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EVERY SEMIPRIMARY RING IS THE ENDOMORPHISM RING
OF A PROJECTIVE MODULE OVER A QUASI-HEREDITARY RING

VLASTIMIL DLAB AND CLAUS MICHAEL RINGEL

(Communicated by Donald S. Passman)

ABSTRACT. The paper provides a proof of the following statement: Given a
semiprimary ring R, there is a quasi-hereditary ring 4 and an idempotent
¢ € 4 such that R~ ede,

In his Queen Mary College lectures [A], M. Auslander has shown that any
left artinian ring R occurs as the endomorphism ring of a projective A-module
P, where A is a semiprimary ring of finite global dimension. This ring A is
constructed as follows:' let N be the radical of R, let n beits nilpotency index,
and My =@,_,(R/N'),; take 4 = End(M ) - Clearly, there is an idempotent
e of 4 with R = ede; thus R is the endomorphism ring of the projective
A-module eA . Hence the main step of the proof is the verification that 4 has
global dimension at most ». In case that R is an Artin algebra, also 4 is
an Artin algebra. As Auslander has stressed, his result asserts that the Artin
algebras of finite global dimension determine all Artin algebras.

The aim of this note is to show, that the so constructed ring A is, in fact,
quasi-hereditary in the sense of Cline-Parshall-Scott [S], [CPS]. For the defini-
tion and properties of quasi-hereditary rings we refer to [CPS], [PS], and also
to [DR | ]; we point out, in particular, that they always have finite global di-
mension. We recall that the notion of a quasi-hereditary ring was introduced
in order to have available a class of rings whose bounded derived categories
can be built up from the bounded derived categories of division rings using
“recollement”,

Actually, the ring R we will start with may be an arbitrary semiprimary ring.
Let N be its radical, n the nilpotency index of N, and M, = @D (R/N" R
We consider 4 = End(M,); this is again a semiprimary ring. Let J, be
the set of all endomorphisms ¢ of M, which factor through a module in
add(@;_, R/N"), ; this is obviously an ideal of A.

Theorem. The chain of ideals O = J,CJ, € CJ =A isa hereditary chain,
thus A is quasi-hereditary.
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As a consequence, we see that any semiprimary ring is the endomorphism
ring of a projective module over a quasi-hereditary ring. In this sense, the
quasi-hereditary rings determine all semiprimary rings.

The proof of the theorem is similar to our construction of a heredity chain
in an Auslander algebra [DR , ]. The common criterion for the construction of
heredity ideals in factor rings of endomorphism rings is formulated in §1, and
§2 gives the proof of the theorem.

1. HEREDITY IDEALS IN FACTOR RINGS OF ENDOMORPHISM RINGS

In this section we consider modules over an arbitrary ring R . Given a module
M , the direct sum of ¢ copies of M will be denoted by cM, and add M
denotes the category of all direct summands of finite direct sums of M. A
homomorphism «: X — Y is said to factor through add M provided it factors
through a module in add M .

Proposition. Let M’ , M ,M" be modules with semiprimary endomorphism rings.
Assume the following two conditions are satisfied:

(a) If X,Y are indecomposable direct summands of M, and y:Y — X isa
noninvertible map, then y factors through add M’ .

(b)If X,Y are indecomposable direct summands of MoM" , and 6 :Y — C,
y:C — X are maps with C € add M such, that yd factors through add M',
then there exists a decomposition

]
C=C oGy =b.710= 3]
2

such that both y, and 6, factor through add M’ .

Let A =EndM & MaoM"), let J' be the set of elements of A which
factor through add M, and J be the set of elements of A which factor through
add(M' ® M). Then J)J' is a heredity ideal of A]J' .

Proof. Let EB M; be a direct summand of M such that M, .. , M, are
pairwise nomsomorphlc indecomposable modules and not 1somorphlc to dxrect
summands of A’ and such that add(M’ & @ M) = add(M' @& M). We
may assume that M = @_ M, by replacing M" by M" ® M, where M is
a direct complement of @p M in M. Let e, be the pro;ectlon of M@

{

M@M” M @ ( M)eaM onto M,, and e = e furthermore
e be the projection of MaoMoM' onto M'. Note that e’ 115 e 58,
are orthogonal idempotents, and that ¢, .. ,e, are pairwise inequivalent and

primitive We have J' = Ade'd, J = A(e + e)A Consider the residue ring
A= A4/J', and denote the re31due classof a € 4 in 4 by a;a similar notation
will be used for subsets of 4. Clearly, J is idempotent, and J=Aded. 1t
follows from condition (a) that £4e is the product of the division rings ,4e, ~
End(M;)/radEnd(M,) for 1 < i < p; thus e4¢ ~ End(M)/rad End(M) and
erad Ae = 0. It remains to be seen that the multiplication map Ae ® -, 4 —
AeA is injective.

