ui

HAMMOCKS

CLAUS MICHAEL RINGEL and DIETER VOSSIECK

[Received 2 December 1985]

Introduction

Hammocks have been considered by Brenner [5] in order to give a numerical
criterion for a finite translation quiver to be the Auslander—Reiten quiv.er of some
representation-finite algebra over an algebraically closed field, The main purpose
of the present paper is to show that the hammocks considered by Br.enner are of
the form T'¢(S), where £(S) is the category of S-spaces of a finite partially ordered
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Given functions f, g: Hy— Z, with the support of g finite, then we define

ENE) = ZH f(x)g(x).
xeHy
In particular, for any f: Hy—Z, and any x € H,, the numbers (™) and
(EA) () are defined.

Also recall the inductively defined full subquivers ,H of H. First of all, _,H is
the empty quiver, and z belongs to ,H if and only if z™c,_,H. Also,
wH =Jyen 4H. Thus, for all d e NU {«}, we see that ,H is a predecessor closed
subquiver, and we may consider it as a translation quiver, using the restriction
of 7. :

Suppose H has a unique source w, and H =.H. Then we define‘hy: Hy—Z
inductively as follows. By abuse of notation, let ky(7x) = 0 for x projective (note
that in this case, 7x is not defined!). Now, let

hH((D) =1
and, for x # w, with hy already defined on all proper predecessors of x, let
ha(x) = (Bhig) () & hyg ().

(If x is injective, so that 77x is not defined, we define hy(t™x) =0, again
abusing the notation!)

With these preparations, we are able to give the main definition: the translation
quiver H is said to be a left hammock provided !

(1) H=_.H,

(2) H has a unique source o,

(3) hy takes values in the set N; of positive integers,.

(4) if ¢ is an injective vertex then

he(q) = (Shy)(g ™).

When H is a left hammock, the function Ay is said to be its hammock function.

Let us mention some obvious properties of a left hammock H. Condition (1)
implies that for any vertex x of H, there is a path starting at a source, and ending
at x; thus, according to (2), the path starts at w. It follows that a left hammock is
connected. Also, for any d e N, the subquiver ,H is finite. Our first result is
concerned with the growth of the hammock function along a z-orbit.

TueorREM 1. Let H be a left hammock. Then, for any x € Hy,
ha(x) —1<hy(77x).

The proof of the three main theorems (Theorems 1, 2, ?’) will be given in the
next sections. Here, we are going to derive some corollaries. There are several

consequences of Theorem 1.

CoroLLARY 1. Let g be an injective vertex of a left hammock: Then hy(g)=1.
As a consequence, there is at most one arrow starting at g, and if g—>y, then also
hy(y)=1. Also, |q~| <3, and if g—y, then [y~| <3.

Proof. By definition, hy(vq) = 0. Since hy(g) =1, the theorem implies that
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hyu(q) = 1. Again using Condition (3), now for the elements in g*, and Condition
(4), we see that |¢g*| <1, and that for g* = {y}, we have both m(q, y)=1 and
hy(y) = 1. Any vertex x with hz(x) = 1 satisfies [x~| <3, If x is projective, then in
fact [x~| <1. Otherwise, hy(7x) <2 by the theorem; therefore |x~| <3.

A left hammock H will be said to be thin provided hy(p) =1 for any projective
vertex p of H. If H is a thin left hammock, and p is a projective vertex of H, then
there is at most one arrow ending in p, and if y — p, then also sy(y) =1. (For the
proof, we use Condition (3) and the defining equality 4,(p) = (Zhy)(p).) Asa
consequence, a thin left hammock has no multiple arrows. (For the proof, we
only have to observe that the 7-orbit of any vertex contains a projective vertex,
since H = ,H.) Also note that a thin left hammock is always ‘simply connected’.

CoroLLARY 2. Let H be a finite left hammock. Then the opposite translation
quiver H* is also a left hammock, both H and H* are thin, and the hammock
functions on Hy= H§ coincide.

Proof. Condition (1) for H together with the finiteness show that H* also
satisfies (1). According to Corollary 1, given an injective vertex of H, there is at
most one arrow starting in it. Thus, given a projective vertex of H*, there is at
most one arrow ending in it. Since H* is connected, it follows easily that H* has a
unique source, say ', Later we will consider Ay as a function on H (=Hy). In

-preparation, we note the following: if x is an injective vertex of H, or the

immediate successor of an injective vertex of H, then hy(x) =1, according to
Corollary 1. Also, we again use the fact that an injective vertex x # o’ of H is the
starting point for precisely one arrow. Thus, for x # @' and x injective, we have

hu(x) = (Zhg)(x™),
and

hH((D ,) =1.
If x is not injective in H, say x = 7z, then the defining condition for Ay,

hu(z) = (Zhy)(20) - hy(z),
can be rewritten in the form

hH(X) = (ZhH)(x(+)) - hH('E—X).

Altogether, we see that hy, as a function on Hg, satisfies the defining conditions
for hy.; thus hp.(x) = hy(x) for all x € Hf = Hy. In particular, Condition (3) is

satisfied for H*, since it is satisfied for H, For a projective vertex p # w of H, we
have

hu(p) = Eha)(p*),

by dqﬁnition of hy. This shows that Condition (4) is satisfied for H* and all
Injective vertices of H* different from  (even with equality). This condition is
trivially satisfied for the sink @ of H*. Thus, H* is a left hammock. Of course,
H* s thin, since we know from Corollary 1 that hz(q) =1 for any injective vertex
q of H. We have shown that given a finite left hammock H, the opposite H* is a

thin left hammock. Now since H* is again a finite left hammock, it follows that
H=H** is thin.
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Finite left hammocks will be called hammocks. Note that a left hammock H is a
hammock if and only if H* js also a left hammock. (One direction has been
shown above. For the converse, we note the following. Let H be a left hammock.
If we assume only that H has a sink, then H already has to be finite!)

CoroLLARY 3. Let H be a hammock, and x a vertex of H. Then hy(x)=1forx
projective or injective. If x is not projective, then |hgy(tx) — hy(x)|<1. Always,
Ix*|<3, and |x7|<3.

Proof. The first assertions are direct consequences of Theorem 1 and
Corollary 1. In order to show that [x~| <3, we can assume that x or an element of
x~ is injective, otherwise replace x by some 7~ -translate. Now use Corollary 1.

There is a strong relationship between thin left bammocks and the
representation theory of partially ordered sets. We will restrict to finite partially
ordered sets (but one could equally well extend the following results to some
kinds of noetherian partially ordered sets). Fix some field k. Given a partially
ordered set S, an S-space V =(V,, ; V;)ses I8 given by a vector space V,, over &,
and subspaces V; of V,,, where s €S, with V,cV, for s <t. We call V,, the total
space of V, and denote its k-dimension by dim,, V =dim V,,. Given two S-spaces
V, W, a map f:V—W is given by a k-linear map f,: V,— W, satisfying
(V.)f, =W, for all s€S; the induced map V,— W, will be denoted by f. The
category of all S-spaces is denoted by £(S, k). Let S be finite. Then we denote
the full subcategory of 2(S, k) given by all S-spaces V with V,, finite dimensional
by €(S, k). Note that £(S, k) may be considered as an exact category, the exact
sequences in €(S, k) being of the form

f. 8

0—V —>V=>V"—0

where f, g are maps of S-spaces, such that all the sequences
0—> ViLs v, 8 10

with s €S U {w), are exact sequences of vector spaces. It is well known that
€(S, k) has Auslander-Reiten sequences, and I'6(S, k) denotes the corresponding
Auslander—Reiten quiver.

Given a Krull-Schmidt category &, let us recall the definition of the full
subcategories 4®. First of all, .,& contains only the Ze10 objc?ct. Second, an
indecomposable object X of & belongs to 4, if and only if any indecomposable
object ¥ of & with rad(Y, X)# 0 belongs to ;. Finally, & = Uzen o8

TrEOREM 2. Let S be a finite partially ordered set, and k a field. Th.en ot (S3 k) is
closed under irreducible maps in €(S, k), and H(S):=T.£(S, k) s a thin left
hammock with finitely many projective vertices. The hammock function on H(S) is
dim,,. Also, H(S) is independent of k. . ‘ .

Conversely, given a thin left hammock H with n projective vertices, there exists a
partially ordered set S(H) with n—1 elements such that H = H(S(H)) as
translation quivers, and £(S(H), k) ~k(H) as categories. If-H is a hammock,
S(H) is (up to isomorphism) the only partially ordered set S with H(S) =~H,
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Here, k(H) denotes the mesh category for H. °

For hammocks, we can derive the following consequences. A partially ordered
set S is said to be representation-finite provided there is only a finite number of
isomorphism classes of indecomposable S-spaces with finite-dimensional total
space. (Actually, for a representation-finite partially ordered set, the total space
of any indecomposable S-space is finite-dimensional.)

CoRrOLLARY 4. The isomorphism classes of representation-finite partially ordered
sets correspond bijectively to the isomorphism classes of hammocks, as follows:
given the representation-finite partially ordered set S, then H(S)=T4(S, k) is a
hammock which is independent of the chosen field k.

Proof. Besides the assertions of Theorem 2, we need the following two rather
well-known facts (or see the remarks in § 7). First, if S is a partially ordered set
with £(S, k) finite, then (S, k) = £(S, k), and thus § is representation-finite.
Second, if § is representation-finite, then always .£(S, k) = 4(S, k).

CorOLLARY 5. Let k be any field. Let H be a hammock with source o and sink

®'. Then Homygy(w, ©') is a one-dimensional k-vector space, and, for any
x € H, the composition map

Homk(m(w,_x) X Homk(H)(x, a)’)—>H0mk(H)(a), CO')
is @ non-degenerate bilinear form.

