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Let k be a field and A a finite-dimensional k-algebra. Since the endomorphism ring of 
the right A-module AA is A itself, one must be able to describe all properties of A, for 
example properties of left ideals of A, in terms of the right A-module  AA. The aim of the 
present note is to show that  the projectivity of certain left ideals can be characterized by 
the existence of suitable filtrations of right ideals. 

As an application, we deal with quasi-hereditary rings. They have been defined by Scott 
[S] using heredity chains of ideals, thus using an inductive procedure of enlarging algebras. 
In this way one deals with a total ordering el, .  • •, e,, of a complete set of primitive idem- 
potents, with en being added last. But there is a reverse procedure based on investigations 
of Mirollo and Vilonen [MV], and described in [DR2]: there we construct A from e2Ae: 
where e2 = e2 + ca + . .  • + en. We characterize quasi-hereditary algebras such that  the class 
of modules with Weyl filtrations is closed under submodules in terms of the two recursive 
procedures. And we show that  algebras which satisfy this and the opposite condition have 
global dimension at most 2. It follows that  the deep algebras introduced in [DR3],  as well 
as the peaked ones defined in this paper  have global dimension at most 2. 

1. T h e  m a i n  r e s u l t s  

Unless otherwise stated, modules will be (finitely generated) right A-modules.  Let M be 
a set of A-modules. Given a module XA, an M-filtration of XA is a chain of submodules 
0 = X0 C X1 C ""  C Xt = X such that for all 1 < i < t, the module X i / X i - 1  is 
isomorphic to a module in M .  

Let N be the (Jacobson) radical of A. Let e l , . . . ,  e ,  be a complete set of primitive (and 
orthogonal) idempotents. Let E(i) = E(ei) be the simple A-module  not annihilated by e~; 
thus El ~- eiA/eiN.  Let P(i) = P(ei) be a projective cover of E(i);  thus P(i) -~ eiA. Given 
a primitive idempotent e, we denote by @(i) the maximal quotient of P(i) of Loewy length 
at most 2, whose radical is a direct sum of copies of E(e). The set of modules @(i), with 
1 < i < n, is denoted by @. The number of composition factors (in a composition series) 
of a module X which are isomorphic to E(i) will be denoted by gi(X). We recall that  a 
module is said to be torsionless provided it is isomorphic to a submodule of a projective 
module. 

T h e o r e m  1. Let e be a primitive idempotent of A. The following statements are equivalent: 

(i) The left ideal Ne is a projective lef2 module. 

(it) AA has an @-filtration and EztlA(E(e), Z(e)) = O. 

(it') Every right ideal has an @-filtration. 
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( i i")  Every torsionless module has an ~-filtration. 

Let ei = e i + " ' + e , ~  for 1 _< i _< n, and ~,+1 = 0. We denote by A( i )  the largest  
factor  module  of P( i )  with all composit ion factors of the form E ( j ) ,  with j _< i; thus 
A( i )  = eiA/eiAei+~A.  The  set of modules  A(i) ,  with 1 < i < n, is denoted  by A,  note 
tha t  these modules  A(i)  depend on the chosen ordering e l , . . . ,  e,~. Let Ii = A e n - i + l A ,  
thus 0 = I0 C I1 C . . .  C I,~ = A is a sa tu ra ted  chain of idempotent  ideals of A. Note tha t  
(Ii) ,  is a heredi ty chain if and only if first, AA has a A-f i l t ra t ion ,  and second, g i (A(i) )  = 1, 
for all 1 < i < n : in this case, A is said to be  quasi-heredi tary.  (In case tha t  A is quas i -  
hereditary,  the A-f i l t ra t ions  of a module  X are also called "Weyl fi l trat ions" [PS].  Also, 
X has a A-f i l t ra t ion  if and only if its f i l trat ion 0 = XIo  C_ XI1  C_ . . .  C_ X I n  = X is 
"good" in the sense of [DR2] ;  this follows f rom L e m m a  1" in section 2.) 

