Hall algebras and quantum groups

Claus Michael Ringel

Fakultät für Mathematik, Universität Bielefeld, D-4800 Bielefeld 1, FRG

Dedicated to Jacques Tits on his sixtieth birthday

Let R be a finite-dimensional representation-finite hereditary algebra over some field. Let Δ be its type, this is a disjoint union of Dynkin diagrams [DR]. Let Φ^+ be the set of positive roots for Δ . Given $\alpha \in \Phi^+$, there is (up to isomorphism) a unique indecomposable R-module $M(\alpha)$ with dimension vector α . Given a function $a: \Phi^+ \to \mathbb{N}_0$, let M(a) denote the direct sum of $a(\alpha)$ copies of the various $M(\alpha)$ with $\alpha \in \Phi^+$; in this way, the isomorphism classes of R-modules of finite length correspond bijectively to the functions $a: \Phi^+ \to \mathbb{N}_0$. Given $a, b, c: \Phi^+ \to \mathbb{N}_0$, we denote by $\varphi_{M(a),M(c)}^{M(b)} = \varphi_{ac}^b$ the corresponding Hall polynomial [R1], it is a polynomial with integer coefficients which counts (for finite R) the number of filtrations of M(b) with factors M(a) and M(c). If Λ is an arbitrary commutative ring, and $q \in \Lambda$, we define the Hall algebra $\mathscr{H}(R, \Lambda, q)$ as the free Λ -module with basis $(u_{[M)})_{[M]}$ indexed by the isomorphism classes of R-modules of finite length, with multiplication

$$u_{[N]} u_{[N']} = \sum_{[M]} \varphi_{NN'}^{M}(q) u_{[M]},$$

in this way, we obtain a (usually non-commutative) associative ring with 1. In [R 2], we have shown that we may identify $\mathcal{H}(R, \mathbb{C}, 1)$ with the universal enveloping algebra $U(\mathbf{n}_+)$ of \mathbf{n}_+ , where $\mathbf{g} = \mathbf{n}_- \oplus \mathbf{h} \oplus \mathbf{n}_+$ is a triangular decomposition of the semisimple complex Lie algebra of type Δ .

It would be of interest to find a natural enlargement of $\mathcal{H}(R, \mathbb{C}, 1)$ in order to obtain $U(\mathbf{g})$ itself. As we will show in Sect. 3, there is a canonical way for obtaining at least $U(\mathbf{b}_+)$, where $\mathbf{b}_+ = \mathbf{h} \oplus \mathbf{n}_+$ is the Borel algebra. Let S_1, \ldots, S_s be a complete set of simple R-modules. If M is an R-module of finite length, let $(\dim M)_i$ be the Jordan-Hoelder multiplicity of S_i in M. Then the map δ_i of $\mathcal{H}(R, \Lambda, q)$ into itself defined by $\delta_i(u_{[M]}) = (\dim M)_i u_{[M]}$ is a derivation, so we may define the skew polynomial ring

$$\mathcal{H}'(R, \Lambda, q) = \mathcal{H}(R, \Lambda, q) [T_i, \delta_i]_i$$

in s variables $T_1, ..., T_s$. Since $\mathcal{H}(R, \mathbb{C}, 1)$ is isomorphic to $U(\mathbf{n}_+)$, it follows that $\mathcal{H}'(R, \mathbb{C}, 1)$ is isomorphic to $U(\mathbf{b}_+)$.

Instead of dealing with the degenerate Hall algebra $\mathcal{H}'(R, \mathbb{C}, 1)$, we are going to consider the generic Hall algebra $\mathcal{H}'(R, \mathbb{C}[q], q)$, where $\mathbb{C}[q]$ is the polynomial ring in the indeterminate q, or its completion

$$\widehat{\mathscr{H}}'(R) = \lim_{m \to \infty} \mathscr{H}'(R, \mathbb{C}[q]/(q-1)^m, q),$$

this is an algebra over the power series ring $\mathbb{C}[[q-1]]$. Our aim is to give a complete description of $\widehat{\mathscr{H}}(R)$ by generators and relations.

