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Let k be a field and A a finite-dimensional k-algebra. Since the endomorphism ring of
the right A-module A4 is A itself, one must be able to describe all properties of A, for
example properties of left ideals of A, in terms of the right A-module A 4. The aim of the
present note is to show that the projectivity of certain left ideals can be characterized by
the existence of suitable filtrations of right ideals.

As an application, we deal with quasi-hereditary rings. They have been defined by Scott
[S] using heredity chains of ideals, thus using an inductive procedure of enlarging algebras.
In this way one deals with a total ordering ey, ..., e, of a complete set of primitive idem-
potents, with e, being added last. But there is a reverse procedure based on investigations
of Mirollo and Vilonen [MV], and described in [DR2]: there we construct A from e2Ae,
where g3 = e3+e3+- -+ e,. We characterize quasi-hereditary algebras such that the class
of modules with Weyl filtrations is closed under submodules in terms of the two recursive
procedures. And we show that algebras which satisfy this and the opposite condition have
global dimension at most 2. It follows that the deep algebras introduced in [DR3], as well
as the peaked ones defined in this paper have global dimension at most 2.

1. The main results

Unless otherwise stated, modules will be (finitely generated) right A-modules. Let M be
a set of A-modules. Given a module X 4, an M~filtration of X 4 is a chain of submodules
0=X,C X; C--C X¢{= X such that for all 1 < i < ¢, the module X;/X;_; is
isomorphic to a module in M.

Let N be the (Jacobson) radical of A. Let ey,...,e, be a complete set of primitive (and
orthogonal) idempotents. Let E(i) = E(e;) be the simple A-module not annihilated by e;;
thus E; & e;A/e;N. Let P(i) = P(e;) be a projective cover of E(1); thus P(i) = e; A. Given
a primitive idempotent e, we denote by é(¢) the maximal quotient of P(z) of Loewy length
at most 2, whose radical is a direct sum of copies of E(e). The set of modules &(z), with
1 < ¢ < n, is denoted by é. The number of composition factors (in a composition series)
of a module X which are isomorphic to E(i) will be denoted by £;(X). We recall that a
module is said to be torsionless provided it is isomorphic to a submodule of a projective
module.

Theorem 1. Let e be a primitive idempotent of A. The following statements are equivalent:
() The left ideal Ne is a projective left module.
(it) A4 has an é-filtration and Ezty(E(e), E(e)) = 0.

(#')  Bvery right ideal has an é-filtration.
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(#i") Ewvery torsionless module has an é-filtration.

Let e; = e; + -+ ep for 1 <4 < n, and €,43 = 0. We denote by A(%) the largest
factor module of P(z) with all composition factors of the form E(j), with 7 < ¢; thus
A(3) = ejAfe;Ae;i1 A. The set of modules A(z), with 1 < ¢ < n, is denoted by A, note
that these modules A(:) depend on the chosen ordering ei,...,e,. Let I; = Aen—it14,
thus0=Is ¢ I; C --- C I, = A is a saturated chain of idempotent ideals of A. Note that
(I;); is a heredity chain if and only if first, A 4 has a A-filtration, and second, £;(A(2)) = 1,
for all 1 <4 < n:in this case, A is said to be quasi-hereditary. (In case that A is quasi-
hereditary, the A-filtrations of a module X are also called “Wey! filtrations” [PS]. Also,
X has a A-filtration if and only if its filtration 0 = XI, C XI, C --- C XI, = X is
“good” in the sense of [DR2]; this follows from Lemma 1* in section 2.)

Theorem 2. Assume that (I;); is a heredity chain, where I; = Aep_1414, and let C; =
€;Ae;. Then the following conditions are equivalent:

(1) €;Ne; 13 a projective left C;-module, for 1 <1 < n,

(#')  eip1Ne; is a projective left Ciyy-module, for 1 <i:<n—1,
(11) red A(3) has e A-filtration, for 1 <i <n,

(11")  every right ideal has a A-filtration,

(1¢") every torsionless module has o A-filtration,

(#2"") submodules of modules with a A-filtration have a A-filtration.