T h e o r e m  2. Assume that ( I i )  i is a heredity chain, where [i = Aen-a+IA ,  and let Ci = 
eiA5i. Then the following conditions are equivalent: 

(i) e iNei  is a projective left Ci-module,  for 1 < i < n, 

(i') c i+lNei  is a projective left Ci+l-module,  for 1 < i < n - 1, 

(ii) radA( i )  has a A-fi l tration,  for 1 < i < n, 

(ii ') every right ideal ha~ a A-fil tration, 

(i i") every torsionless module has a A-fi l tration, 

(ii '") submodules of modules with a A-f i l trat ion have a A-fi l tration.  

The  left modules  A*(i)  and A* = {A*(i)]I  < i < n} are defined similarly as A(i)  and 
A, namely:  A*(i)  is the largest  factor  module  of P*(i)  with all composi t ion factors of 
the form E*( j )  with j _< i, thus A*(i)  = Aei /Ae i+lAe i .  The  fact tha t  ( I i ) i  is a heredi ty  
chain may  be expressed in a similar way in te rms of A*. In the next  theorem we deal with 
those algebras  A such tha t  bo th  A and its opposi te  satisfy the equivalent condit ions of 
Theorem 2. 

T h e o r e m  3. Let  (I i ) i  be a heredity chain. Assume that any right ideal of  A has a A -  
f i l t ra t ion and that any left ideal of A has a A*-fil tration. Then gl .dim.A <_ 2. 

C o r o l l a r y  1. Deep quasi-hereditary algebras have global dimension at most  2. 

We recall tha t  the quas i -hered i ta ry  a lgebra  A is said to be deep [DR3]  if, for every 1 _< 
i < n, bo th  the right A-modu le  rad A(i)  and the left A - m o d u l e  rad A*(i)  are projective.  

The  proofs of these results will be  given in section 2, 3, and 4 of the paper .  Section 5 
contains a construct ion of a class of quas i -hered i ta ry  algebras of global d imension 2 which 
we call the peaked algebras.  These  are examples  of algebras A such tha t  bo th  A and A °pp 
satisfy the conditions of Theorem 2. 
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2. P r e l i m i n a r i e s  on  f i l t ra t ions  o f  m o d u l e s .  

First, let M be an arbitrary set of modules. We consider modules which have an M -  
filtration. It is sometimes necessary to arrange the various quotients occurring in a filtra- 
tion. In order to be able to do so, we will use the following well-known lemma. 

L e m m a  1. Assume that some M E M satisfies Ex t lA (M ' ,M)  = 0 for  all M '  E M .  Let 
M '  = M \ { M } .  I f  a module X has an M-f i l t rat ion,  then it has a submodule X '  with an 
M' - f i l t ra t ion  such that X / X '  is a direct sum of copies of  M .  

Proo f ,  Let X "  be a submodule of X with an M-fi l trat ion such that X / X "  belongs to M .  
By induction, there is a submodule X m of X"  with an M'-f i l t ra t ion such that X " / X  m is 
a direct sum of copies of M. Since Ext~A(X/X  '', X " / X ' " )  -- O, there is a submodule Y of 
X with Y f3 X "  = X ' "  and Y + X"  = X. If X / X "  belongs to M ' ,  let X I = Y; otherwise, 
let X I = X m. 

L e m m a  1% Assume  that some M E M satisfies Ext~A(M,M')  = 0 for  all M '  E M .  Let 
M '  = M \ { M } .  I f  a module Y has an M-f i l t rat ion,  then it has a submodule Y '  which is 
a direct sum of copies of M such that Y / Y '  has an Mt-f i l trat ion.  

Clearly, this is the dual assertion. Both results have been used by Cline-Parshall-Scott 
[CPS] for dealing with modules over quasi-hereditary rings, or, more generally, with 
objects in highest weight categories. 

We will be interested to know whether submodules of modules with an M-fi l t rat ion again 
have M-filtrations. The following is a useful criterion in this direction. 

L e m m a  2. Assume  that for  any M E M ,  every maximal  submodule of M has an M -  
filtration. Then submodules of modules with an M- f i l t ra t ion  have an M-f i l t rat ion.  