In $\mathbb{C}[[q-1]]$, the element $\ln q = \sum_{m \ge 1} (-1)^{m+1} \frac{1}{m} (q-1)^m$ is a multiple of

q-1, thus, for $c \in \mathbb{C}$, the element $\exp(c \ln q) = \sum_{m \ge 0} \frac{1}{m!} c^m (\ln q)^m$ is defined. We

also will write q^c instead of $\exp(c \ln q)$, in particular, both $q^{\frac{1}{2}}$ and $q^{-\frac{1}{2}}$ are defined.

We denote by $\begin{bmatrix} n \\ t \end{bmatrix}_q = \frac{\varphi_n}{\varphi_t \varphi_{n-t}}$ the Gauss polynomials, where $\varphi_n = (1-q) \dots (1-q^n)$. Let $(a_{ij})_{ij}$ be the Cartan matrix of type Δ , and $(f_i)_i$ the (minimal) symmetriza-

tion of A (so that $f_i a_{ij} = f_j a_{ji}$). Let $q_i = q^{f_i}$. We will show that $\widehat{\mathcal{H}}(R)$ is, as a complete $\mathbb{C}[[q-1]]$ -algebra, generated by elements $H_1, \ldots, H_s, X_1, \ldots, X_s$ subject to the relations

$$[H_i, H_j] = 0,$$

$$[H_i, X_j] = a_{ij} X_j,$$

$$\sum_{t=0}^{n} (-1)^t {n \brack t}_{q_i} q_i^{-\frac{t(n-t)}{2}} X_i^t X_j X_i^{n-t} = 0, \quad \text{with } n = 1 - a_{ij}, \quad \text{and } i \neq j.$$

This description shows that $\widehat{\mathscr{H}}(R)$ is precisely the quantization $U_h(\mathbf{b}_+)$ of $U(\mathbf{b}_+)$ as described by Drinfeld in his Berkeley lecture [D] (with $h = \ln q$). In particular, it follows that $\widehat{\mathscr{H}}(R)$ is a Hopf algebra.

The Hall algebra approach yields a rather natural interpretation of the awkward relations above. Consider besides

$$\rho_n(q, X, Y) = \sum_{t=0}^{n} (-1)^t {n \brack t}_q q^{-\frac{t(n-t)}{2}} X^t Y X^{n-t}$$

also the polynomials

$$\rho_n^+(q, X, Y) = \sum_{t=0}^n (-1)^t {n \brack t}_q q^{\binom{t}{2}} X^t Y X^{n-t},$$

+ $\rho_n(q, X, Y) = \sum_{t=0}^n (-1)^t {n \brack t}_q q^{\binom{t}{2}} X^{n-t} Y X^t.$

Observe that $\mathcal{H}(R, \mathbb{C}[[q-1]], q)$ is a subring of $\widehat{\mathcal{H}}(R)$. The elements X_1, \ldots, X_s of $\widehat{\mathcal{H}}(R)$ are suitable multiples of the canonical generators $u_1 = u_{[S_1]}, \ldots, u_s = u_{[S_s]}$ of $\mathcal{H}(R, \mathbb{C}[[q-1]], q)$. The relations which are satisfied by

 $u_1, ..., u_s$ and which give rise to the relations above, depend on the orientation of Δ defined by R. So assume $\operatorname{Ext}^1(S_i, S_j) = 0$ for some pair $i \neq j$. We will show that

$$\rho_{1-a_{ij}}^+(q_i, u_i, u_j) = 0$$
, and $\rho_{1-a_{ji}}^+(q_j, u_j, u_i) = 0$,

and a simple substitution transforms these relations into the symmetric ones involving ρ instead of ρ^+ and $^+\rho$. The relations involving ρ^+ and $^+\rho$ will be shown in a quite general setting in Sect. 2. In order to do so, we will introduce in Sect. 1 the composition algebra $\mathscr{C}(R)$ for an arbitrary ring R.