The left modules A*(¢) and A* = {A*(:)|1 < i < n} are defined similarly as A(z) and
A, namely: A*(7) is the largest factor module of P*(:) with all composition factors of
the form E*(j) with j < i, thus A*(:) = Ae;/Aeiy1Ae;. The fact that (I;); is a heredity
chain may be expressed in a similar way in terms of A*. In the next theorem we deal with
those algebras A such that both A and its opposite satisfy the equivalent conditions of
Theorem 2.

Theorem 3. Let (I;); be a heredity chain. Assume that any right ideal of A has a A-
filtration and that any left ideal of A has a A*-filtration. Then gl.dim.A < 2.

Corollary 1. Deep quasi-hereditary algebras have global dimension at most 2.

We recall that the quasi-hereditary algebra A is said to be deep [DR3] if, for every 1 <
i < n, both the right A-module rad A(i) and the left A-module rad A*(¢) are projective.

The proofs of these results will be given in section 2, 3, and 4 of the paper. Section 5
contains a construction of a class of quasi~hereditary algebras of global dimension 2 which
we call the peaked algebras. These are examples of algebras A such that both A and A°P?
satisfy the conditions of Theorem 2.
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2. Preliminaries on filtrations of modules.

First, let M be an arbitrary set of modules, We consider modules which have an M-
filtration. It is sometimes necessary to arrange the various quotients occurring in a filtra-
tion. In order to be able to do so, we will use the following well-known lemma.

Lemma 1. Assume that some M € M satisfies Exty(M', M) =0 for all M' € M. Let
M' = M\{M}. If a module X has an M-filtration, then it has a submodule X' with an
M'—filtration such that X/X' is a direct sum of copies of M.

Proof. Let X" be a submodule of X with an M-filtration such that X/X" belongs to M.
By induction, there is a submodule X' of X' with an M'filtration such that X" /X" is
a direct sum of copies of M. Since ExtL(X/X",X"/X"") =0, there is a submodule ¥ of
XwithYNX"=X"andY + X" = X. If X/X" belongs to M’, let X' =Y; otherwise,
let X' = X",

Lemma 1*. Assume that some M € M satisfies Exty (M, M') = 0 for all M' € M. Let
M’ = M\{M}. If a module Y has an M~filtration, then it has o submodule Y' which is
a direct sum of copies of M such that Y/Y' has an M'-filtration.

Clearly, this is the dual assertion. Both results have been used by Cline-Parshall-Scott
[CPS] for dealing with modules over quasi-hereditary rings, or, more generally, with
objects in highest weight categories.

We will be interested to know whether submodules of modules with an M-filtration again
have Mfiltrations. The following is a useful criterion in this direction.

Lemma 2. Assume that for any M € M, every mazimal submodule of M has an M-
filtration. Then submodules of modules with an M~filtration have an M-filtration.

Proof. Let 0 = Xy € X; C -+~ C Xy = X be an M-filtration of the module X,
let Y be a submodule of X. We claim that ¥ has an M-filtration. By induction on
the length of X/Y, we may assume that Y is a maximal submodule of X. Choose 1
minimal with X; ¢_ Y. Then X;NY is a maximal submodule of X; containing X;_;.
By assumption, X; N Y/X;_; has an M-filtration. Using it, we may refine the filtration
0=XpC...X;.1CXiNY C---CXNY =Y in order to obtain an M-filtration for Y.

We return to the complete set ey,...,e, of primitive idempotents of A, and we denote
e = e1. We assume that Extl(E(e), E(e)) = 0. Let M(e) = {&(:)]2 < ¢ < n}, and let
M(e) be the set of non—zero quotient modules of modules in M(e).

Lemma 3. A module X has an M(e)-filtration if and only if Homa(X, E(e)) = 0.