P r o o f .  Let 0 -- Xo C X l  C . . .  C X t  = X be an M-fi l t rat ion of the module X, 
let Y be a submodule of X. We claim that Y has an M-fil tration. By induction on 
the length of X / Y ,  we may assume that Y is a maximal submodule of X. Choose i 
minimal with Xi  ~= Y .  Then X i  f3 Y is a maximal submodule of Xi  containing X i - 1 .  
By assumption, Xi  f3 Y / X i - 1  has an M-filtration. Using it, we may refine the filtration 
0 = Xo C • .. X i -1  C X i  f~ Y C • • • C X t  N Y = Y in order to obtain an M-fi l t rat ion for Y. 

We return to the complete set e l , . . . ,  en of primitive idempotents of A, and we denote 
e = el. We assume that Ext~(E(e) ,E(e))  = 0. Let M ( e )  = {~(i)12 < i < n}, and let 
¢Q(e) be the set of non-zero quotient modules of modules in M(e).  

L e m m a  3. A module X has an ./(4(e)-filtration if and only if H o m A ( X ,  E (e ) )  = O. 

P r o o f .  If M is in .&:i(e), then HomA(M, E(1)) = O. Thus, if X has an ¢Q(e)-filtration, 
HomA(X, E(1)) --- 0. Conversely, assume HomA(X, E(1)) = 0. We may assume X ¢ 0, 
thus let X '  be a maximal submodule of X. Then X / X '  ~- E ( j )  for some 2 _< j _< n. 
Let X"  = r a d X ' .  There are (uniquely determined) submodules Y , Y '  of X '  containing 
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X"  such that X ' / X "  = Y / X "  (9 Y ' / X "  with Y ' / X "  a direct sum of copies of E(1), and 
Y / X "  a direct sum of various E(i),  with 2 < i < n. We claim that X / Y  belongs to 
)t4(e). For, the submodule X ' / Y  of X / Y  is a direct sum of copies of E(1), the quotient 
is X / X '  ~- E( j ) ,  and H o m A ( X / Y , E ( 1 ) )  = 0, thus X ' / Y  = r a d ( X / Y ) .  On the other 
hand, SomA(Y, E(1)) = 0, since otherwise Ex t , (E (1 ) ,  E(1)) # 0. By induction, Y has an 
)t4(e)-filtration and thus X has an .h74(e)-filtration. 

The length of the module X will be denoted by g(X); hence g(X) = ~ g~(X). 
i = 1  

~ = e(~(i)). 

Let 

L e m m a  4. Assume that X ha8 an ](4(e)-fiItration. Then 

n 
~(x) < ~ ~,(x)~, ; 

i----2 

moreover the following assertions are equivalent: 

(i) e (x )  = L e , ( x ) ~ i ,  
i = 2  

(ii) the module X has an M(e)-J~lt~ation, 

(iii) any,£4(e)-filtration of X is an M(e)-filtration. 

P r o o f .  Let 0 = X0 C X1 C . . .  C Xt = X be an ]Q(e)-filtration, with X j / X j - 1  ~- 
~(~(J))/ui, where Uj C_ tad ~(~(2)) ,  and 2 < o ( j )  _< ~ .  Clearly, for 2 < i < ,~, the number  
gi(X) is just the number o f j ' s  with a( j )  = i. Thus 

t t 

e(X) = Z e(Xj /Xj_l  ) = Z g(~(a(j))) - Z £(Ui) 
j=l j=l j--1 

= e , ( x ) ~ , -  F_e(vj) <_ ~e , ( x l~ , ,  
i = 2  j = l  i = 2  

and we have equality if and only if all Uj ~ O, that is if and only if the given filtration is 
an A,f (e)-filtration. 

L e m m a  5. Assume that X has an ./~4(e)-filtration, and let e' be an idempotent of A with 
eAe' C N.  Then also X / X d A  has an .h4(e)-filtration. 
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P r o o f .  Since HomA(Xe 'A,  E(e)) = 0, the module X e ' A  has an )Q(e)-fi l tration according 
to Lemma 3. Since X has an AT~(e)-filtration, also X / X e t A  has one, and therefore X has 
an 2Q(e)-filtration passing through Xe 'A .  But by Lemma 4, any ~ ( e ) - f i l t r a t i o n  is an 
M(e)-f i l t ra t ion.  

L e m m a  6. Assume X has an t-filtration. Then there is a submodule X '  of X with an 
A4(e)-filtra~ion such that X / X '  is a direct sum of copies of E(e). 