The reader should be aware that q (and $q_i = q^{f_i}$) may denote an integer, or a variable, in different parts of the paper.

The author is endebted to R. Dipper, B. Pareigis, and L. Scott for helpful comments: they insisted that there should be a strong relationship between Hall algebras as presented in [R1] and [R2] and the recent advances on Hopf algebras and quantum groups.

1. Composition algebras

Let R be any ring, let $\mathscr S$ be the set of isomorphism classes of finite simple R-modules (where 'finite' means: having only a finite number of elements). Let $\mathscr W(R)$ be the free semigroup with basis $\mathscr S$, thus the elements of $\mathscr W(R)$ are words of the form $w = [S_1][S_2]...[S_t]$, where $S_1, ..., S_t$ are finite simple R-modules, and $[S_i]$ denotes the isomorphism class of S_i ; here, t is the length of the word w, and there is a unique word of length zero (denoted by 1). We denote by $\mathscr A(R)$ the free (associative) algebra with basis $\mathscr S$. Clearly, the additive group of $\mathscr A(R)$ is the free abelian group with basis $\mathscr W(R)$. Given an element $w \in \mathscr W(R)$, say $w = [S_1]...[S_t]$, and an R-module M, let $\langle w|M\rangle$ denote the number of filtrations

$$M = M_0 \supset M_1 \supset \dots \supset M_t = 0$$

such that $M_{i-1}/M_i \cong S_i$. (The number of such filtrations always is finite: if M has at least one such filtration, then M is a finite module, and so has only

finitely many submodules.) In general, given $\sum_{i=1}^{n} \lambda_i w_i \in \mathcal{A}(R)$, with $\lambda_i \in \mathbb{Z}$, $w_i \in \mathcal{W}(R)$, and an R-module M, we define

$$\langle \sum_{i=1}^n \lambda_i w_i | M \rangle = \sum_{i=1}^n \lambda_i \langle w_i | M \rangle.$$

Let $\mathscr{I}(R)$ be the set of all $a \in \mathscr{A}(R)$, with $\langle a|M \rangle = 0$ for all R-modules M. This is an ideal of $\mathscr{A}(R)$. (For $a \in \mathscr{A}(R)$ and S a finite simple R-module, $\langle [S] a|M \rangle = \sum_{U} \langle a|M \rangle$, where the summation ranges over all submodules U of M such

that $M/U \cong S$; similarly, $\langle a[S]|M\rangle = \sum_{V} \langle a|M/V\rangle$, where the summation ranges over all submodules V of M with M/V isomorphic to S.) Define

$$\mathscr{C}(R) = \mathscr{A}(R)/\mathscr{I}(R),$$

the composition algebra of R. Note that $\langle -|-\rangle$ yields a bilinear form

$$\mathscr{C}(R) \times K(R-\text{fin}) \to \mathbb{Z}$$
.

Assume that the ring R is finitary, so that the Hall algebra $\mathcal{H}(R)$ is defined. Consider the ring homomorphism $\eta: \mathcal{A}(R) \to \mathcal{H}(R)$ sending [S] to $u_{[S]}$. Then $\mathcal{I}(R) = \ker \eta$. (For, $\eta([S_1] \dots [S_t]) = \sum_{[M]} F_{S_1, \dots, S_t}^M u_{[M]}$ and $F_{S_1, \dots, S_t}^M u_{[M]}$ and $F_{S_1, \dots, S_t}^M u_{[M]}$ and $F_{S_1, \dots, S_t}^M u_{[M]} = \langle [S_1] \dots [S_t] | M \rangle$; therefore, given $a \in \mathcal{A}(R)$, we have $\eta(a) = \sum_{[M]} \langle a | M \rangle u_{[M]}$.) As a consequence, we can identify $\mathcal{C}(R)$ with the subring of $\mathcal{H}(R)$ generated by

2. The fundamental relations

the elements of the form $u_{[S]}$ with $[S] \in \mathcal{S}$.