Proof. If M is in M(e), then Hom 4(M, E(1)) = 0. Thus, if X has an M(e)-filtration,
Hom (X, E(1)) = 0. Conversely, assume Hom4(X, E(1)) = 0. We may assume X # 0,
thus let X' be a maximal submodule of X. Then X/X' = E(j) for some 2 < j < n.
Let X" = rad X'. There are (uniquely determined) submodules Y,Y" of X' containing
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X" such that X'/ X" =Y/X"®Y'/X" with Y'/X" a direct sum of copies of E(1), and
Y/X" a direct sum of various E(7), with 2 < ¢ < n. We claim that X/Y belongs to
M(e). For, the submodule X'/Y of X/Y is a direct sum of copies of E(1), the quotient
is X/X' = E(j), and HomA(X/Y E(1)) = 0, thus X'/Y = rad(X/Y). On the other
hand, Hom4(Y, E(1)) = 0, since otherwise Ext, (E(1), E(1)) # 0. By induction, Y has an
M(e)—ﬁltratlon and thus X has an M(e)-filtration.

The length of the module X will be denoted by £(X); hence 4X) = 3 £i(X). Let
=1

3i = £(&(2)).

Lemma 4. Assume that X has an M(e)-filtration. Then

UX) < zn:&(X)s,';

moreover the following assertions are equivalent:

(0) (x)=Y t(X)si,

=2
(#7)  the module X has an M(e)-filtration,
(i55)  any M(e)-filtration of X is an M(e)-filtration.
Proof. Let 0 = Xy C X; C --- C X; = X be an M(e)-filtration, with X;/X;_, =

é(a(3))/Uj, where U; C rad é(c(j)), and 2 < o(j) < n. Clearly, for 2 < ¢ < n, the number
£;(X) is just the number of j’s with ¢(j) = 4. Thus

oX) =Z UX;/X;- n-Ze(e(a(J )—Z«U)

Jj=1 Jj=1

=) £i(X)si - Ze(U ) < Ze (X)si,

=2 =2

and we have equality if and only if all U; = 0, that is if and only if the given filtration is
an M(e)-filtration.

Lemma 5. Assume that X has an M(e)-filtration, and let e’ be an idempotent of A with
eAe' CN. Then also X/Xe'A has an M(e)-filtration.
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Proof. Since Homu(Xe'A, E(e)) = 0, the module Xe' A has an M(e)-filtration according
to Lemma 3. Since X has an M(e)-filtration, also X/Xe'A has one, and therefore X has
an M(e)-filtration passing through Xe'4A. But by Lemma 4, any M(e)-filtration is an
M(e)iltration.

Lemma 6. Assume X has an é-filtration. Then there is a submodule X' of X with an
M(e)-filtration such that X/ X' is a direct sum of copies of E(e).

Proof. Since Ext!(E(e), E(e)) = 0, we have Ext*(é(:), E(1)) = 0 for all 1 < i < n. Now
we apply Lemma 1.

3. Proof of Theorem 1.
As before, we deal with a complete set e = €1, e3,. .., e, of primitive idempotents.

If the left ideal Ne is a projective left module, its indecomposable summands have to
be of the form Ae;, with 2 < ¢ < n. Since Ae cannot be embedded into Ne, but
Extl (E(e), E(e)) = 0.

We are going to establish the equivalence of assertions(i) and (ii) in Theorem 1, so we may
assume from the beginning that Ext(E(e), E(e)) = 0.

Recall that the species & = (D;,; M;); ; of A is defined as follows: Dj; is the division ring
e,-Ae,'/e,-Ne;, and ,'M]' is the D;—Dj—bimodule eiNej/e,-Nzej. Let d; = dimkD,',d,']‘ =
dim (;Dj)p;,d}; = dimp,(;M;); thus dimi(;M;) = did; = di;d;. We observe that
rad é(¢) = d;; E(1) (thus s; = dj; + 1).

The simple left A-modules will be denoted by E*(:) = Ae;/Ne;, their projective covers
by P*(i) = Ae;. The top of the left A-module Ne is isomorphic to @ di; E*(¢), and we
i=1

consider the projective cover p: 4P — 4Ne of left A-modules: here, 4P = @ d, P*(i).

i=1
Actually, the assumption Extl(E(e), E(e)) = 0 can be reformulated as ;M; = 0; thus
di; = 0 =d};. Let 4Y be the kernel of p.