Proof. According to Corollary 4, there is a representation-finite partially
ordered set § with H=H(S). Let P(w), Q(w') be the following S-spaces:
P(w), =k, P(w),=0 for seS, and Q(0"), = Q(ow'), =k for all seS. Then
gl;()w)] =0, [Q(w')]= o', as one verifies easily (or see the general discussion in

Fix a generator £eP(w),=k. Given an S-space V, we can identify
Hom(P(w), V) with V,, sending f € Hom(P(w), V) to &f,. Similarly, we identify
Hom(V, Q(w")) with the dual space V¥, by sending g e Hom(V, Q(@')) to g,
Under these identifications, the composition map

Hom(P(w), V) x Hom(V, Q(w"))— Hom(P(w), Q(0"))

just corresponds to the evaluation map V,, X V,*— k; thus it is a non-degenerate

bilinear form. Since (S, k)~ k(H), according to Theorem 2, we obtain the
corresponding result for k(H). '

Famous theorems of Nazarova, Rojter, and Klejner assert that a finite partially
ordered set § is representation-finite if and only if the dimension of the total
spaces of the indecomposable S-spaces is bounded, and that in this case it is
bounded by 6. Thus, we also have the following criterion:

. COI?OLLARY 6. Let H be a thin left hammock. Then H is a hammock if and only
if hyy is bounded. If hy is bounded, then it is bounded by 6.

The mai.n assertion of Theorem 2 is that it is possible to realize a thin left
hammock in the fonq T€(S, k). There is a general result providing a realization
of any left hammock in the form I8, where & is a Krull-Schmidt category such
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that all indecomposable objects in & have sink maps and source maps (also
called, respectively, minimal left and right almost split maps) in 8. In order to
be able to formulate it, we need some further definitions. Given a Krull-Schmidt
category A, we denote by A-mod the category of finitely presented functors
A®— Ab (Ab is the category of abelian groups), and A-spmod is the full
subcategory of A-mod given by all functors F € A-mod which have a projective
socle. Recall that in order to define the mesh category k(H) for a left hammock
H, we have to choose a polarization o of H (see [12]), but (as for a preprojéctive
translation quiver) we obtain equivalent categories when choosing different
polarizations.

TueoreM 3. Let H be a left hammock with source o, and k a field. Let B(H, k)
be the full additive subcategory of k(H) whose indecomposable objects are just the
projective vertices of H. The functor '

M: k(H)— B(H, k)-mod
given by
M(X) = Homk(H)(-—, JC) | %(H, k)

is a full embedding of k(H) into B(H, k)-mod; its image is 35, with § = B(H, k)-
spmod. There is a unique simple projective object in B(H, k)-mod, namely M(w).
Thus an object X of B(H, k)-mod belongs to & if and only if its socle is generated
by M(w). Any indecomposable object X of .3 has a source map X— X' and a
sink map 'X—X in §, and both X' and 'X again belong to 8. We obtain an
isomorphism

H—->T.g

of translation quivers, sending x to [M(x)]. Thus T..§ is a hammock isomorphic to
H, and the hammock function on T.§ is N> dim N(w) = dim Hom(M(w), N).

When the left hammock H has only finitely many projective vertices, B(H, k)
is a finite k-category; therefore PB(H, k)-mod=~A-mod for some finite-
dimensional k-algebra A, and B(H, k)-spmod ~ A-spmod, the category of finitely
generated A-modules with projective socle. It is well known that for any
finite-dimensional algebra, the category of finitely generated modules with
projective socle has source maps and sink maps. Thus Theorem 3 asserts that
H ~T.(A-spmod) as translation quivers, and k(H) = =(A-spmod) as categories:

The relationship between Theorems 2 and 3 is as follows. Given a finite
partially ordered set S, let S* be the partially ordered set obtained from § })y
adding an element o with s <o for all s €S. If H is a thin left hammock with
finitely many projective vertices, then B(H, k) is the incidence category Qf the
partially ordered set (S(H)*)*, and P(H, k)-spmod ~ £(S(H), k). This will be
shown in § 7.

2. Partial left hammocks

A translation quiver H is said to be a partial left hammock provided
(1) H=.H ’
(2) H has a unique source o,
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(3) hy takes values in N,
(4") if g is an injective vertex, and

hi(q) < (Eha)(@™),

then any path in H starting at g, is sectional.

As in the case of a hammock, the function Ay is called the hammock function
of the partial left hammock H.

Given a partial left hammock H, any non-empty full translation subquiver H'
which is closed under predecessors is also a partial left hammock, and k. is the
restriction of hy to H'. In particular, the non-empty, predecessor closed, full
translation subquivers of left hammocks are partial left hammocks. Also the
converse is true, as we are going to show. If H is a left hammock, and H’ a full
translation subquiver which is closed under predecessors and contains all
projective vertices of H, then H will be called a completion of H'.

PROPOSITION. Any partial left hammock has a completion, and such a comple-
tion is unique up to isomorphism,

Proof. Let H be a partial left hammock which is not a left hammock. Choose d
minimal such that there is an injective vertex q € ;H with ky(q) < (Zhy)(g™).
For any such ¢, we add a new vertex ¢’ to H, and for any arrow g->Y an arrow
y—>q' (note that always ¢* # ), and define 79’ = q. We denote the translation
quiver obtained in this way by H'; it contains H as a predecessor closed full
translation subquiver, and the vertices of H' which do not belong to H are sinks.
Since .H = H, and since g* is finite, for any ¢, we see that ,H' = H'. Also, © is
the only source of H'. Thus Conditions (1) and (2) are satisfied for H'. By
definition of A, its restriction to H will be hy, since the new vertices are sinks,
and for each new vertex ¢’, with 19’ = g, we have

he(g') = Ehy)(9) ) ~ hy(vq')
= (Zhz)(q) = hu(g) > 0.

Thu§ Condition (.3) is also satisfied for H', It remains to consider (4). The new
vertices ¢ are sinks; thus hz.(g')>0=(Shy)((g")M), trivially. Let x be an

injective' vertex of H' such that hy.(x) < (Shy)(x™), and assume there is a
non-sectional path

X=Xg=>X1—>...>X,

ir} H', say with ©x;,.,=x;_, for some 1<i <n; in particular, n =2, Note that
cither the whole path is inside H, or else X, i a new vertex, whereas
¥ =Xo=>X;—>...—>X,_1 I8 in H. Thus, if every path in H starting in x is sectional,
then n 18 & NeW vertex, x,_, = tx,, and x,_, belongs to ,H. First, assume x™ is
contained in H, so that hy,(x) < (Zhy)(x™). According to (4') for H, every path
in H starting at x is sectional. Hence Xn-2 € 4H, and is not injective in H’. This
shows that n =3, and therefore x ¢ 4-1H. But this contradicts the minimaiity of
d. Thus:, we see that x™ contains some new vertex q', and therefore g = 19’ — x.
But, using again Condition (4') for H, we see that every path in H starting at x is

sect.ional. Thus again x,_, belongs to 4H, and therefore q— x shows g € 4, H;
again we have a contradiction.
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The partial left hammock H' obtained in this way satisfies hg(g)=
(Sh)(g™) for every injective vertex q e H'. Iterating this construction, we
obtain a left hammock H which is a completion of H. On the other hand, given
any completion H of H, we can extend the identity map on H to an embedding of
H' into H (this extension is uniquely defined on vertices; there are choices in the
case of multiple arrows), and therefore to an embedding @ of H into H. But
clearly, @ also will be surjective. This shows the uniqueness of H.

3. Relative Auslander—Reiten sequences

Let k be a field, and A a finite-dimensional k-algebra. Let (&, T) be a torsion
pair in A-mod, with § the class of torsion-free modules, T the class of torsion
modules. Given an A-module M, let Mg be its maximal torsion submodule,
Mg = M/My its maximal torsion-free factor module; denote by 7y: M—> My the
canonical projection. Assume now that M is an indecomposable A-module
belonging to .

(1) If fyy: M— M’ is the source map for M in A-mod, then

f?ln“"anM': M- Mg

is the (relative) source map for M in .
(2) If Ext'(§, M) =0, then f§; is surjective, and (v™M)g =0.

(3) Assume Ext'(F, M)+0. Then f35 is injective, its cokernel is (z”M)g, and
there is the following commutative diagram with exact rows:

0— M %>M%§ > (T"M)g —>0
M
and the lower sequence is a (relative) Auslander-Reiten sequence in &

Thus we denote (7~M)x by 75M.
For a proof, we refer to Hoshino [9].

Next, let us consider special torsion pairs. Let P be a simple projective
A-module. Let §p be the set of modules with socle generated by P, and £p the
set of modules X with Hom(P, X) =0. Then (s, Tp) is a torsion pair. We know
from above that §p has source maps.

(4) %¥p has sink maps.

For a proof, we may refer to Simson [13]. The argument is as follows. We may
assume that A is basic. Let P=Ae for some idempotent e, let B =ede,
N=eA(l—e), C=(1—e)A(1—e). Then N is a B— C-bimodule, B a division
ring, and A-mod can be identified with the category (V) = 8(3N¢) of repre-
sentations of the bimodule zN, a representation being a triple X = (X1, XZg Yx)
where X, is a B-module, X, a C-module, and yx: N ®c X,— X is B-linear.
Note that X belongs to & if and only if the adjoint map

?X: Xz'—'> HomB(N, Xl) zN* ®B X1
is a monomorphism. There is the functor F: {(N)—> &(N*) sending (X1, X2, Yx)
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to (X3, X, vx), where yy N* ®zX;— X, is the cokernel of 7y, and its
restriction to Fp is an equivalence from &, onto the image of F. This image is the
category of torsion modules for some torsion pair in (N*); therefore it has sink
maps. Thus F has sink maps.

(5) Assume that 4A belongs to Fp. If Z is an indecomposable non-projective
module in Fp, then there exists a (relative) Auslander-Reiten sequence
in %P: ‘

f., &

0—mX—>Y=>Z—0

and we write X = 15Z.

Proof. Let g: Y— Z be a sink map for Z in §p. Let g: P— Z be a projective
cover of Z. Since Z is not projective, there is ¢': P—Y with ¢ = @'g, and thus g
is surjective. Let f: X—Y be the kernel of g. Since Hp is closed under
submodules, X belongs to %». Thus we have constructed an exact sequence with

all terms in Fp, and the right map g being a sink map. It follows from [12, 2.3.2]
that f is a source map.