P r o o f .  Since Ext l (E(e ) ,E(e ) )  = 0, we have Ext l (~( i ) ,E(1))  = 0 for all 1 < i < n.  N o w  

we apply Lemma 1. 

3. P r o o f  o f  T h e o r e m  1. 

As before, we deal with a complete set e = el, e2 , . . . ,  en of primitive idempotents. 

If the left ideal Ne is a projective left module, its indecomposable summands have to 
be of the form Aei, with 2 < i < n. Since Ae cannot be embedded into Ne, but 
E x t l ( E ( e ) ,  E(e))  = 0. 

We are going to establish the equivalence of assertions(i) and (ii) in Theorem 1, so we may 
assume from the beginning that  E x t l ( E ( e ) ,  E(e)) = 0. 

Recall that  the species S = (Di,i Mj)i,j Of A is defined as follows: Di is the division ring 
eiAel /e iNei ,  and iMj is the Di-Dj-bimodule  e iNej /e iN2ej .  Let di = dimkDi,di j  = 
dim(iDj)Dj,d~j = dimD,(iMj); thus dimk(iM/) = did~j = dijd~. We observe that  
rad ~(i) = dilE(1) (thus si = dia + 1). 

The simple left A-modules will be denoted by E*(i) = Aei /Nei ,  their projective covers 
n 

by P*(i) = Aei. The top of the left A-module Ne is isomorphic to (~ d~E*(i) ,  and we 
i = l  

}2 

consider the projective cover p : AP ~ ANe of left A-modules: here, AP ~- (~ d~lP*(i). 
i = 1  

Actually, the assumption Ext~4(E(e), E(e)) = 0 can be reformulated as 1M1 = 0; thus 
dxl = 0 = d~a. Let A Y  be the kernel of p. 

We decompose AA = e'A @ e"A, where etA is a direct sum of copies of cA, and eAe" C N.  
Let XA = e 'N @ e"A, thus Xe  = Ne,  and Xei  = Aei = P*(i) for 2 < i < n. In particular,. 
for 2 < i < n, we have 

dimkP*(i) = dimkXei = gi(X)di;  

therefore 

d imkP = ~ d~dim~P*(i) = ~_, ei(X)did~ = g i (X)d i ld l .  
i = 2  i = 2  i = 2  

Since Ext~(E(e) ,  E(e)) = 0, we have HomA(XA,  E(e)) ---- O. Hence Lemma 3 asserts that  
XA has an M(e)-f i l t ra t ion,  say 0 = Xo C X1 C ""  C X t  = X with X j / X j _ I  ~- ~(a(j)) /Uj 
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for some submodule Uj of ~(a(j)) and 2 _< a(j) <_ n. The number  of j ' s  with a(j) = i is 
gi(X). Since 

e~(Xj /Xj_, )  = t~(a(a(j))) - el(Uj)  = d~,(j),~ - g(Uj) ,  

we have 

t t 

dimkXe = E el(Xj/Xi-1)dl = ~(d<i) , ,  - t(Uj))dl 
j = l  j = l  

t 

= £ e,(X)d,ldl - ~ e(UDdl. 
i=1 j = l  

Compar ing  the dimensions of P and Ne = Xe, we obtain the dimension for the kernel Y 
of p 

t 

dimkY = ~-~e(Uj)dl. 
j = l  

If we assume that  ANe is a projective left A-module ,  then p is bijective, thus Y = 0. 
Therefore all Uj = 0, and our JQ(e)-fi l t rat ion of XA is an Ad(e)-fi l tration. Since AA/XA 
is a direct sum of copies of E(e) = @(1), we conclude that  AA has an ~-filtration. 

Conversely, assume that  AA has an ~-filtration. According to Lemma 6, we obtain  a 
submodule  -~A of A A with a n  M(e)- f i l t ra t ion  such t h a t  AA/XA is a direct sum of copies 
of E(e).  Clearly, )(A = XA, so XA has an M(e)- f i l t ra t ion .  It follows tha t  Uj = 0 for all 
j ,  consequently p is bijective, and therefore ANe is a projective left A-module .  

