramslation T to all vertices. In fact, each
arrow a ——>b in A gives rise to an irreducible morphism

Q(a)[n} — P(b)[n+1], in the following way: instead of writing down a map
Q(a)[nl — P(b)[n+1], we may as well exhibit an element in

Ext](Q(a),P(b)). Let V(o) be the representation of A which first of all
coincides on the support of P(b) with P(b), on the support of Q(a) with
Q(a), which second has V(u)a = lk’ and finally, which elsewhere is given

by zero spaces and zero maps. Then there is a non-split exact sequence
o —* P(b) —= V(o) — Q(a) —> o

and this, in fact, corresponds to an irreducible morphism

Q(a)[n] — P(b)In+1], for every n € Z., Also, for every n € Z, and any
vertex ¢ of A, there is a triangle of the form
(Q(c)[n],Y,P(c)[n+1],un,vn,w[n+l]), where w € HomA(P(c),Q(c)) is a non-
zero map, and one easily checks that this indeed is an Auslander-Reiten

triangle, and that Y= (® Q(a)) ® (& P(b)). This shows that the addi-
arc c+b

tional arrows which we need in order to comnect the various PA[n], are of
the form [Q(a)[n]] —[P(b)[n+11], one for each arrow a - b, and that
7[P(c)[n+11] = [Q(c)[nl]. In case A is of Dyokin type, so that T, is
finite, the various copies PA[n] all are connected together, and we
obtain just ZA¥ (and, actually, Db(A) is equivalent, as a category, to
k(ZA*)). For example, for the following quiver A of type Eg» and

A = kA¥*, the copies PA[—IJ, PA[O] and PA[I] are connected as indicated:

IGIR r)lo) o, o qtbyle} LI 100 o
:/! >°/°\3{c)l-ll/‘!’ \?(c)tol/ \lo/ \o/\g/ \0/ ?3(0)[01/' \ar"ﬂ/ N
l:fl --)o-—\*atl)l' Iﬁ:dlll\l-:(t)[a]{rr(ﬂ[ol\—:o—-/—‘:nso—zpo >-040 b-oéo —\bQ!n)[ulquHullP(I"ll'ﬁﬂn';95
\c \“o/ \.5(-)[-01/' \:(-)tol/' \o/ \o/ \o \o / \“q(e)lul/r \?mm
z AN S N /" \/"\o/ \_o/ \o/r \umm/' \me’

A r,l-11 rylol r,[1]
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In case A 1is connected and not of Dynkin type, the preinjective component
of PA[n-ll is connected with the preprojective component PA[n] and
together they form a component of the form ZA*. We denote by Cin] the
full subcategory whose indecomposable objects are those in the preinjective
component of PA[n—l] and those in the preprojective component of T,[nl,
(then Clnl is actually equivalent, as a category, to k@A*)), and by
Rln] the image of the full subcategory of all regular A~modules under
~[n], with these notationms, Db(A) can be visualised as follows:

7w Vg (o 7oy (o -
Note that if X belongs to C[n], and Y is indecomposable with
Hom(X,Y) # o, then Y belongs to Cln]l or RInl or Cln+1]. Similarly,
if X belongs to R[n] and‘ Y isindecomposable with Hom(X,Y) #% o, then
Y belongs to Rin] or Cln+1] or R[n+1].

Given any finite dimensional algebra A, there are two trian-
gulated categories obtained from A-mod, namely A-mod and D (A). In case
A has finite global dimension, there is the following theorem of Happel
vhich asserts that these categories are -equivalent, not only as categories,
but even as triangulated categories,[Given two triangulated categories
A,B, an equivalence of triangulated categories is given by. an equivalence
F: A—B of categories and an equivalence n : FT —> TF of functors

such that for any triangle (X,Y,Z,u,v,w) in A, the sextuple
(FX,FY,FZ,Fu,Fv,Fw-nX) is a triangle in BJ.