4. Mesh categories

Let T be a translation quiver, and k a field. We fix a polarization o, and denote
the: mesh category k(l“,. o) just be k(T'). Recall that we denote by s« the starting
point, by e the endpoint of an arrow «. Given a path w = (x | a4,..., & | y)in T,

we denote its residue class in k(T) by #; a path (x | @ | y) of length 1 will just be
identified with the corresponding arrow &. Given a vertex x, we denote by f, and

g. the maps -
fe=(B)p: x— ? e, g.=(@).: D sa—x
sB=x eo:cf—*x

@n k(I'); actually, in case x is not injective, it will be more convenient to use as
index set for f, the set of all o, where eq = 7~x. Thus

fe=(00)y: x> D sa.

eax=1"x

In this way, we have f,.g, =0, for any non-projective vertex z.

We denote by (T, k) the full subcategory of k(I') with objects the direct
sums of projective vertices of I'. This is a Krull-Schmidt category. We consider
the functor category (T, k)-mod (given by all finitely presented functors

B(T, k)® — Ab). Let us assume from now on that I'=,T. In this case, given
x €T, the functor

M(x) = Homk(f')(_’ x) I'S’B(F’ k)

is obviously of finite length. In particular, the indecomposable projective objects
in B(T, k)-mod are of finite length, since they are of the form M (p), with p a

- Projective vertex of T'. Consequently (T, k)-mod is the category of all finitely

generated functors B(T, k)°P— Ab, and all M (x), for x €T, belong to BT, k)-
mod., (Ifiowever note that the functor M: k(I')— B(T, k)-mod is not necessarily
fully faithful: for example, take I'=NA, with A an oriented Dynkin diagram.)

Given a projective vertex p of T, we denote b ing si
. : , y E(p) the corresponding simple
object of B(T, k)-mod; it has M (p) as projective cover.
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There are the following exact sequences:

(1) If p is a projective vertex of I, there is the exact sequence

0—> @ M(sa) M(g”),M(p) > E(p)— 0.

ex=p

(2) If z is a non-projective vertex of ', there is the exact sequence

M) 292, @ aisa) M2, py()—s o,

ex=z

but in general, the map M(f;,) does not have to be a monomorphism.

Proof. This is a modification of a rather well-known result presented in [4] as
Lemma 2.6. Note that our translation quivers may have multiple arrows and that
we do not assume that T is locally bounded (and, in the main applications, it will
not be). However, the fact that I is locally bounded is used in [4] only in order to
ensure that the functors Homyr)(—, x) ate of finite length, and this is the case
under our assumption I' = I'. The minimal projective resolutions in £ (I')-mod,

H )
0— @D Homy(—, s) M Homy, (-, p)— E(p)—>0

ex=p
for p a projective vertex, and

_ H T8z
Bom(-fi:), @ Homyq)(—, S“)MHOIH"(F’(—’ )

ex=2

Homk(r)(— s 'L'Z)

> E(z)—0

for z a non-projective vertex (with E(z) the corresponding simple functor),
remain exact sequences, when restricted to (T, k). Since for non-projective z,
the restriction of E(z) to (T, k) is zero, we obtain the exact sequences asserted
above.

5. Realization of left hammocks (proof of Theorem 3)

Let H be a left hammock with source o, and let k be a field. For any d € N, we
will consider the full translation subquiver ,H of H, and we note that k(4H) is
just the full subcategory of k(H) given by the vertices which belong to JH.

Assume first that H contains only finitely many, say », projective vertices. Thus
B(H, k)-mod is equivalent to A-mod for some finite-dimensional k-algebra A.
We therefore call the elements in $B(H, k)-mod (they are functors) modules.
Since w is a source, M(®) is simple projective, and it will turn out that this is the
only simple projective module. Let % be the set of modules with socle genera.ted
by M(w), and € the set of modules X with Hom(M(w), X) = 0. Then, (3, T)is a
torsion pair, and we know from § 3 that & has both source maps and sink maps.

By induction first on n, and then on d, we are going to show the following.

(a) If p is a projective vertex, then M (p)is indecomposable, belongs to ¥, and
satisfies hig(p) = dim M(p)(w), and M(g,) is a sink map.
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(b) Let x be a vertex in ,H. Then M(£,) is a source map in §. If x is injective,
then the cokernel of M(f;) is in %, and 73M(x)=0. If x is not injective,
then M(77x) is indecomposable, belongs to ¥, and satisfies hy(t7x)=
dim M(7"x)(w). Further, in this case M(g,-,) is a sink map in & and
M(77x)= t5M(x).

(c) The functor M gives a full embedding of k(;..,H) into 4.;&, and induces a
full embedding of translation quivers from ,..,H into I'F.

Proof. Note that the indecomposable projective modules are of the form M(p)
with p a projective vertex. If p is a projective vertex, it follows from § 4 that
M(g,) is the sink map of M(p) in B(H, k)-mod. In particular; M(g,): 0— M(w)
is a sink map in PB(H, k)-mod, and since M(w) is in §, this is a sink map in F.
Also, hy(w) =1=dim M(w)(w).

Consider the case where n=1. Then H has only one vertex, namely o, and
B(H, k)-mod is equivalent to k-mod, the onmly indecomposable object in
B(H, k)-mod being M(w). In this case, the map M(f,): M(w)— 0 is a source
map. Thus all assertions are satisfied.

Assume now that n =2, Using induction on n, we shall show that the following
two conditions are satisfied.

(d) Let x be a predecessor of a projective vertex of H. Then M(x) is
indecomposable, belongs to &, and satisfies sy (x) = dim M(x)(w). i x is in
e+1H\H, then M(x) is in ,.,§\.5.

(e) If uis a vertex of H, and M(u) is a direct summand of the radical of some
M(p), where p is a projective vertex, then either u—p or else u is a

successor of p. (However, the last possibility cannot occur, as we shall see
later.)

For the proof, let ¢ be a projective vertex of H with no proper successor of H
beigg projective. (Such a vertex exists, since there are only finitely many
projective vertices in H and no cyclic paths. Actually, we may assume in addition
that # is successor of any given projective vertex; this will be needed later.) Let H'
be the full translation subquiver of H given by the vertices u which are not
successors of ¢ Note that H' is a predecessor closed translation subquiver (if u is
a vertex in H', and u' is a predecessor of u, then ¢ <u' would imply t<u'=<uy,
which is impossible), and ¢ does not belong to H', whereas all other projective
vertices of H belong to H'. It follows that B(H’, k) is a full subcategory of
B(H, k), and we may, and will, identify B(H', k)-mod with the full subcategory
of B(H, k)-mod given by all functors X with X (£)=0. Note that H' is a partial
left hammock, and let H" be a completion of H'. Thus PH", k) =B(H', k).
Slpce H" is a left hammock with n — 1 projective vertices, we can use induction.
Given a vertex x of H”, we denote by M"(x) the functor

M"(x) = Homy g (-, x) | B(H", k).

Note that for a vertex x of H', both M(x) and M"(x) are defined, and
they coincide under our identification. In particular, M(w) = M"(); thus the
set F" of objects in P(H’, k)-mod with socle generated by M"(w) is just
F0 ﬂ_S( ", k)-mod. Using (b), applied to H", we see that all M (x), with x e H',
are indecomposable, in §, and satisfy dim M(x)(0)= hy(x) = hyu(x). Now,
consider M(¢) itself. Since n=2, we know that ¢ is not a source. Given an arrow
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@: y — t, the vertex y belongs to H'. Thus M(y) is non-zero and in §. Now

M(g): ? M(sa)— M(?)

is the sink map for M(f). Therefore
rad M(t)~ © M(sa)

ex=t

is non-zero and belongs to §, and so M(z) belongs to F. Also,
dim M(£)(0) = dim Hom(M (@), M(?))
= dim Hom(M(w), tad M(t))

= 3, dim Hom(M(w), M(s))

= 2 hu(s@)

= ha(t).

Thus, if x is a predecessor of a projective vertex of H, then either x =¢ or else x
belongs to H'. Thus M(x) is always indecomposable, belongs to &, and satisfies
ha(x) = dim M(x)(w). Also, if x is, in addition, in .. and not in .H, then M(x)
is in ,.1&, and not in ,%. This gives (d).

For the proof of (e), let p be a projective vertex, and u any vertex of H, with
M(x) a direct summand of rad M(p). We may assume that we have chosen ¢ as a
successor of p. We want to show that either u is a successor of p or else u—p.
Thus, assume u is not a successor of p. Therefore u is not a successor of ¢, so that
u € H'. The indecomposable direct summands of rad M(p) are of the form M(v),
with v— p, and all such v belong to H'. But using Condition (c) for H", we see
that M(u)~ M(v) only in the case where u = v; thus u—p.

We have shown, in this way, Property (a). Now, we use induction on d in order
to obtain (b) and (c). Consider first the case where d =—1. Since oH contains as
only vertex ®, we obtain (c) without difficulty, whereas (b) is empty.

Now assume that some d =0. Let x be a vertex in 4H. Let x—y. We claim
that M(y) is indecomposable, in §, and satisfies hy(y) = dim M(y)(®), and
that M(g,) is a sink map in &. If y is projective, then use (a) and the fact that in
this case, M(g,) is a sink map even in B(H, k)-mod, as follows from §4. If y is
not projective, then vy € 4, H, so we can use induction in order to obtain these
assertions. In addition, for y mot projective (and x—Yy), we obtain that
M(zy)=~1M(y). We use the dual of [12, 2.2.2] in order to see that the residue
classes of the maps M(B): M(x)— M(y) in Irrg(M (x), M(y)), where § runs
through the arrows x—>y, form a basis of Trrg(M(x), M(y)). Now conversely, let N
be an indecomposable module and assume Irrg(M(x), N) #0. First, let N~ M(p)
for some projective vertex p. From (e), either x—p, ot else x is a successor of p.
But, if x is a successor of p, then both x and p belong to ,H, and then
Irrs(M(x), M(p)) #0 implies x— p, according to the inductive assumption of (c).
Of course, the latter is impossible, since x as a SUCCessor of p cannqt b? a proper
predecessor of p. Next, consider the case where N is not projective. Then
74N #0, as shown in § 3, and Irrg(rgN, M(x)) #0 shows that TN~ M(v) for
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some v with v—>x. (If x is projective, we use (a). Otherwise, we use (b) for 7x;
this is possible since wx €, ,H.) But then N=1zM(v). Since v e, H, we
conclude from (b) that v cannot be injective (otherwise, 7zM(v) =0), and that
1zM(v)=M(t"v). Thus N=M(t"v) and there is an arrow x—> 7 v.
Altogether, we have shown that Irrg(M(x), N)#0 implies N~M(y), with
y ex™, It follows from [12, 2.2.2] that M(F,) is a source map.