This shows the equivalence of assertions (i) and (ii). Every module  ~(i) in ~ has a unique 
maximal  submodule,  and this submodule is a direct sum of copies of ~(1) = E(e). Hence, 
it has an ~-filtration. Lemma 1 asserts tha t  submodules of modules  with ~-filtrations have 
Z-filtrations. Under  the assumption of (ii), any free module has a n  ~-filtration, thus any 
torsionless module  has an Z-filtration. This shows (ii) =~ (ii"), and trivially (ii") =~ (ii'). 

Finally, we show the implication (ii') ~ (ii). Take a right ideal YA of minimal  length 
having E(e) as a composit ion factor. 

Clearly, YA has a unique maximal  submodule Y' ,  and Y / Y '  ~- E(e), whereas Y'  has no 
composit ion factor  of the form E(e). Take an Z-filtration 0 = Y0 C Y1 C --- C Yt = Y 
of Y. Then  Yt-1 C_ Y',  and Y ' / Y t - ,  = rad(Yt/Yt-1) .  Since Y / Y '  ~ E(e) ,  we see 
that  Yt/Yt-1 ~ ~(1). Since Y' /Yt -1  h a s  n o  composit ion factor E(1),  it follows that  
Y ' / Y t - ,  = 0. Thus  ~(1) = E(e),  and therefore Ex t~(E(e ) ,  E(e))  = 0. 
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4. P r o o f  o f  t h e o r e m  2. 

We assume tha t  ( I i ) i  is a heredi ty chain, where Ii  = Aen-i+aA, with ei = ei + " '"  -t- en, 
for 1 < i < n, and en+l = 0, and we denote Ci = eiAsi. 

L e m m a  7. The left ideal ANel  is a projective left A-module if and only if c2Nel  is a 
projective left C2-module. 

P r o o f .  First ,  assume tha t  A N q  is projective.  Then  ANel  is i somorphic  to a module  of 

the form (~  rnlAei,  for some rni E No, since Ael cannot  be  embedded  into Nel .  Thus  
i=2 

e2Nel ~- + rni(e2Aei), as a left C2-module .  But  s2Ael is a project ive left C2-module  for 
i=2 

2 < i < n, since s2 = e2 + " "  + en with o t thogonal  idempoten ts  e2, . . .  ,en. 

Conversely, assume c2Nel is a project ive left C2-module .  Since As2A belongs to a heredi ty  
chain, we know tha t  the mult ipl icat ion m a p  

A e 2  @c2 e2A ----+ A~2A 

is bijective (Prop.  7 of [DR2]) .  Mult iplying f rom the right by el ,  we obta in  an i somorphism 
Ae2 @ ezAel ~ Ae2Ael of left A-modules .  Since Ae2 is a project ive left A-module ,  and 

C2 
¢2Ael = e 2 N q  is a project ive left C2-module ,  it follows tha t  A e 2 A q  is a project ive left 
A-module .  It remains  to be shown tha t  Ae2Ael = Nel .  First  of all, e2Aq  C_ N, thus 
Ae2Ael = Ae2Nel .  Second, e lNel  = e l N 2 q ,  thus the left A - m o d u l e  Nea is genera ted  by 
Ae2, consequently A ¢ 2 N q  = Nel .  

Note tha t  the left A-modu le  N q  is project ive if and only if the left C1 module  c1Nel is 
projective.  This  an immedia te  consequence of the Mor i ta  equivalence of A and C1. 

The  equivalence of the assertions (i) and (i ') in Theorem 1 is an immed ia t e  consequence 
of L e m m a  7: we apply  it to the rings Ci and their corresponding heredi ty  chains ( [DR1] ,  
s t a tement  10). The  implicat ion (ii) => (ii" ') is asserted in L e m m a  2. Since AA has a 
A-f i l t ra t ion ,  the same is t rue for any free A-module ,  thus (i i '")  ~ (ii"). T h e  implicat ions 
(ii") => (ii ') is trivial. In order to prove the implicat ion (ii ') => (ii), we assume tha t  the 
right ideals eiN have A-f i l t ra t ions .  Then  there are A-f i l t ra t ions  of eiN passing th rough  
eiNei+lA, and therefore also rad A(i)  = e iN/e iNei+lA has a A-f i l t ra t ion .  