We decompose A4 = e’ A@ e A, where €' A is a direct sum of copies of e4, and ede’ C N.
Let X4 = e/ N®e"A, thus Xe = Ne, and Xe; = Ae; = P*(z) for 2 < ¢ < n. In particular,
for 2 < i < n, we have
dimkP*(i) = dikae; = f,'(X)d,‘ 5
therefore . " .
dimP = diydimeP*(i) = Y 6i(X)didiy = Y £i(X)dinds .

=2 =2 i=2

Since Ext}(E(e), E(e)) = 0, we have Hom4(X 4, E(e)) = 0. Hence Lemma 3 asserts that
X 4 has an M(e)-filtration, say 0 = Xo C X; C --- C X, = X with X;/X;_, = &(o(5))/U;
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for some submodule U; of é(o(j)) and 2 < ¢(j) < n. The number of j’s with o(j) =1 is
£;(X). Since
6(X;/Xj-1) = 6(é(a(5))) — &a(U;) = dogsyn = £U;),

we have

t t
dimpXe =Y 4(X;/Xj-1)dr = Y (dog1 — UU;))dr

j=1 j=1

= Ze )dirdy — Ze

Comparing the dimensions of P and Ne = Xe, we obtain the dimension for the kernel ¥’
of p

t
dimgY =Y #(U,)d;
j=1

If we assume that 4Ne is a projective left A-module, then p is bijective, thus ¥ = 0.
Therefore all U; = 0, and our M(e)-filtration of X 4 is an M(e)-filtration. Since A4/X4
is a direct sum of copies of E(e) = é(1), we conclude that A4 has an é-filtration.

Conversely, assume that A4 has an é-filtration. According to Lemma 6, we obtain a
submodule X 4 of A4 with an M(e)-filtration such that A4/X 4 is a direct sum of copies
of E(e). Clearly, X4 = X4, so X4 has an M(e)filtration. It follows that U; = 0 for all
J, consequently p is bijective, and therefore 4 Ne is a projective left A—module.

This shows the equivalence of assertions (i) and (ii). Every module é(¢) in € has a unique
maximal submodule, and this submodule is a direct sum of copies of (1) = E(e). Hence,
it has an é-filtration. Lemma 1 asserts that submodules of modules with é-filtrations have
éfiltrations. Under the assumption of (ii), any free module has an é-filtration, thus any
torsionless module has an é-filtration. This shows (ii) = (ii"’), and trivially (ii"’) = (ii’).

Finally, we show the implication (ii') = (ii). Take a right ideal Y4 of minimal length
having E(e) as a composition factor.

Clearly, Y4 has a unique maximal submodule Y', and Y/Y' & E(e), whereas Y’ has no
composition factor of the form E(e). Take an é-filtration 0 =Y, C Y1 C---C Yy =Y
of Y. Then Y;—3 C V', and Y'/¥i1 = rad(Y;/Yi—1). Since Y/Y' = E(e), we see
that Y;/Y:—; = é(1). Since Y'/Y;_; has no composition factor E(1), it follows that
Y'/Yi—1 = 0. Thus é(1) = E(e), and therefore Ext’(E(e), E(e)) = 0.
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4. Proof of theorem 2.

We assume that (I;); is a heredity chain, where I; = Ae,,_; 1A, with ¢; = e; + -+ + &4,
for 1 <i¢ < n, and £,47 = 0, and we denote C; = ¢; Az;.

Lemma 7. The left ideal 4Ne; is a projective left A—module if and only if 2Ney i3 a
projective left Co—module.

Proof. First, assume that 4Ne; is projective. Then 4Ne; is isomorphic to a module of
n
the form € miAe;, for some m; € Ny, since Ae; cannot be embedded into Ne;. Thus
i=2
n
eaNey = P mi(ez4e;), as aleft Co-module. But €5 Ae; is a projective left C;—module for
A

2 <1 < n,since €3 = €3 + - - - + e, with orthogonal idempotents ez, ..., en.