Since  is closed under submodules, an irreducible map in ¥ is either injective
or surjective. Thus M(f;) is injective or surjective.

First, suppose that M(f,) is injective, and let C be its cokernel. Thus we deal
with the exact sequence
M
0—> M(x)& ? M(ef)—>C—>0,
sp=x
and its evaluation at o is the exact sequence
0— M(x)(0)~ ? M(ef)(w)— C(w)~0.
. sB=x
_We use this exact sequence in order to determine dim C(w); here, we also take
Into account that /(x) = dim M(x)(w), and hy(y) = dim M (y)(w) forally ex™,

Thus
dim C(w) = —dim M(x)(w) + %: dim M(ef)(@) = —hy(x) + (Zhg)(xP).
sp=x

When x is injective, dim C(w) =0, while ~hy(x) + (Shy)(x*) <0. Thus in this
case, C(w) =0, and therefore C is in $ and T3M(x) = 0. When x is not injective,
we have C~ M(v"x), from § 4. Thus in this case

dim M(T_X)((D) = ""hH(X) + (EhH)(x(+)) = hH(T-x).
It follows from § 3 that the exact sequence

0—> m(x) M, ® Me) 8 Mz — 0
sB=x

is a (relative) Auslander-Reiten sequence in
indecomposable and in
txM(x) = M(z7x).

If M(f,) is surjective, then its cokernel is zero, and thus in $. Therefore
TgM(x) =0. We claim that in this case x has to be injective. Otherwise,

. In particular, M(v"x) is
8. We see that M(g,-,) is a sink map in %, and

he(v7x) = —hy(x) + (Shy)(x™) = —dim M (@) @)+ 2, dim M(ef)(w) <0
B

sB=x
which contradicts the fact that &, takes only positive values on H,. This finishes
the proof of (b).

In order to establish (c), consider the functor

M: k(41H)— B(H, k)-mod.
Let z be a vertex of a+1H. Then M

z) belongs to c(Ifzi jecti
otherwise use (b) for x =1z ¢ ,_ ( b e L2 projecive, use (),

1H. In both cases the sink map for M(z) has a
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Jeft term which by induction belongs to ,§.) Also, if z belongs to 4., H but not to
4H, then M(z) is in 4,4, but not in ;3§ (for, there is an arrow y =z with y in 4H,
but not in ,_.H, and by induction, M(y) is in ,& and not in ,,&. Since
rad(M(y), M(z)) #0, we see that M(z) is not in ,&.)

We want to show that M is fully faithful, so we have to consider the maps

M,,: Homygm (s, v)— Homg(M(x), M(v))

given by applying M. By induction, M,, is bijective for u, v both in ¢H. In the
case where u=v, we know that Homygy(v,v)=k, and we have
Homg(M (v), M(v)) =k, since M(v) is directing. Of course, M, maps 1, onto
L), and so M, is bijective. So consider the case where u#v. We claim that
M(u) and M(v) are not isomorphic. This is clear if both u, v are projective
vertices, since the subcategory of $8(H, k)-mod given by the projective modules is
equivalent to $B(H, k). If, say, u is a projective vertex, and v is not, then M(u) is
a projective module, and M(v) is not (we know that TgM (v) = M () #0).
Finally, if both u, v are non-projective, then txM(v) = M (tv), T3M(u) = M(1u),
and 7v# tu belong to 4_H. Thus by induction M(7u) and M(tv) are not
isomorphic. Therefore, given @: M(u)— M(v), we can factor it through M(g,),
say @ = @'M(g,). If u € 4;H, we-know by induction that ¢’ =M () for some 1 in
k(;H); thus M, is surjective in this case. On the other hand, if u ¢ ;H, then
M(u) is not in &, and so Hom(M(x), M(v)) =rad(M(x), M (v)) =0. Thus, M,,
is always surjective. Now assume M,,(y) =0 for some y € Homy, (4, v). Since
u+u, we can write y = y'g, and we can assume that u is a proper predecessor of
v (since otherwise y' =0, trivially). Therefore y' e k(,H). We have 0=M(y)=
M(y"M(g,). If v is projective, then we know that M(g,) is injective. Thus
M(y') =0, and so by induction, y' =0. If v is not projective, the kernel of M(g,)
is M(f,,). Thus M(y")=08M(f.,), for some o. However 8 =M(y") for some
v' € k(;H), and therefore M(y'—v'f)=0. Note that y’ — y"f,, belongs to
k(;H). Thus, by induction, it is equal to 0, so y' =y"f,, and therefore

¥=7'g, = ¥"fugs = 0. This shows that M,, is also injective. Thus

M: k(d+1H) - d+1%

is a full embedding. Of course, our knowledge of sink maps and source maps
shows that M induces a full embedding of translation quivers from 4., H into I'§.

This finishes the proof of the assertions (a), (b), (c) for H a left hammock with
finitely many projective vertices. In order to derive Theorem 3 for s_uch a left
hammock, we only have to observe that the functor M: k(H)— . is actually
dense. Given an indecomposable projective module, it is of the form M(p), and
is thus in the image of M. We use induction on d in order to show ‘tha.t any
indecomposable module N in 4 is in the image of M. 1f d=0, then N is simple
projective. The only simple projective module is M(w), and thus is 1n the image
of M. Now assume N is non-projective and in ,&. Then 7N is non-zero, anfi in
4-o%, and so of the form M(x) for some x. Note that x cannot be injective, since
otherwise tzM(x)=0. Thus 7°x exists, and N zth(x)zM(r"x) is in the
image of M. This finishes the proof of Theorem 3 in the case where H has only
finitely many projective vertices. .

Tt remains to consider the case where H contains infinitely many pro;nectgve
vertices. Let $(d) be the full subcategory of B(H, k) given by al! projective
vertices p with p e ;4. We may, and will, identify B(d)-mod with the full
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subcategory of PB(H, k)-mod given by all functors X with X(p')=0 for all
projective vertices p’ with p' ¢ ,H. Note that we have the inclusions

$(0)-mod ¢ B(1)-mod < ... ¢ B(d)-mod < ...
B(H, k)-mod = }_JN B(d)-mod,

and we have

since any object in P(H, k)-mod is of finite length. Note that M(w) belongs to
$(0)-mod, and thus to all $(d)-mod, and we denote by (d) the set of all objects
in P(d)-mod with socle generated by M(w), and let § be the set of all objects in
PB(H, k)-mod with socle generated by M(w); thus we also have F(d)=
$NP(d)-mod. For any deN, the translation quiver ,H is a partial left
hammock. Thus we may consider a completion H(d) of ;H. Note that now H(d)
is a left hammock with only finitely many projective vertices, and B(H(d), k) =
P(d). For any vertex x of H, let

M(X) = Homk(H)(—, x) | 2B(I{, k)

It is an object in $B(H, k)-mod. If x belongs to ,H, then clearly M(x) belongs to
%(d)-mod (and it coincides with the object Homygyea(—, x) | B(H(d), k), which
in B(H(d), k)-mod would also be denoted by M(x), so no confusion need occur!)

Now consider a vertex x of H. We claim that M(g,) is a sink map for M(x) in
&, and M(f,) is a source map for M(x) in &. This means that we have to verify
the corresponding lifting properties for all maps N— M(x) which are not split
epimorphisms, and all maps M(x)— N which are not split monomorphisms.
However, any such N belongs to some F(e), with e sufficiently large, so it is
sufficient to establish the lifting property in R(H(e), k)-mod (where we assume

that e is chosen in such a way that both N € §(e), and x* ¢ H), but this has been
established above. This finishes the proof of Theorem 3.

6. The main estimate and proof of Theorem 1

' As a preparatiqn for the proof of Theorem 1, we are going to derive an
inequality concerning suitable Jordan—Holder multiplicities of indecomposable
A-modules, where A is a finite-dimensional k-algebra, and k is algebraically

closed. The proof of Theorem 1 given in this section will rely, in addition, on
‘Theorem 3.

ProposITION. Let k be an algebraically closed field, and A a finite-dimensional
k-algebra. Let P(w) be a simple projective A-module, and § the full subcategory

of A-mod given b'y all (finitely generated) A-modules with socle generated by
P(w). Let X be a indecomposable A-module in <. Then

dim Hom(P(w), X) ~ 1< dim Hom(P(«), 74X) = diim Hom(P(w), 15X).

Proof. The assertion is trivial in the case where dim Hom(P(w), X)<1. So
assume dim Hom(P(w), X)=2. Since X e.¥, there are only finitely many
indecomposable modules in Y in § with Hom(Y, X)+0. Since every submodule
of X again belongs to §, there are only finitely many isomorphism classes of
submodules of X. (For, let m=dim; X, and let ¥;,...,Y, be the indecom-
posable A-modules in §, with Hom(Y], X) #0. Then any submodule of X is of
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the form @D, Y™, with all m;<m.) Let Q4(w) be the injective envelop of
P(w). Given a map ¥: X—>0 ,(0), let K(3p) be its kernel. Since there are only
finitely many isomorphism classes of possible K(1), we claim that there is a
dense open subset U of Hom(X, Q4()) (in the Zariski topology), with K(v)
being isomorphic, for all ¥ €U, say isomorphic to K and K+0. Consider
pairwise non-isomorphic A-modules K, ..., K, such that any submodule of X is
isomorphic to some K;. By Chevalley’s theorem, the projection map

Hom(K;, X) X Hom(X, O (@)= Hom(X, Q4(w))

maps the locally closed set {(®, ¥) | p € Hom(K;;, X), v € Hom(X, Q4(0)), pa
monomorphism, @y =0} onto a constructible subset, say W; of
Hom(X, Q4(w)), and W; is the set of all maps y¥: X— Qa(w) with kernel
containing a submodule isomorphic to K;. Let .
W=W\ U W,
jel@)

where J(i) is the set of all j with dim K; > dim K. The W, are again constructible.
Since Hom(X, Q,(w)) is the disjoint union of the finitely many constructible
subsets W, one of these subsets W;, say W;, has to be dense, and therefore
contains a dense open subset U of Hom(X, Q4(w)). Of course, W, is the set of all
maps 9: X— Q4(w) with kernel isomorphic to K;. Thus let K =K. Since
dim Hom(P(w), X) =2, and dim Hom(P(«), 0(w)) =1, we see that K #0.