It remains  to verify the equivalence of the conditions (i) and (ii). We will use induct ion on 
n. The  a lgebra  C2 has the heredi ty chain 0 = e210~2 C ¢211¢2 C ""  C ¢2In-1~2 = C2, and 
for C2, we deal with the modules  A2(i) = eiAs2/eiAei+lA¢2 = A(i)e2, where 2 < i < n. 

First ,  we assume tha t  r a d A ( i )  has a A-f i l t ra t ion,  for 1 < i < n. Then  r a d A 2 ( i )  has a 
A2-f i l t ra t ion,  for 2 < i < n, thus, by induction,  e iNe i  is a project ive left C i -module ,  
for 2 < i < n. We want  to show tha t  N q  is a project ive left A-module .  According to 
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Theorem 1, it suffices to show that  AA has an ~-filtration where e = el. Now AA has a 
A-fi l t ra t ion,  so we use the following lemma. 

L e m m a  8. Assume that radA(i) has a A-filtration, for all 1 < i < n. Then any module 
with a A-filtration has an ~-filtration. 

P r o o f .  Let X be a module  with a A-fi l t rat ion.  We use induct ion on £(X). We may 
assume X = A(i)  for some i. If g(A(i))  = 1, then Ex t~(E( i ) ,  E(j)) = 0 for all j < i; in 
particular,  Ex t~(Z( i ) ,  E(1))  = 0. Hence ~(i) = E(i) = A(/) .  Now assume £(A(i))  > 1. 
Let X = rad  A(i).  By induction, X has an ~-filtration, thus there is a submodule  X '  
with an 3d(e)- f i l t ra t ion such that  X / X '  is a direct sum of copies of E(1).  It  follows tha t  
X'  = eiN~2A, thus A(i ) /X '  = @(i). Since X '  has an ~-filtration, we see tha t  A( i )  has an 
~-filtration. 

Finally, we verify the implication (i) ~ (ii). For 1 < i < n, let s~Ne~ be a projective left 
Ci-module .  By induct ion we know that  rad A2(i ) has a A2-fi l trat ion,  for 2 < i < n. Since 
Nel is a projective left A-module ,  Theorem 1 asserts that  AA has an k-filtration. We are 
going to show that  r a d A ( j ) ,  with 1 _< j _< n, has a A-fi l t rat ion.  Since A(1) = E(1) ,  we 
may assume 2 < j < n. Consider Zj~ = (rad A(j))crA/(rad A(j))er+IA, with 1 < r < n. 
We claim tha t  Zjr is a direct sum of copies of A(r) .  Again the case r = 1 is trivial, so assume 
2 < r < n. First  of all, top Zjr is clearly a direct sum of copies of E( r ) ,  say top Zjr = 
mirE(r). Since A(r )  is the projective A/Aer+lA-cover of E(r), and Zjr is annihilated 
by Aer+IA,  it follows that  there is a surjective map Y ----* Zjr with Y = m i c A ( r ) .  In 
order  to show that  this is an isomorphism, we are going to prove tha t  g(Y) = ~(Zjr). 
First,  we claim tha t  bo th  Y and Zjr have M(e)-f i l t ra t ions .  For, erA has an k-filtration, 
and HomA(erA, E(1)) = 0, since r > 2; thus erA has an Ad(e)-fi l t rat ion by Lemma 6. 
According to Lemma 5, A( r )  = erA/erAee+lA has an M(e)- f i l t ra t ion ,  thus the same is 
t rue for Y. Since A ( j )  has an k-filtration, also A(j)erA has one, according to Lemma 2. 
Using again r _> 2, Lemma 5 and Lemma 6, we see that  Zjr has an M(e) - f i l t ra t ion .  Given 
any A-modu le  X,  and i > 2, the number  ~ ( X )  coincides with the number  t(2)(X¢2) of 
composit ion factors of the C2-module  X¢2 which are of the form E(i)e2 = eiAa2/eiN¢2. 
We use Lemma 4 in order to express g(Y) and g(Zjr) as follows: 