Theorem (Happel). Assume A is a flnlte dimensional algebra
of finite global dimension. Then Armod and D (A) are equivalent as
triangulated categories.

The use of this theorem is twofold: if interested in ;~mod
or in T(A)-mod, we may use it in order to transform information on Db(A)
to Armod thus the report above on the structure of D (A) for A being
hereditary ylelds the same information for Ammod. Similarly, 1f we are
1nterested in D (A), we may work instead with the categories Armod and
éjggg' for example, for A a canonical algebra, our investigation of
A-mod yields a clear dessription of Db(A) in this case, Note that one ad-

vantage of considering A-mod instead of Db(A) lies in the fact that
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Kﬁggg is obtained from the category A-mod by a rather easy modification,
and A—mod is abelian!

We should add the following warning: there are given countably
many embeddings of A-mod both into g—ggg (denoted by -<n>, n€ Z) and
into Db(A) (denoted by =-[n], n € Z, and Happel's equivalence
Db(A) -—é—ﬂrmod 1s constructed by first identifying the subcategory
(A-mod) [0} of D (A) with the subcategory (A—mod)<o> of A-mod and
extending this to an equivalence D (A) and A—ggg. We should warn that
the remaining full subcategories (A-mod)[n] and (A-mod)<n>, n # o will
not coincide, in general., In fact, the two shift functors v' and T (which
are both defined on R—mod) are related by the Auslander-Reiten transla-
tion T: we have v = T2T.

A special case of Happel's theorem has been known before and is
of particular interest. Investigations by Beilinson [Bei] and Bernstein~
Gelfand-Gelfand {BGG] have related the category V = Un of vector
bundles over the projective space T, k to problems in 11near algebra. Both
papers provide a description of the derlved category D (Coh IP k) of
bounded complexes of coherent sheaves over IRnk, and the theorem above
yields a direct interrelation between these two descriptions. Consider

~

the following quiver A

% %
) o) 01
=\ -
//// : :
% ®s
with set of vertices the integers Z; for any vertex a € Z, there are n+l
arrows o _ = uéa) : a — atl, o £ s £ n, Denote R the opposite of the

path algebraof A over the field k module the relations

= + = t with s < t,
S 0, a0 .t a. =0, for all s,

Note that E~mod is just the category A-grmod of graded A-modules,
where A is the exterior algebra on the vectorspace A = kn+], with the
usual grading, thus A, = At (k ) [one may observe that A is a Galois
covering of A; on L there is an obvious Z-action by shifting the quiver,
and A = Rfz]. 1t is easy to see that A is a Frobenius algebra. Indeed,

we have PK(a) = QK(a—n-l), for any a € Z,




Given a < b in Z, denote by Kab the restriction of &
to the full subquiver of A with vertices x satisfying a < x < b, and
let A = Ron‘ We claim that A = A. Note that A has a unique simple pro-
jective module, namely PA(o), and we may identify the one-point extension
A[QA(O)] w1th Ao,n+1

tained from A 0,b=1 as one-point extension, using the indecomposable

. Inductively, we see that Aob’ for b > n, is ob~-

injective Ao b"1~module with socle at b-n-1. The dual process of forming
4 - ~
successively one-point coextensioms finally shows that A ='A.

The category
A-grmod = A-mod = A-mod

is used by Bernstein-Gelfand-Gelfand in order to describe Db(Coh ﬂﬁlk)

they construct an equivalence
A@i s Db(Coh IPnk).

On the other hand, the description of Db(Coh Bﬂlk) given by Beilinson is
DP (Coh ?_k) ~ D°(4).

[The actual statement of Beilinson is Db(Coh IEnk) RSKb(A), where A 1is
the additive category of all finite direct sums of copies Py (a),

0 % a < n, but, of course, A & A-proj, thus g° (A) kiK (A—prOJ) ~ P (a).1]
Combining both assertions, we obtain the equivalence ArEEQiU'D (A) for
this special A.

We return now to the consideration of tilting modules.