We choose for every 9 € Usome monomorphism u(y): K— Xwith p(y)yp =0.
Let V be the set of all pairs (9, ¥) € Hom(K, X) X Hom(X, Qa(w)) with ¢ a
monomorphism, ¢ €U, and @y =0. This is a locally closed subset of
Hom(K, X) X Hom(X, Q4(®)), and we may consider the two projections

n; V—Hom(K, X), m(p, ¥)=9;
Ty V= U: EZ((P’ W) = TIJ
First, we consider 7,. Given ¢ € U, we claim that

w3 () = {(an(y), ¥) | @€ Aut(K)},

where Aut(K) denotes the set of automorphisms of K. For, if & Aut(K), clearly
au(y) is a monomorphism and au(y)y =0, and so (au(y), p)eV. On the
other hand, if (g, )€V, there is f: K— K with ¢ =pu(y), since p(y) is a
kernel of v, and @y =0. Since @ is 2 monomorphism, so is B, and thus § is an
automorphism. It follows that dim 75 () = dim Aut(K) = dim End(K), for all

Y € U. Therefore,

dim V = dim U + dim End(K) = dim Hom(X, 0.4(0)) + dim End(K).
Next, consider zr;, We claim that for @ € Hom(K, X), the fibre 77 (@) is either
empty or one-dimensional. Thus, assume a7} (@) is non-empty and take

(@, v(@)) € V. Let us show that

a7Y(p) = {(@, cv(p)) | 0#c ek},
Of course, for non-zero ¢ € k, we have (@, cv(p)) eV. Qonversgly, let (@, 11:) € V;,
We write v(p)=voyh, ¥=1y'y" with Wb, ' epimorphisms, and ¥j, ¥

monomorphisms. Since both g, y' are cokernels of @, there is an isomorphigm
y with ¢’ =4y, Since Qa(w) is injective, there is 6 € End(Q4(w)) with
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yy" =10, and 6 #0. Altogether,
Y =9y =Poyy" = Poyid = v(¢).

Note that End(Q4(w)) =k, since the socle of Q4(w) is simple projective. Thus
Y = cv(@p) for some non-zero ¢ € k. It follows that

dim V < dim Hom(X, X) + 1.

Combining the two assertions concerning dimV, and using the fact that
dim End(K) =1, we obtain
dim Hom(K, X) =dim V -1
= dim Hom(X, Q4(w)) + dim End(K) — 1
= dim Hom(X, Q4(w)).

Choose some pair (¢, ¥) eV, and a factorization y = y'y", with ¢': X—>Y
an epimorphism, 9": ¥— Q,(w) a monomorphism. The exact sequence

0— k2 x¥s v —0
induces an exact sequence

Hom(X, X)— Hom(K, X)— Ext'(Y, X)— Ext\(X, X).
Here, the first term is one-dimensional and the last term is zero, since X € % is
directing in &, and § is closed under extensions. Thus,

dim Ext'(Y, X) = dim Hom(K, X) - 1.

(Actually, we have equality: we may extend the long exact sequence to the left by
Hom(Y, X). But Hom(Y, X)=0. For, Y belongs to §, since it is a submodule of

Q4(w). Thus Hom(Y, X) #0 would produce a cycle Y <X < Y.) In addition, we
use the Auslander—Reiten formula

Ext(Y, X) ~ D Hom(7; X, Y),
and so obtain
dim Ext'(Y, X) < dim Hom(z3X, Y).
Also 9" induces a monomorphism

Hom(72X, Y)— Hom(73X, Q4()).
Thus

dim Hom(z;X, Y) <dim Hom(72X, Q4(w)).
Altogether we have

dim Hom(v3X, Q(w)) = dim Hom(z; X, Y)
= dim Ext'(Y, X)
= dim Hom(K, X)~1
= dim Hom(X, 0 4(w)) - 1.
Finally, we note that 13X = (17X )s» and therefore
dim Hom(P4(w), 73X) = dim Hom(P,(w), 15X).
This finishes the proof.
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Proof of Theorem 1. Let H be a left hammock, and x a vertex of H. We may
assume that H has only finitely many projective vertices. (For, we choose d so
that x*, and, if x is not injective, T™x also, belong to ,H. Let H(d) be the
completion of the partial left hammock ,H. Then hgr and hpy gy coincide on x, xt,
and, if x is not injective in H, on 7"x. Also, x is injective in H if and only if it is
injective in H(d). Thus, we may replace H by H(d).)

Let k be an algebraically closed field. Since P(H, k) is a finite k-category,
B(H, k)-mod is equivalent to A-mod, for some finite-dimensional k-algebra. We
use Theorem 3. Let P(w) be the unique simple projective A-module, and
%=A-spmod. Then $=A-spmod=~B(H, k)-spmod=k(H). We can identify
T.% with H, and then hy([X]) = dim Hom(P(w), X), for any indecomposable
A-module X in § We have t7[X]=[r5X], provided 75X +#0. In the case
where 75X =0, the vertex [X] of H =T..3 is injective, and so hy(77[X])=0=
dim Hom(P(w), 75X). Thus, for all indecomposable A-modules in 3, we have
hy(t7[X]) = dim Hom(P(e), 75X). Therefore Theorem 1 is a direct conse-
quence of the proposition above.

7. Representations of finite partially ordered sets (proof of Theorem 2)

Let S be a finite partially ordered set, and fix some field k. We write
£(S):=£€(S, k). Recall that we denote by S* the partially ordered set obtained
from § by adding an element o with s <o for all s €. Similarly, we denote by
S, the partially ordered set obtained from § by adding an element @' with o' <s
forallseS.

Let us exhibit some useful S-spaces, P(f) = Ps(t), R(tf)=Rs(f), where te S*,
by putting

k fors=t¢, k fors>t,
PO, = {0 fors#y, 0T {0 for s 41,

where s € S*. Note that R(w) =0, whereas the remaining R(t), for ¢ €S, and all
the P(¢), for t € S*, have one-dimensional total spaces. We will also consider the

S-spaces Q(t) = Qs(t), where t € S, and N(t) = Ns(t), where t €,

k fors<t, __{k fors £t
Q(t)s={0 for s <t )= 0 fors<t,

with s € S*. Also, let N(') =0; the remaining N(z), for t € S, and all Q(f), for
te S, have one-dimensional total spaces. We have

k fort,=t,
Hom(P(tl)’ P(tZ)) = {0 for tl ; t2)

where t;, t, € S*, and similarly

k fort =1,
Hom(Q(ty), Q(1)) = {0 for ti # tz,

where t,, t,€ S,. We denote by () the full subcategory of £(S) given by the
S-spaces P(f), with t& §*, and by £(S) the full subcategory of £(S) given by the
S-spaces Q(¢), with t € S,.. Then S(B(S)) = (S*)*, S(O(S)) = (S.)*; thus we can
recover § from B(S) as well as from Q(S).
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Let us consider
As=A((S)"),

the incidence algebra of the partially ordered set opposite to S*. We may
consider, in the obvious way, any S-space V =(V,, ¥,);es s an Ag-module.
Recall that the quiver of Ag has as vertices the elements of S*, and there is an
arrow a < b, provided a covers b (that means a>b, and a>b'=b implies
b'=b). We consider V as a representation of this quiver by using the vector
spaces V,, and V;, and the inclusion maps V, <>V, for a «b. In this way, we
may and will consider £(S)=¢(S, k) as a full subcategory of Ag-mod. The
§-spaces P(f), with t€S*, considered as Ag-modules, are just the indecom-
posable projective Ag-modules. In particular, there is precisely one simple
projective Ag-module, namely P(w). Note that any S-space V, considered as an
Ags-module, has socle generated by P(w), and thus belongs to Ag-spmod.
Conversely, any module in Ag-spmod is isomorphic to an object of €(S). Thus,
we can identify £(S) with the category Ag-spmod. Of course, the exact sequences
in £(S) as introduced in § 1, are just the exact sequences in Ag-mod with all terms
belonging to As-spmod. Since A s-8pmod is closed under extensions in Ag-mod, it
follows that £(S) is an exact category.

We want to consider the Auslander—Reiten quiver I'¢(S). We can use all the
.results mentioned in § 3, since €(S) = Ag-spmod is of the form 8p(w) and the
indecomposable projective As-modules all belong to Ag-spmod. Thus £(S) has
source maps and sink maps and, given an indecomposable $-space Z, not of the
form P(f) for any ¢ & §*, then there is a (relative) Auslander-Reiten sequence in
€(S) ending in Z. Thus the only projective vertices in I'4(S) are those of the form
p())=[P(®)], with teS*. Since ¢ (8)°P =~ £(S*), we see similarly that, for any
mdecomposablg S-space X not of the form Q(¢) for any t € S, there is a (relative)
Aus}andfzr—Relten sequence in £(S) starting in X. Therefore the only injective
vertices in I*€(S) are those of the form q()) =[Q(¢)] with ¢ € §,. For any te S,
the canonical map R(t)— P(t) is a sink map for P(t) in £(S). Similarly, for any
teS,, the canonical map Q(r)— N(t) is a source map for Q(#) in €(S). It follows
that p(®) is the unique source, and (o) the nique sink, of T¢(S). Also given
t€S§, we see that p(¢) is endpoint of precisely one arrow, and its starting point is
[R()], wheregs g(t) is starting point of precisely one arrow, and its endpoint is
IN()). Now it is casy to see that H(S):=,T¢(S)=T.£(S) is a component of
I'¢(S), and a preprojective translation quiver;

Lemma. Let T be a translation quiver,
vertices, and a unique source, Assy
L. Then .I" is a component of T, it
implies x* < ,,.,I.

with only finitely many projective
me that |p~| <1 for any projective vertex p of
IS @ preprojective translation quiver, and x € ;I

P.roof. We show by induction on d that x € ;T implies x* < .. T p ex™ is a
projective vertex, then by assumption P ={x)c,l. an ci”;o. pe I
particular, this gives the assertion for g = 0, since the—imn;ediate successo‘glof any
source are pfoj ective. It remains to consider x e ;T y ex*, with y non-projective.
Then 7y €x, and .thus Ty € 44" By induction, y = (ry';) c . Thus y € gqT

I.n particular, this shows that T is closed under neighbo_ﬁrs and therefore a
union of components of I', Since by assumption I’ has 01’11y finitely many
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projective vertices, it follows that LI is a preprojective translation quiver. Thus
T is connected, since any component of a preprojective translation quiver
contains a source.