On the other  hand, 

n D, 

e(Y) = ~ e i ( Y ) s i  = E e l 2 ) ( V e 2 ) s i '  
i = 2  i = 2  

n n 

i=-2  1 : 2  

Zj~e2 = (rad A(j))s~Ae2/(rad A ( j ) ) ~ + I A ¢ 2  = 

= (rad A2(j))e~C2/(rad A2(j))e~+IC2 

is a direct sum of copies of A2(r) ,  since A2(j)  has a A2-fil tration. It follows tha t  Zj~e2 ~- 
mirA2(r) = Ye2. As a consequence, £(Y) = g.(Zj~). This completes the proof  of the 
implication (i) =~ (ii). 
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5. A l g e b r a s  o f  g loba l  d i m e n s i o n  2. 

We are going to present the proof of Theorem 3 as well as some related examples. As 
before let e l , . . . ,  e ,  be a complete set of primitive and orthogonal idempotents, and let 
ei = el + - . .  + en for 1 < i < n. Again, we assume that  (Ii)i  is a heredity chain, where 
Ii = A e , - i + I A .  

L e m m a  9. Zet e = e2. Let C = eAs.  Assume  that e N e l  is a projective left C-modu le  and 
that e l N  is a projective right A-module .  Then proj .d im.E(1)A < 1, and proj .d im.E( i )A  < 
max {2, p ro j . d im . (Z ( i ) c ) c }  for  2 < i < n. 

P r o o f .  Since E(1) = e l A / e l N ,  it follows that proj.dim.E(1)A ~ 1. Consider now E(i ) ,  
where 2 < i < n. We can assume that  proj.dim. ( E ( i ) s ) c  is finite; let 

0 ~ p(m) ~ . . .  - - - - - ,  p(1) ~ p(O) ~ E(i )¢  ----* 0 

be a projective resolution of the C-module  ( E ( i ) e ) c .  We tensor this sequence with c ( eA) .  
Note that  c ( e A )  is a direct sum of copies of c ( e A e i ) ,  with 1 _< j _< n. For 2 _< j _< n, the left 
C-module  c(eAej)  is projective, since ej is an idempotent of C, and c (eAel )  = c  (eNel )  
is projective by assumption. Thus 

0 ~ p(m) ® c ¢ A  , . . .  ~ p(O) @ c e A  , E(i)¢ ®c  s A  ----* 0 

is exact. Since the A-modules p(8) ® c ( e A )  are projective, it follows that  proj.dim. E( i )e® 
c ( e A ) A  <_ m.  The exact sequence 0 ~ e i N  ~ e iA  ~ E( i )  ) 0 yields first by 
multiplying with ~ and then tensoring with c ( e A ) ,  the exact sequence 

0 , eiN¢ ® c  ¢A , eiA¢ @c eA , E( i )e  ® c ¢ A  , 0. 

Since A e A  belongs to a heredity chain, we can identify Ae ®c sA with A e A  and therefore 
eiAe ® c  s A  with e i A e A  = eiA. We see that  E( i ) s  ® c  s A  TM e i A / e i N s A  = ~(i). Thus 
proj.dim.~(i)A < m. There is the exact sequence 

0 ~ d i lE(1)  ~ ~(i) ~ E( i )  ----* O. 

Since proj .dim.E(1) < 1, it follows that  

proj .dim.E(i)  _< max{2, proj.dim.~(i)A} = max{2, m} .  
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P r o o f  o f  T h e o r e m  3. We use induction on n. Condition (i) of Theorem 2 applied to 
A and to its opposite shows that C -- C2 satisfies the corresponding assumptions (every 
right ideal of C2 has a A2-filtration, every left ideal of C2 has a A~-filtration). Thus 
gl.dim.C < 2. Also, ¢2Nea is a projective left C2-module by condition (i ~) of Theorem 2. 
And e lN¢l  is a projective right Cl-module by condition (i) of Theorem 2, applied to the 
opposite of A, thus elN is a projective A-module. We apply Lemma 9 and conclude that 
gl.dimA < 2. 