éAe
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Let X,Y be indecomposable direct summands of M & M" and ey, ey the
correspondmg idempotents of A. It is sufficient to show that the multiplication

map
e de(Qede, — e, dede,
ede

is injective. The elements in &, 42 @ i eAe}, are of the form u = Z;l 7j®3j
where ?; € eyde = Hom(M , X) and 6 € edey, € Hom(Y ,M). Let C=cM,

y=m,...,7r1:C-X and d=|:|:Y—>C.
)

The multiplication map sends u = Y. 7 7;® 5 to Zy 5 = yd. Assume now
that 0 = 0, thus yd factors through addM Therefore the condition (b)
asserts that there is a decomposition C=C, & C,, y = [y,7,0, 6= ;] such
that both y, and d, factor through addM Let w, be the projection of C
onto C,, thus w, =1 —w, is the projection of C onto C,. Let M —cM
be the j th inclusion, and g :¢cM — M the jth prOJectlon Thus V=7
and 5 = ¢ 0 . By the lemma in [DR, ]

[a

Zyj ®9; = Zywlzj ®eja)15 + Zywzzj ®ajw2c5

=1 j=1 j=1
in Hom(M , X) ®pnarey Hom(Y , M) = e, de ®,,, ede, . Since yw, factors
through add M’ , it follows that yw 1; belongsto e, J'e, thus the first summand
on the right becomes zero in & XZe ® e eAeY Similarly, @,d factors through
add M', and therefore also the second summand becomes zero in &, Ae ®,7s
eAeY Consequently u = 0. This completes the proof.

2. PROOF OF THE THEOREM

Let R be semiprimary ring, N its radical, and N" = 0. Note that for any
i, the endomorphism ring End(R/N'), is just R/N', thus semiprimary. It
follows that the endomorphism ring A of @ (R/N') is semiprimary. Let
J, be the ideal of all elements of A which factor through @;_ I(R/N’) z- We
clalm that J,/J,_, is a hereditary ideal of A4, for any 1 <t < n. We want to
apply the crlterlon of §1. Let

1—1 R n _
M =@R/N)y, M = (R/N') ., M" = D (R/N'),..
= i=t+1
The indecomposable direct summands of M are of the form eR/eN’. with a

primitive idempotent e of R, those of M are of the form eR/eN' with a
primitive idempotent e of R, and i > ¢. The modules in add M are just the
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projective R/N'-modules. Also, note that M’ is annihilated by N'~'. We are
going to verify the two conditions (a) and (b).

(a) Let ¢, ,e, be primitive idempotents of R, and y :elR/elN' — ezR/ezN'
a noninvertible map. Note that y cannot be surjective, since both ¢,R/e;N ‘
i = 1,2, are indecomposable projective R/N‘-modules. Thus the image of y
is contained in e,N/e,N' and therefore annihilated by N‘~'. It follows that
y can be factored through elR/eIN’"I which belongs to add M’ .

(b) Again, let ¢, ,e, be primitive idempotents of R, and X = elR/elNi,
Y = ezR/ezNj for some i,j > t. Let C be a projective R/N'-module. Let
5:Y - C, y:C — X be maps such that yd factors through add M’ . First,
assume that the image J(e,) of e, under J is annihilated by N'"'. Then
ezN'_1 is in the kernel of d, thus J factors through the module ¢,R/e, N =le
add M’ . In this case, take C, =0, and C,=C.

It remains to consider the case that d(e,)N =1 £ 0. In this case, C | = 0(e))R
is a projective R/N'-module which is a direct summand of C . For, let C =
@ U, with indecomposable modules U,, and with projections n, :C — U,.

Then, there exists i with 7z,.5(e’2)N’—l # 0. Now, U, is an indecomposable
projective R/N'-module, thus U.N is its unique maximal submodule. Since
n,0(e,) is not contained in U, N, it follows that 7,6 : Y — U, is surjective. The
image C, = é(e,)R of & is a local R-module which is annihilated by N’ and
which is mapped under z, onto the indecomposable projective R/N'-module
U, . This shows that C, itself is projective and that the inclusion map C, — C
is a split monomorphism.

Let C, be a direct complement of C, in C; write y = [y, ,], 6 = [3].
Then &, = 0, thus it factors through add M’. Since yd factors through
add M’ the image of y¢ is annihilated by N'~'. But yd(e,)-N*~' =0 implies
that 6(e2)N'"1 is contained in the kernel of y. Now, d(e,)R is isomorphic to
e,R/e,N', thus y, factors through ezR/eth_I cadd M.

This completes the proof of the theorem.

Remark. The ring A = End(M,) is usually not basic, even if the ring R is ba-
sic. The reason is the following one: In case that R is basic, each non-projective
indecomposable summand occurs in a direct decomposition of M r With mul-
tiplicity 1, whereas each indecomposable projective R-module of Loewy length
[ occurs with multiplicity n —/ + 1. Deleting the repeated copies of the:in-
decomposable projective summands of M, one obtains a module whose endo-
morphism ring is basic and Morita equivalent to 4.
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