Since for any ¢ € $*, the canonical map R(r)— P(f) is a monomorphism in £(S),
we can use Lemma 2.3.3 of [12], and conclude that ..¢(§) is standard. Recall that
we denote the dimension of the total space of V by dim,, V. Since dim, is additive
on exact sequences of £(S) and since dim,, P(f)=1for te S*, and dim, R(H) =1
for t €S, it follows that dim,, coincides on H (S) with kg Thus, kg satisfies
Condition (3) for a left hammock. It also satisfies Condition (4), since the
injective vertices are of the form g(f) and dim, 0()=1, for all teS,, and
dim,, N(¢)=1, for all €.

Note that usually not all P(f) belong to .£(S). We denote by S’ the set of all
teS with P(t) €.£(S). Then §' is a filter in §, that is, s €S' and s <t implies
teS' (for, if s<t, then Hom(P(f), P(s)) #0), and ' contains all maximal
elements of § (for, if ¢ is maximal in S, then R(f) = P(w), and thus P(t) €1£(S))-
We can recover 8' from H(S) as follows. Since £(S) is standard, we have

Homygzsy(p(6), p(£)) ~ Homes(P(s), P(1)),

for all 5, ¢ e §', and thus Homysy(p(s), p(£)) #0 if and only if ¢=<s5."

Let us show that given a projective vertex p of H(S), we can describe
combinatorially, without reference to k, the k-dimension of Homyzrsy)( 25 x), for
any vertex x of H(S). Thus, fix some projective vertex p =p(?). Let H (S)[p] be
the full translation subquiver of H(S) with vertices the isomorphism classes [Z] of
the S-spaces Z with Z, #0. Clealy, this is a left hammock with hammock function
Ry given by A e (Z]) = dim Z,. For, if Z=P(t), then dim V,=1; if [Z] is
a projective vertex of H(S) different from p, say Z = P(s) for some s #1, then
dim P(s), = dim R(s),, whereas for [Z] a non-projective vertex of H(S), with
Auslander—Reiten sequence '

(*) 0-»X—->Y->Z—-0

in €(S), we have the exact sequence
0— X,— Y,—» Z,—0.

Note that the projective vertices of H (S)[p] are of two kinds. First of all, there
are the projective vertices p(s) of H(S), with s=<t Second, there are the
non-projective vertices z = [Z] of H(S), with Auslander—Reiten sequence (),
such that X, =0, Y;#0. Thus the latter are non-projective vertices z of H(S) such
that 7ys)(z) does not belong to H (S)[p], whereas at least one of the elements
y ez~ does belong to H(S)[p]. Inductively, we see that H(S)[p] is umgue.ly
determined by H(S) and p, without reference to k, and so therefore is 1fs
hammock function A sy, But, as we have seen,

dim Hornk(H)(p, Z) = dim Z, = hH(S)[p](z):
for z = [Z] a vertex of H(S)[p], and
dim Homy(p, 2) =dim Z, = 0,

for z = [Z] a vertex outside H(S)[p]. ,
It follows that H(S) is independent of k, by induction on the number of
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elements of S. If S is empty, then H(S) consists of a single vertex, so nothing has
to be shown. If § is non-empty, choose a minimal element u of S such that either
P(u) does not belong to .£(S), or else it does not belong to some ,_.£(S),
whereas all P(s), with s €S, belong to 4£(S). Let S, be obtained from S by
deleting u. We consider the S-spaces V with V, =0 as S,-spaces. In particular,
R(u) can be considered as an S,-space. By induction, H (S,) is independent of £,
and we can decide combinatorially whether [R(x)] belongs to H(S,), and if it
belongs to H(S,), its precise position. If [R(u)] does not belong to H(S,), we
have H(S) = H(S,), for any field k. Otherwise H(S) is the completion of ;H(S),
and ;H(S) is obtained from ,H(S,) by adding the vertex p(t) and an arrow
[R(w)]—p(2).

This finishes the proof of the first part of Theorem 2. Let us consider now the
second part of Theorem 2. Thus, let H be a thin left hammock with # projective
vertices. Theorem 3 implies that k(H)~ .(B(H, k)-spmod) as categories, and
H~T.(B(H, k)-spmod) as translation quivers. Let us show that we can identify

B(H, k) with the category of finitely generated projective A sqay-modules for the
partially ordered set S(H) with

S(H)* = S(B(H, k))*.

We use induction on #, the case where n =1 being trivial. If n =2, choose d
minimal such that all projective vertices of H belong to ,H. Let p be a projective
vertex of H not belonging to ,_,H, let y be the immediate predecessor of p, and
denote the arrow y—p by a. Delete from aH the vertex p, and consider the
completion H'. This again is a thin left hammock. Thus B(H', k) may be
considered as the category of finitely generated projective A sn-modules. We
consider the B(H, k)-module M(y), and its restriction M '(y) to B(H', k).
Clearly, we can consider (H, k) as the category of finitely generated projective
B-modules, where B is the one-point extension of Asuy by M'(y). But M'(y) is
in Asqryspmod; therefore we may consider M '(y) as an S(H')-space. Note that
dim M(y)(w) = hyu(y) =1, since H is thin. Now M '(y)(@) is just the total space
of M '(y)., considered as an S(H')-space. Let U be the set of projective vertices p’
of H' with M(y)(p")#0. Since M '(y) is an S(H")-space with one-dimensional
total space, we see that U is a filter on S(H') and we have p’ <p in S(H) if and
only if p' belongs to U. (For, if p'e U, then M(y)(p')=M'(y)(p")#0, and
A{ (@) is a monomorphism, from § 4. Thus Homyy(p’, p) =M (»)(p) #0, and so
p'<p. On th.e other hand3 if p;<p, for some p, in S(H), there is p,, with
Pi1sp,<p, in S(H), with Homy s (py, p) #0. Thus also M'(y)(p2) =
M ,(}’)(Pz) = Homyy(p,, y) #0. Therefore p2€ U, and 50 p; € U.) It follows that
M (),)), as an S_‘(H’)-space, is nothing other than R(p), also considered as an
S(H')-space. Since Asq is the one-point extension of As@ry by the S(H')-
module R(p), we see that B = As(ay This shows that

k(H) =~ ($B(H, k)-spmod) ~ o(Ase-spmod) = .£(S(H), k)
as categories, and

H=~T.(PB(H, k)-spmod) ~ L€(S(H), k) = H(S(H)),
as translation quivers, |

Finally, assume that H is a hammock, and that § is a partially ordered set with
H(S)~ H. Since .£(S, k) is finite, we must have €(S, k) = £(S, k). Thus all P(s),
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for s €S, belong to .€(S, k), and therefore s [P(s)] gives an isomorphism
S— S(H(S)) of partially ordered sets. Thus § and S(H) are isomorphic. This
finishes the proof of Theorem 2.

For later reference, let us formulate the recipe for obtaining the partially
ordered set S(H) from the thin left hammock H. The elements of S(H) are the

projective vertices p, different from the source @, and p; = p, in S(H) if and only
if Homy(zy(p1, p2) #0.

8. Hammocks of Type A,

Given a hammock H with source p and sink ¢, the length of any path from p to
q in H will be called the length of H, and denoted by ||H]|. Note that the length
of H is d if and only if H = ,H # ;. H.

Given two partially ordered sets S and S', with a bijective, order-preserving
map §'— S, then § is called a refinement of S'. Note that if § is a refinement of
S’ we may consider £(S) as a full subcategory of €(S"). (Let g: §'—S be a
bijective order-preserving map. If V=(V,, Vi)ses is an S-space, then V', with
Vi=V,, Vi=Vyq, is an §'-space, and in this way, we obtain a full exact
embedding of £(S) into £(S").) Note that if § is a refinement of S', and §' is
representation-finite, then S is also representation-finite, and ||[H Sl =<IHEH

If S is a finite chain, say with »n elements, then H ($) is.a linearly oriente
quiver of Type A,.y, with all vertices projective (and thus also injective). It
follows that in this case, the length of H(S) is equal to 7.

Any partially ordered set § has a refinement which is a chain. It follows that for
a representation-finite partially ordered set S, we have ||[H(S)| =S|, where |S|
denotes the number of elements of S. The representation-finite partially ordered
sets S with [|H(S)|| =S| are characterized by the next proposition.

ProrosttioN. Let S be a finite partially ordered set. The following conditions are
equivalent: '
(i) width(S)=<2;
(i) hpes)(x)=1forany xeH (8)o;
(iii) the length of H(S) is equal to the cardinality of S;
(iv) |27} <2, and |z*| <2, forany Z € H(S)o.

When these conditions are satisfied, we call H(S) a hammock of Type A,

Remark. Note that we may reformulate (if) as follows: the total space of any
indecomposable S-space is one-dimensional. In this way, we see that the
equivalence of (i) and (ii) is well known. If § contains three pairwise incom-
parable elements, then it is easy to construct an indecomposable S-space with
2-dimensional total space (see the proof of the implication (i) = (i) below). On
the other hand, if $ has width at most 2, then any S-space may be decomposed as
a direct sum of S-spaces with one-dimensional total spaces. The usual proof
providing such a decomposition uses filtrations of vector spaces and their
refinements. The obvious proof of the implication (i) = (i) using Auslander-
Reiten theory will be exhibited below.
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Proof of the proposition. (i) = (i), (iii). First, let S be the disjoint union of two
chains. Then H(S) can be constructed without difficulty step by step, and H (S) is
seen to be of the form

It follows easily that hy)(x)=1 for all x € H(S),. Thus any indecomposable
S-space has a one-dimensional total space. Also, ||H(S)|| = |S|.

If now S is an arbitrary representation-finite partially ordered set of width 2,
then § may be considered as a refinement of some partially ordered set §' which
is the disjoint union of two chains. Since €(S) may be considered as a full

subcategory of £(S’), we see that the total space of any indecomposable §-space
is one-dimensional and that

1S < 1) =1s'[=1s].