Let us remark that not all algebras of global dimension 2 satisfy the conditions of Theo- 
rem 2: A simple example is provided by the path algebra of the graph 

3 

modulo the ideal (/3a,/33', 67) : 

AA=I  G1 

4 
2 

3 2 
3 0 2 G 3 . 
2 

2 

Here, 

4 

A ( 1 ) = I ,  A ( 2 ) =  2 A ( 3 ) =  3 A ( 4 ) =  2 
1' 2 '  3 '  

2 

thus radA(4)  has no A-filtration. On the other hand, the path algebra of 

OL 1 Ot 2 C~ 3 Otn - -  1 

1 ) 2  ) 3  ) . . .  ~ n  

modulo (ai-lai [2 < i < n - 1) satisfies the conditions of Theorem 2, but has global 
dimension n - 1. Of course, for n > 4 this implies that its opposite algebra does not 
satisfy these conditions. Observe that, for n = 3 this is an example of an algebra of global 
dimension 2 whose dimension (namely 5) is less than the dimension of the corresponding 
peaked algebra (of dimension 6) as defined in the next section. 
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In this last section, we intend to give a construction of a new class of quasi-hereditary 
algebras of global dimension 2 which may be of further interest. Let S = (Di,i Mj)l<_i,j<_n 
be a labelled species without loops [DR3]: thus iMi = 0 for all i, and the index set 
{1, 2 , . . . ,  n} is considered with its natural  ordering. As in [DR3],  let 

T = T(n) = {(to,t1,... ,tin)I 0 ( ~i --( n are integers, m > 1, and 

t i - l C t i f o r a l l l < i < m } ;  

for every t = ( t 0 , t l , . . .  ,tin) E T, let 

and for T' C_ T, let 

M(t) = toMt~ ®o,~ ,,Mt= ®D, 2 " ' "  @ D , , ~ _  1 t , ~ _ t M t , ~ ,  

M(T')  = ( ~  M(t) .  
tET' 

We define the ideal M ( W  °) of the tensor algebra T(S) by specifying the subset W ° of T 
as follows: 

W ° = W ° ( n )  = { ( t o , t 1 , . . .  , t in)  E T[ t he re  is 0 < i < rn such  t h a t  t i -1  > ti < t i + l } .  

Let W be the complement T \ W  °, thus 

Hence 

W = { ( t0 , t l , . . .  ,tin) E T[ there is 0 < i < rn such that  

to < t l  < " "  < ti > ' ' '  > t in-1 > t in}.  

[M(T)] 2n-1 c_ M ( W  °) c_ M(T) 

and thus M ( W  °) is an admissible ideal. Let 

50(s) = ~-(S)/M(W°). 

Observe that  the Loewy length of 50(8) is at most 2n - 1, and that,  as an abelian group, 
50(8) can be identified with 

n 

I-[ D, e M(W).  
i=1 

We call 50($) the peaked algebra with labelled species S. 
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P r o p o s i t i o n .  Let 7~(S) be the peaked algebra with labelled species S. Then 79(8) is quasi- 
hereditary, every right ideal of T'(S) has a A-filtration, every left ideal of P(S) has a 
A*-fiItration. In particular, gl.dim.79(S) < 2. 

Proof .  For any 1 < i < n, we claim that radA(i)  is a direct sum of various A(j).  Since 
A(1) is simple, we can assume 2 < i < n. Let 

Ti = {(i, t x , . . . , tm)  e Tl i  > t, > ... > tin}. 

Then A(i) may be identified with D, ® M(Ti), thus 

radA(i)  = M(Ti) = ~ doA(j  ) , 
(i,j,t~,...,trn)ETi 

where, as before, dij = dim(iMj)Dj. 

In comparison with the deep algebras over a given labelled species (whose global dimension 
is also at most 2), the dimensions of the peaked algebras are considerably smaller. For 
instance, for S ,  = (Di, iMj)l<_i, j<_n, where Di = k for all i and i M j  = kkk  for all i ¢ j 
and iMi = 0 for all i, the dimensions p(n) of T'(S,,) clearly satisfy 

and thus, for all n, 

p(n + 1) =p(n) +4",  

p ( n ) =  ~(4" - 1). 

On the other hand, let d(n) be the dimension of a deep algebra over Sn. We have d(5) = 
3263441 while p(5) = 341, and d(10) ~ 2.7 × 102°s (!) while p(10) = 349525. Even p(20) is 
"only" 366503875925. 
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