Conversely, assume e, N e; is a projective left C;—module. Since Ae, A belongs to a heredity
chain, we know that the multiplication map

Aer ®c, €24 — Aeg A

is bijective (Prop. 7 of [DR2]). Multiplying from the right by e;, we obtain an isomorphism

Aey R epAe = Acg Aey of left A-modules. Since Ae, is a projective left A-module, and
c

£2A612= €9 Ne; is a projective left Cp—module, it follows that AecyAe; is a projective left

A-module. It remains to be shown that Ae;Ae; = Ne,. First of all, e;4e; € N, thus

AezAey = AeaNey. Second, ey Ney = e N2ep, thus the left A—-module Ne, is generated by

Agq, consequently AeaNey = Ne;.

Note that the left A-module Ne; is projective if and only if the left C;—module £, Ne; is
projective. This an immediate consequence of the Morita equivalence of A and C;.

The equivalence of the assertions (i) and (') in Theorem 1 is an immediate consequence
of Lemma 7: we apply it to the rings C; and their corresponding heredity chains ([DR1],
statement 10). The implication (ii) = (ii"') is asserted in Lemma 2. Since A4 has a
A-filtration, the same is true for any free A-module, thus (ii"") => (ii""). The implications
(1) = (i') is trivial. In order to prove the implication (ii') = (ii), we assume that the
right ideals e; N have A-filtrations. Then there are A-filtrations of e;N passing through
eiNe;414, and therefore also rad A(i) = ¢;N/e;Nei41A has a A-iltration.

It remains to verify the equivalence of the conditions (i) and (ii). We will use induction on
n. The algebra C; has the heredity chain 0 = e3lpeg C e2l162 C -+ C €2l,_162 = (o, and
for C,, we deal with the modules A, (i) = e;Aes/eideiy1Aes = A(r)es, where 2 <1 <n.

First, we assume that rad A(:) has a A-filtration, for 1 < ¢ < n. Then rad A,(z) has a
Ag-filtration, for 2 < ¢ < n, thus, by induction, ¢;Ne; is a projective left C;—module,
for 2 < ¢ € n. We want to show that Ne; is a projective left A-module. According to
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Theorem 1, it suffices to show that 44 has an é-filtration where ¢ = e;. Now A4 has a
A-filtration, so we use the following lemma.

Lemma 8. Assume that rad A(Z) has ¢ A-filtration, for all 1 < i < n. Then any module
with ¢ A-filtration has an é-filtration.

Proof. Let X be a module with a A-filtration. We use induction on 4(X). We may
assume X = A() for some i. If £(A(:)) = 1, then ExtL(E(:), E(j)) = 0 for all j < ¢; in
particular, Ext)(E(:), E(1)) = 0. Hence é(i) = E(i) = A(:). Now assume £(A(z)) > 1.
Let X = rad A(:). By induction, X has an é-filtration, thus there is a submodule X'
with an M(e)filtration such that X/X' is a direct sum of copies of E(1). It follows that
X' =¢iNey A, thus A(1)/ X' = €(¢). Since X' has an é-filtration, we see that A(:) has an
é-filtration.

Finally, we verify the implication (i) = (ii). For 1 < < n, let £;Ne; be a projective left
Ci-module. By induction we know that rad A;(z) has a Ay—filtration, for 2 < ¢ < n. Since
Ne; is a projective left A-module, Theorem 1 asserts that A4 has an é-filtration. We are
going to show that rad A(j), with 1 < j < n, has a A-filtration. Since A(1) = E(1), we
may assume 2 < j < n. Consider Z;, = (rad A(7))e,-A4/(rad A(j))er414, with 1 <r < n.
We claim that Z;, is a direct sum of copies of A(r). Again the case r = 11is trivial, so assume
2 £ r £ n. First of all, top Z;, is clearly a direct sum of copies of E(r), say top Zjr =
m;jrE(r). Since A(r) is the projective A/Ae,4;A-cover of E(r), and Z;, is annihilated
by Aer414, it follows that there is a surjective map ¥ — Z;, with ¥ = m;,A(r). In
order to show that this is an isomorphism, we are going to prove that £(Y) = £(Z;,).
First, we claim that both Y and Z;, have M(e)-filtrations. For, e, A4 has an é-filtration,
and Homy(e, 4, E(1)) = 0, since r > 2; thus e, A4 has an M(e)-filtration by Lemma 6.
According to Lemma 5, A(r) = e,A/e,Ac.41 A has an M(e)filtration, thus the same is
true for Y. Since A(j) has an é-filtration, also A(j)erA4 has one, according to Lemma 2.
Using again r > 2, Lemma 5 and Lemma 6, we see that Z;, has an M(e)-filtration. Given
any A-module X, and ¢ > 2, the number 4;(X) coincides with the number 3 (Xey) of
composition factors of the Cp—module X¢, which are of the form E(i)e; = e;Aeq/e; Ne,.
We use Lemma 4 in order to express £(Y) and £(Z;,) as follows:

oY) = Xn:e,-(y)s,- = ZH:ZE2)(Y62)31- ,

=2 =2
e(Z]T) = Zei(zjr)si = foz)(zjrag)si .
=2 =2

On the other hand,
Zjreq = (rad A(j))erAeq/(rad A(F))ers1Aey =
= (rad Az(j))er02/(rad Az(j))6r+102

is a direct sum of copies of Ay(r), since A;(j) has a A,—filtration. It follows that Z; &5 &
m;rAz(r) = Yey. As a consequence, {(Y) = £(Z;,). This completes the proof of the
implication (i) = (ii).
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5. Algebras of global dimension 2.

We are going to present the proof of Theorem 3 as well as some related examples. As
before let e1,...,e, be a complete set of primitive and orthogonal idempotents, and let
€i =€+ -+e, for 1 <i < n. Again, we assume that (I;); is a heredity chain, where
Ii = AS,;_,'+1A.

Lemma 9. Let ¢ = g;. Let C = cAc. Assume that eNe; is a projective left C-module and
that e; N 1s a projective right A~module. Then proj.dim.E(1)a < 1, and proj.dim.E(i)4 <
maz {2, proj.dim.(E(i)e)c} for 2 <i < n.

Proof. Since E(1) = e1A/e1 N, it follows that proj.dim.E(1)4 < 1. Consider now E(z),
where 2 < ¢ < n. We can assume that proj.dim. (E(7)¢)¢ is finite; let

0-——)P(m)——).,.—)P(l)—aP(o)—»E(i)e—»O

be a projective resolution of the C-module (E(i)e)c. We tensor this sequence with ¢(eA).
Note that ¢(¢A) is a direct sum of copies of ¢(cAe;), with 1 < j < n. For 2 < j < n, the left
C-module c(eAe;) is projective, since ¢; is an idempotent of C, and ¢(¢Ae;) =¢ (eNey)
is projective by assumption. Thus

O—»P(m)®CEA-—>...—->P(0)®cEA—*E(i)5®CeA_’O

is exact. Since the A-modules P(*)® (e A) are projective, it follows that proj.dim. E(:)e®
c(eA)a < m. The exact sequence 0 — ;N — ;A — E(i) — 0 yields first by
multiplying with ¢ and then tensoring with ¢(eA), the exact sequence

0 — eiNe®ced — €,4e ®c €A — E(i)e ®c €A — 0.

Since AcA belongs to a heredity chain, we can identify Ac ®c €A with AcA and therefore
eide ®c €A with ¢;AcA = e;A. We see that E(i)e ®c €A = e;A/eiNeA = é(i). Thus
proj.dim.é(¢) 4 < m. There is the exact sequence

0 — dyE(l)y — é(1) — E(z) — Q.

Since proj.dim.E(1) < 1, it follows that

proj.dim.E(z) < max{2, proj.dim.é(¢) 4} = max{2,m}.
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Proof of Theorem 3. We use induction on n. Condition (i} of Theorem 2 applied to
A and to its opposite shows that C = C, satisfies the corresponding assumptions (every
right ideal of C, has a A,-filtration, every left ideal of C; has a Aj-filtration). Thus
gl.dim.C < 2. Also, e Ne, is a projective left C,—module by condition (i) of Theorem 2.
And e; Ne; is a projective right Ci—-module by condition (i) of Theorem 2, applied to the
opposite of A, thus e; N is a projective A-module. We apply Lemma 9 and conclude that
gl.dimA < 2.