Of course, we also have [|[H(S)|| = ||, and thus equality.

(ii)= (i). Assume S contains three pairwise incomparable elements s,, s,, §3.
Let V =(Vy, V)ses be defined by V,=k? Vo=kX0, V,=0xk, V,=
{(%, @)| @€k}, and V;=0if t <s; for some i, whereas V.=V, for the remaining
t. Clearly, V is an S-space, V is indecomposable, and its total space is
2-dimensional.

(iii) = (i). Again, assume $ contains three pairwise incomparable elements s,
52, §3. Let 8" be a refinement of $ such that (the images of) 5, s5,, 55 in $” are still

pairwise incomparable, whereas all other pairs of elements of §” are comparable.
Thus, S” is of the form

A NS
<

and [|H($")|| < |H($)||. However, it is easy to see that H (8") is of the form

and ||H(S")|| =|$"| + 1. Therefore, |H(S)|| =8| +1.

(i) = (iv). Let hys)(x) =1 for all x € H(S),. If 7 is projective, then |z7| <1. If
z is not projective, then

1=hps)(2) = Chu)(2O) = hyg(12) = |27 - 1,
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and therefore |z7| =2. If z is injective, then Corollary 1 shows that lz*|<1.1fz
is not injective, then |z*| =|(z72)7| =2

(iv)=> (ii). Assume there exists x € H (S)o With hgs(x)=2. Take such an
% € ;H(S), with d minimal. Thus Az (y) =1 for all proper predecessors y of x.
Since H(S) is a hammock, x cannot be projective. Therefore

ha)(x) = (ZhH(S))(x(_)) ~ hsy(we) =& -1
and so |x7|=3.

9. Application

Let k be an algebraically closed field, and A a finite-dimensional k-algebra. Let
E be a simple A-module with projective cover P(E) and injective envelope Q(E).
Recall that the dimension of the vector space Hom(P(E), X) is the multiplicity of
E as a factor in any composition series of the A-module X. There is a filtration of
Hom(P(E), X) given by the subspaces X(d) = rad*(P(E), X), and we denote by
X(d) the corresponding factor-spaces X(d)/X(d +1). By definition, X (d) =
Hom(P(E), X) for d <0; thus X(d) =0 for d <0. The dimension of X (d) counts
the multiplicity of those Jordan-Holder factors of X which can be reached from
P(E) by maps in rad’, but not in rad®*!. Now we define a translation quiver
H(E) as follows. Its vertices are the pairs ([X], d), where X is an indecom-
posable A-module with X(d) #0. There are arrows ([X], 4)—> ([Y], e) only for
e=d+1, and the number of arrows is equal to dimy Irr(X, Y) (recall that
Irr(X, Y) =rad(X, Y)/rad*(X, ¥) measures the set of irreducible maps from X
to Y). Finally, ([X],d) is projective when (z,X)(d-2)=0; otherwise let

7((X), d) = ([zaX], d - 2).

Propostion. H(E) is a left hammock, ~with hammock  function
hae)((X], ) = dimy, X(d). Also, H(E) is a hammock if and only if there is
some reN such that the canonical map P(E)— Q(E) with image E does not
belong to rad"(P(E), Q(E)). :

Proof. Any ¢ € X(d), with =1, can be written in the form @ = I &;f; with
o € Y(d —1), p;erad(¥, X) and all ¥, indecomposable. If ¢, in addition, does
not belong to X(d +1), then there is some i with o; ¢ Yi(d), B ¢ rad®(%;, X).
Then ([Y;], d—1) is a vertex of H (E) and there is an arrow (Y), d-D)—
([X], d) in H(E). It follows that no ([X], d), with d =1, is a source. On the other
hand, X(0)#0 is only possible for X = P(E), and actually P(E)(0)#0. Thus
H(E) has a unique source, namely ([P(E)], 0). 1t follows that any ([X], d)
belongs to (H(E)\ 4 H(E). (For, by definifion, the immediate predecessors of
([X], d) are of the form ([Y], d—1), and, as we have seen above, there is an
immediate predecessor, provided d >0,) In particular, H (E)=H(E), and
therefore hy(x, is defined, and we have

b ((P(E)], 0)) = 1= dim PE)O)

In order to see that hyge(((X], 4)) = dimy X(d) always (so that hye) takes
only positive values) and that hg(z) satisfies Condition (4) for a left hammock, we
use results of Jgusa and Todorov [10]. First of all, given an indecomposable
projective module P with radical @ Y7", all ¥; being indecomposable, Lemma 4.2
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of [10] asserts that the inclusion map induces an isomorphism
® Y(dy™— P(d +1),
for every d =0. Thus
dim,, P(d + 1) = >, m; dim,, ¥;(d).

Also, the main theorem of [10] asserts that for every d=-1, and every
Auslander—Reiten sequence

O—>X——>@ Y7 Z—0,

with all ¥; indecomposable, we obtain an exact sequence
0~ X(d)— D Y(d +1)"— Z(d +2)—~ 0.

Th o s )
“S dimy Z(d +2) = 3, m; dim,, ¥(d + 1) - dim, X(d).

Using induction on d, we see that ([X], d) — dim, X(d) is the hammock function
on H(E), and that

hae(([X), d)) = Ehu@)(([(X], D))

if X is an indecomposable, non-injective module and X(d) #0, but ([X], d) is an
injective vertex of H(E). It remans to verify Condition (4) for a left hammock for
vertices of H(E) of the form ([Q],d) with Q an indecomposable injective
A-module. First, consider the case where Q = Q(E), the injective envelope of E,
and assume the inclusion map p: E— Q(E) belongs to

rad®(E, Q(E))\rad**(E, O(E))

(or, equivalently, that e’ is maximal with the property that the image of

Hom(—, ) lies in rad”(~, Q(E)), and that the canonical projection : P(E)—
E lies in E(e)\ E(e + 1). Then according to the main theorem of [10], 4 induces a

monomorphi - —
P E(e)>0(E)(e +¢"),

and so mpeQ(E)e+e)\Q(E)(e+e'+1). Since gvery non-zero map
¢: P(E)—X can be composed with a map y: X— Q(E) in order to have
@Y = my, we see that X(e+e’+1)=0 for all X. Thus ((Q(E)], ¢ +¢') is a sink
of H(E). We always denote by &: Q— Y = Q/soc O the canonical projection,
and we decompose Y = &, Y%, with all ¥, indecomposable. Consider again the
case where () = O(E), and take some Q(E)(d), where belongs to Q(E)(d + 1)

gthus either d<e-+e’, or one of e, ¢ or both are not defined). Then, ¢
induces a monomorphism

(*) Q@) B Y+ 1y,

and, similarly, if Q.aé Q(E), then u always induces a monomorphism (*). Using
the fact that P(E) is projective and that ¢ is surjective, we easily see that these
maps () are bijective. This shows that

hae(([Q), 4)) = Ehy@)(([Q], ),
except when ([Q], d) is a sink.
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Of course, a left hammock is a hammock if and only if it contains a sink, If
there is some » with i ¢ Q(E)(r), there is e with & € E(¢)\E(e + 1), and ¢’ with
p erad®(E, Q(E))\rad* *{(E, Q(E)). Thus ([Q(E)], e+e') is a sink. On the
other hand, if 7u € Q(E)(r) for all #, then at least one of ¢, e' cannot exist, since
otherwise we would have Q(E)(e +¢' + 1) =0. Thus H(E) does not have a sink.

10. Directed algebras

Given an A-module M, we denote by Hom(M, A-mod) the category defined as
follows: its objects are the A-modules, and '

HomHom(M,A-mod)(X: Y) = HomA(X » Y)/ e

where for f,g: X—Y we have f~g if and only if Hom(, f) = Hom(M, g).
Given a map f in A-mod, we denote by f=Hom(M, f) the residue class of f in
Hom(M, A-mod). Similarly we may write X =Hom(M, X) instead of X, when
we consider X as an object of Hom(M, A-mod).

In the following discussion, we shall usually deal with the case when M is
projective. Given an objéct class 2 in a Krull-Schmidt category R, we denote by
Q/I the factor category of & modulo the ideal of maps which factor through
objects in . (Thus, the objects of §/IN are the objects in & and

HOM@m(X, Y) = HOITI@(X, Y)/ HOIII@(X, Y)EIR’

where Homg(X, Y)y, is the subspace of all maps in Homg(X, Y) which factor
through an object in I%.) The module classes It we are interested in will be of the
following form. There is a given projective A-module P, and I is the module
class of all A-modules M with Hom(P, M) =0. Now, given a projective module
P, there exists an idempotent e in A such that for any A-module M, we have
Hom(P, M)=0 if and only if eM=0, and thus if and only if M is an
A/{e)-module. This shows that I is the class of all A/{e)-modules.

Levma 1. Let P be a projective A-module, and IR the module class of all
A-modules M with Hom(P, M) =0. Then Hom(P, A-mod) = A-mod/M.

Proof. Clearly, given @ € Homs(X, ¥)z, we have Hom(P, ¢)=0. On the
other hand, assume there is given ¢: X—>Y with ¢ = Hom(P, ) =0. We factor
Y =P, with y,;: X—1 an epimorphism, %> I»>Ya monomorph_lsm. We
claim that I et For, given a: P—1I, there is o' with ¢=a'y,, since P is
projective. Thus @y, = &'P1P, =0, since it is the image of &' under . Since ¥,

is a monomorphism, o =0.

We consider now the special case of A being 2 directed algebra. Again, let k be
an algebraically closed field, A a finite-dimensional k-algebra, E a simple
A-module, and P(E) its projective cover. Let My be the module class of all
A-modules M with Hom(P(E), M) =0, and thus of all A-modules M which have
10 composition factor of the form E. .

According to the lemma, Hom(P(E), A-mod) = A-mod/Pz. Assume now, In
addition, that A is representation-finite and that the Auslander—Reiten quiver ‘I“A
of A is directed (that is, 4 is a directed algebra). Let Hp: be the full translation
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subquiver of T4 given by all vertices [X] of I'y, with X an indecomposable
A-module outside I.

Lemma 2. The categories Hom(P(E), A-mod) and k(Hg) are equivalent.