Theorem (Happel). Let A be a finite-dimensional algebra
of finite global dimension, and ,T a tilting module, with B = End(Ai)
Then D° (A) and D (B) are equivalent as triangulated categories,

An equivalence Db(A) s Db(B) ig obtained as follows: the
functor F = HomA(A B? =) : A~mod ——A-B—mod 15 left exact, thus there is
the right derlved functor RF : D (A) — D (B8) [on the full and dense
subcategory K (A-inj) of pP (A), the functor RF is defined as follows:
I° ¢ K (A-inj) 1is sent to the complex (E?)(I') with ((E;)(I'))i = FIi],
and RF is an equivalence of triangulated categories.

Actually, Happel [Ha] shows that one may consider instead
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of tilting modules more generally modules ,T of finite projective dimen—
sion such that Extl(Aﬁ, T) = o for all i > 1, and such that the T-codi-
mension of AA is finite, and B = End(AI). Note that Miyashita [M]
recently has shown that under these assumptions also B is of finite
global dimension and that Ty satisfies the corresponding conditions
(as a right B-module). [In by-passing, we should stress that the investi-
gations of Miyashita are not restricted to finite-dimensional algebras, but
to arbitrary rings (with 1), In this way, the generalized tilting theory
established by him also incorporates (as case r = o) the Morita equi-
valence for arbitrary rings).

Combining the two theorems of Happel, we know the structure of
Db(A) for quite a number of different algebras. First of all, if A is
a tilted algebra, say A = End(kAT), where A is a finite quiver without
oriented cycles, and kAT a tilting module, then D (4) RSD (kA), and we
have outlined above the structure of D (kA). If A is the endomorphlsm
ring of a tilting module over a canonical algebra B, then pP(a) ~ D°(B),
and again we know much about the structure of D (B), this time using the
equivalence D (B)sw B-ggg. In case C = C(\,p) -is a canonical algebra,

where p = (Po’ ‘e ,pt) gives rise toa Dynkin graph A= ']I.‘P e ’pt’ then our

description above of Db(C) coincides with the description of D (kA)
This is now no longer surprising, since one easily shows that C ig, in
fact, a tilted algebra, which has a slice module with endomorphism ring
KA,

Let us demonstrate in which way the concepts presented in this
lecture can be used in order to obtain insight into tilted algebras. We
want to outline the proof of a result announced in the second lecture:
that an algebra with slices in two different components has to be con-
cealed. Thus, let A be a (necessarily connected) algebra with slices S
and $S', which belong to different components. of A-mod., Let S be a
slice module for S and kA = End(AS) Thus, D (A) and D (kdA) are
equivalent categorles and we may use some fixed identification. Also, we
may 1dent1fy D (A) and A~mod, 1dent1fy1ng A-mod both with
A-modio] - D (A) and with A-mod<o> < A-mod We know that S belongs to

some component of Armod of the form ZA, thus without loss of generality

to Clo]. Similarly, S' belongs to some Cim], and since S and St

belong to different components of A-mod, one easily sees that we must
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have m # o, Now, S 1is a separéting subcategory of A-mod, say separa-
ting P from Q. Let S}, be an indecomposable module in S'. Assume S
belongs to @, then clearly Hom(S,S{) #+ o. [For, take an indecomposable
projective A-module P with Hom(P,Si) ¥ o, then P in P or S, and
factor some non—-trivial map from P to S{ through S]. In this case we
must have m = 1. Similarly, if S{ belongs to P, then m = -1, Without
loss of generality, we assume m = 1, Since 8 is sincere, any indecom-
posable projective A-module belongs to C[-1] or RI[-11 or Clo], since
S' is sincere, any indecomposable projective A-module belongsto Clol
or Rlo] or C[1], thus the indecomposable projective A-modules all lie
in Clol. Now, Clo] is of the from k@A), thus we see that A can be
written as the endomorphism ring of a preprojective tilting kA-module.

This shows that A 1is a concealed algebra,
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