Let us remark that not all algebras of global dimension 2 satisfy the conditions of Theo-
rem 2: A simple example is provided by the path algebra of the graph

Bl

12258 4

modulo the ideal (Ba, 87, v) :

4
2 3 2
As=101 36, &,.
9 2 3
2
Here,
4
2 3 2
A(l) =1, A(z) = 1’ A(?’) = 9 A(4) = 3°

2

thus rad A(4) has no A-filtration. On the other hand, the path algebra of

ay ag ag On—1

1 > 2 » 3 )

modulo {(a;_1a;|2 < i < n - 1) satisfies the conditions of Theorem 2, but has global
dimension n — 1. Of course, for n > 4 this implies that its opposite algebra does not
satisfy these conditions. Observe that, for n = 3 this is an example of an algebra of global
dimension 2 whose dimension (namely 5) is less than the dimension of the corresponding
peaked algebra (of dimension 6) as defined in the next section.
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6. Peaked algebras

In this last section, we intend to give a construction of a new class of quasi-hereditary
algebras of global dimension 2 which may be of further interest. Let § = (D;,i M;), <i,j<n
be a labelled species without loops [DR3]: thus ;M; = 0 for all ¢, and the index set
{1,2,...,n} is considered with its natural ordering. As in [DR3], let

T =T(n) = {(to,t1,-.-,tm) |0 < t; < n are integers, m > 1, and
t;1 #t;foralll <i<m};

for every t = (to,t1,...,tm) € T, let
M(t) = 4 My, ®p., t:Mi, ®p,, @D, _| tm-1Mt,.,
and for T' C T, let

M(T'y =P M(@).

teT’

We define the ideal M(W?) of the tensor algebra 7(S) by specifying the subset W° of T
as follows:

W = W%n) = {(to,t1,...,tm) € T| there is 0 < i < m such that t;_; > #; < tiy1}.
Let W be the complement T\W?°, thus

W = {(to,t1,...,tm) € T'| thereis 0 <1 < m such that
o<ty < <ti> > tme1 > tm}).

Hence
[M(T)*' ¢ M(W°) € M(T)

and thus M(W?) is an admissible ideal. Let

P(S) = T(S)/M(W?).

Observe that the Loewy length of P(S) is at most 2n — 1, and that, as an abelian group,
P(S) can be identified with

ﬁD,-eBM(W).

i=1

We call P(S) the peaked algebra with labelled species S.
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Proposition. Let P(S) be the peaked algebra with labelled species S. Then P(S) 1s quasi—
hereditary, every right ideal of P(S) has a A-filtration, every left ideal of P(S) has a
A*-filtration. In particular, gl.dim.P(S) < 2.

Proof. For any 1 < i < n, we claim that rad A(7) is a direct sum of various A(y). Since
A(1) is simple, we can assume 2 <1 < n. Let

th{(zatla’tm)ETh)t] >"‘>tm}.

Then A(z) may be identified with D; & M(T;), thus

radAG) = M(T)= P dyAl),

(H,5t2,-,tm)€ET;
where, as before, d;; = dim(; M;)p,.

In comparison with the deep algebras over a given labelled species (whose global dimension
is also at most 2), the dimensions of the peaked algebras are considerably smaller. For
instance, for S, = (D, iM;)1<i j<n, where D; = k for all : and ;M; = pki for all i # j
and ;M; = 0 for all 4, the dimensions p(n) of P(S,,) clearly satisfy

p(n +1) =p(n) +4",

and thus, for all n,

pn) = 54" = 1)

On the other hand, let d(n) be the dimension of a deep algebra over S,. We have d(5) =
3263441 while p(5) = 341, and d(10) =~ 2.7 x 10%%® (!) while p(10) = 349525. Even p(20) is
“only” 366503875925.
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