Proof. Since A is directed, we know that A-mod is equivalent to k(I'4) (see
[12, 2.4.11]), with an indecomposable module X corresponding to the object [X]
in k(I'4). Let M be the full additive subcategory of k(') whose indecomposable
objects are of the form [X] with X an indecomposable A-module in Iz Of
course, Mz and M correspond to each other under the equivalence
A-mod =~ k(I',). Since k(Hg) = k(I'4)/2M, we obtain the required equivalence

Hom(P(E), A-mod) = A-mod/Mg =~ k(T,)/Mz =~ k(Hg).

On the vertices of T'y, we define the function

dimg(([X]) = dimy Hom(P(E), X),

which, as we have mentioned, counts the multiplicity of E as Jordan-Holder
factor of X, and HE is just the support of this function.

ProrosITION. Hg-is a hammock, with hammock function dimg,

Proof. With T4, also Hy is finite and directed. Also, Hy has a unique source,

namely [P(E)]. For, if [X] belongs to H, then Hom(P(E), X) # 0; thus there is
a chain of irreducible maps

PE)=x,1 x, L, ...£>X,,=X

with non-zero composition f. But then Hom(P(E), X;)#0, for all i, and
therefore the path

[P(E)] = [Xo] = [X] ...~ [X,] = [X]

of I'y is completely contained in Hy. Thus, [P(E)] is the unique source of Hpg,
and obviously dimg([P(E)]) = 1. The function dim Hom(P(E), ~) is additive on
exact sequences, and so given an Auslander-Reiten sequence

0->X— D yrsz-0
in A-mod, we have l
dimz([Z]) = (2 dimg)([Z]) — dim(z[X]).

Also, given an indecomposable projective module P, not isomorphic to P(E),
with radical Y, we have . |

dim, Hom(P(E), P) = dim, Hom(P(E), Y).
Thus

dimz([P]) = (2 dimg)([P]).

Altogether,‘ this shows that we have hy,=dimg. Finally, if Q is an indecom-

posable injective module, not isomorphic to the injective envelope Q(E) of E,
and Y = Q/soc Q, then

dim; Hom(P(E), Q) = dim; Hom(P(E), Y).
dimz([Q]) = (2 dimz)([Q]™).

Thus
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However, Q(E) is a sink in Hg. This finishes the proof that Hy, satisfies all the
conditions of a left hammock.

CoRroLLARY. Let A be a directed algebra, and E a simple A-module. The
hammocks H(E) and Hy may be identified under the correspondence

([X], )= [X]

Proof. We obtain a covering of translation quivers H(E)— Hy if we define
({X], d)—[X]. However, Hy is simply connected, and thus this covering is an
isomorphism of translation quivers.

In the following, we write dimz X instead of dimz([X7]).

CoroLLARY (v. Hohne). Let A be a directed algebra, and E a simple A-module.
If P is an indecomposable projective A-module, then dimg P < 1. If Q is an
indecomposable injective A-module, then dimg @ <1. If Z'is indecomposable and
not projective, then

|dimg Z - dim 72| < 1.
Proof. This is just Corollary 3 of § 1.

The original proof by v. Hohne [8] of this result is based on a factorization of
the corresponding Coxeter transformation as a product of reflections. For the
convenience of the reader, we give an additional proof (without reference to
hammocks or reflections) in the appendix: we use quadratic forms and roots. The
result may be used for a different approach to hammocks (which actually was our
first one). One does not presuppose the knowledge given by Theorem 1 (or
Corollary 2 to Theorem 1), and one defines a hammock as a finite, thin, left
hammock. v. Hohne’s result is then used in order to establish that Hye is a
hammock, for E a simple module over a directed algebra.

A special case of this corollary plays the essential role, namely the following: if
Y is an indecomposable A-module with dimzY#0 and dimz 1Y =0, then
dimg ¥ = 1. The set of isomorphism classes [Y] of indecomposable A-modules Y
different from P(E) with dimy Y #0 and dimg vY =0 will be denoted by Sz. We
define a relation = on Sz by

[X]=[Y] if and onlyif Hom(P(E), X)Hom(X, Y)#0,

and we obtain in this way a partially ordered set. (The relation is anti-symmetric,
since A is directed. In order to see that the relation is transitive, we have to use
that dimgz X =1 for [X] € Sz.) Combining the observations above with Theorem
2, we obtain ,

Turorem. Hom(P(E), A-mod) =~ £(Sg), as categories, and Hg~T¢€(Sg), as
translation quivers.

Proof. From Lemma 2, we have k(Hg) = Hom(P(E), A-mod). Tl}e recipe at
the end of §7 shows that Sg =S(Hz). From Theorem 2, we obtain k(Hg)=

0(S(Hz)) = £(Sg) and Hg =~ T¢(S(Hg)) = T¥(SE)-
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Remark. We stress that not all hammocks can be realized in the form
I'Hom(P, A-mod), with P indecomposable projective, and A directed. Equival-
ently, not all representation-finite partially ordered sets S are of the form Sz, with
E a simple A-module, A directed. To see this, assume there is a hammock H
containing the following subquiver

X1 Z

~N

Xp— y 25z

n” Ny

with xy, x,, x5 injective vertices in H, and z, 2z, z; projective vertices in H.
Assume that H =T Hom(P, A-mod) for some indecomposable projective A-
module P, and A directed. We claim that in this case y = [P/rad P]. For, let
x=[X], y=[Y], z=[Z)], 1<i<3, with indecomposable A-modules X,, Y, Z,.
Now, Y has at least the three immediate successors Z;, Z,, Z; in I'(4). Assume
there exists an additional immediate successor Z, in I'(4). Then, the source map
for Y is the direct sum of at least four indecomposable summands. Thus three of
the modules Z,, ..., Z, are not projective, by a result of Bautista and Brenner
(see [2] or [12, 6.4.2]). We can assume that Z;, Z, are not projective, but then
X1, X, X3, 12y, 1Z, are five pair-wise different immediate predecessors of ¥ in
I'(A), contradicting the Bautista-Brenner theorem. Dually, we see that X;, X3,
X; are the only immediate predecessors of Y in I'(4). It follows that all the Z, are
projective, since if one of them, say Z,, is not projective, then tZ, is an
additional immediate predecessor of Y in I'(4). Thus, the source map for Y ends
in a projective module, and therefore Y is simple [1]. Since ¥ #0, it follows that
Y=P/rad P.
Now consider the following partially ordered set S:

If § = Sy for some simple A-module E, then both y, y' are equal to [E], which is
impossible. ‘

Appendix

Let A be a directed algebra over an algebraically closed field k, with simple
modules E(i), for 1<i<n We identify Ko(A) with Z", using as basis the

elements. e(i))=[E(i)]. Given an A-module M, we denote the corresponding
element in Ko(A) by dim M.

PROPOSI.TION (v. Hohne). Let 0—X—>Y—>Z—0 be an Auslander—Reiten
sequence in A-mod. Let x =dim X, z = dim Z. Then I~ z|<1, forall 1<i<n.
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The proof will rely on an investigation concerning positive roots of the
quadratic form x, which we recall. We denote by C4 the Cartan matrix of A, by
¢4 =—C37C, its Coxeter matrix. There is a symmetric bilinear form on Ko(A)
given by (x, y)=2x(C™*+ CT)x”, and y, denotes the corresponding quadratic
form.

LEMMA. Assume ¥4 is weakly positive, and let x € Ko(A) be a positive root for
va. Then (xpa)i<x;+1, (xpzY)isSx+1, forall 1<is<n.

Proof. Let p(i) =e(i)C". Then p(i).is the dimension vector of an indecom-
posable (projective) A-module. Thus p(i) is positive, and xa(p()) = 1. Now
%= (14) = (= x9)e())” = x(I + C"TC)e(i)"
=x(C™*+CT)Ce(i)"
=%(C™ + C (Y
=2(x, p(i))
= Xa(®, p(i) — 24 () = 24(P())-

Since x + p(i) is positive, y4(x +p(i)) = 1. Since both x and p(i) are roots for x4,
it follows that x; — (x¢); = —1.

For the second assertion, we may argue in the same way. Alternatively, note
that with A its opposite AP is also directed. Of course, the Cartan matrix for A
is CZ. Therefore, its Coxeter matrix is —C;1Ch = ¢7", and (a0 = Xa-

COROLLARY. Assume ¥4 is weakly positive, and let x and x¢ 4 be positive roots
for xa. Then |x; — (x¢a)| <1.

Proof. Applying the second assertion of the lemma to x4, We see that
%= (x®, 0.0, < (x®,); + 1. Of course, we also have (x@4); <x;+ 1.

ReMARk. Let x4 be weakfy positive, and x a positive root. Of course, X, is
again a root, but not necessarily positive. If x¢,4 is not positive, then we may have

X; = (x¢4); + 2. For example,

110
'c— 101
B~ 011

O O

0001

is the Cartan matrix of a directed algebra B with global dimension 2; thus yz is
weakly positive (by [12, 2.3.9] or direct calculation). Both (0 0 0 1) and

(0 0 1 1) are positive roots for ¥z, but
000 )dy=(-2 -1 -11),
(001 1)®s=(~10-10).

Proof of the proposition. Let 0»X—->Y—>Z—0 b.e an Auslander-Reiten
sequence and let x =dimX, z=dimZ. Replacing, if necessary, A by the




i
|

|
il
it

[

o

URATEL

S
atill

.
i
il

[ ARHIN

246 HAMMOCKS

restriction of A to the support of Y, we can assume that Y is sincere. According
to [12, 6.4.1], one of the modules X, Z or an indecomposable direct summand of
Y is sincere. Thus A is sincere, and therefore y, is weakly positive [12, 2.4.9].
Also, proj.dim Z =1 (otherwise, we have Hom(Q, X) #0 for some indecom-
posable injective module @, see [12, 2.4.1]). Then Hom(Y;, Q)#0 for some
indecomposable direct summand ¥, of Y, since Y is sincere. But then 0<X<
Y;<Q is a cycle in A-mod. Similarly, Hom(X, 44) =0. Therefore, x =z®,,
see {12, 2.4.4]. On the other hand, both x and z are positive roots for x4, see [12,
2.4.8]. We can apply the corollary above and obtain that |x;— z| =<1, for all
1<i<n. This finishes the proof.
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