Let R be a finitary ring. Let $S_i(i \in I)$ be a complete set of finite simple R-modules (thus, they are pairwise non-isomorphic, and any finite simple R-module is isomorphic to one of them). We assume that $\operatorname{Ext}^1(S_i, S_i) = 0$ for all i. Let $q_i = |\operatorname{End}(S_i)|$. Let $i \neq j$ with $\operatorname{Ext}^1(S_i, S_i) = 0$, and

$$a_{ij} = -\dim \operatorname{Ext}^{1}(S_{j}, S_{i})_{\operatorname{End}(S_{i})},$$

$$a'_{ij} = -\dim_{\operatorname{End}(S_{j})} \operatorname{Ext}^{1}(S_{j}, S_{i}),$$

thus $q_i^{a_{ij}} = q_i^{a'_{ij}}$.

Proposition. Both elements $\rho_{1-a_{ij}}^+(q_i, [S_i], [S_j])$ and ${}^+\rho_{1-a_{ij}}(q_j, [S_j], [S_i])$ belong to $\mathcal{I}(R)$.

Proof. We first consider ρ^+ . We are going to calculate

$$a_t(M) := \langle [S_i]^t [S_j] [S_i]^{n-t} | M \rangle$$

for an arbitrary module M. We may assume that M is of length n+1, with one composition factor S_j , the remaining ones of the form S_i . Since $\operatorname{Ext}^1(S_i, S_i) = 0 = \operatorname{Ext}^1(S_i, S_j)$, we can decompose $M = N \oplus dS_i$, with N indecomposable and some $0 \le d \le n$. The radical N' of N is isomorphic to $(n-d)S_i$, and $N/N' \cong S_j$. Since dim $\operatorname{Ext}^1(S_j, S_i)_{\operatorname{End}(S_i)} = n-1$, it follows that $d \ge 1$. Note that M does not have a factor module isomorphic to $(d+1)S_i$, thus $a_t(M) = 0$ for t > d. Therefore, we may assume $t \le d$. The composition series of M we are interested in are of the form

$$M = M_0 \supset M_1 \supset \dots \supset M_{n+1} = 0$$

with $M_t/M_{t+1} \cong S_j$. In particular, $N \subseteq M_t$, since $M/N \cong dS_i$. There are $\frac{v_d}{v_{d-t}}(q_i)$ possibilities for choosing chains

$$M = M_0 \supset M_1 \supset \dots \supset M_t \supseteq N$$

with M_i maximal in M_{i+1} , for $1 \le i \le t$, where $v_n = v_n(T) = \frac{\varphi_n(T)}{(1-T)^n}$. Always, M_t has a unique submodule M_{t+1} with $M_t/M_{t+1} \cong S_j$, and since $M_{t+1} \cong (n-t) S_i$, there are $v_{n-t}(q_i)$ composition series

$$M_{t+1}\supset M_{t+2}\supset\ldots\supset M_n\supset M_{n+1}=0.$$

Thus

$$a_t(M) = \frac{v_d v_{n-t}}{v_{d-t}} (q_i), \quad \text{for all } t \leq d.$$

We claim that for $1 \le d \le n$, we have

$$\sum_{t=0}^{d} (-1)^{t} {n \brack t} T^{\binom{t}{2}} \frac{v_{d} v_{n-t}}{v_{d-t}} = 0.$$
 (*)

But the evaluation of this polynomial at q_i is just $\rho_{1-a_{i,j}}^+(q_i, [S_i], [S_j])$, so this will finish the first part of the proof. We use

$$\begin{bmatrix} n \\ t \end{bmatrix} \frac{v_d v_{n-t}}{v_{d-t}} = \frac{\varphi_n}{\varphi_t \varphi_{n-t}} \cdot \frac{\varphi_d \varphi_{n-t}}{\varphi_{d-t}} \cdot \frac{1}{(1-T)^n} = v_n \begin{bmatrix} d \\ t \end{bmatrix},$$

in order to rewrite the left hand side (*). We recall from [M] (1.2.Ex.3) that

$$E_d(T, X) := \sum_{t=0}^{d} {n \brack t} T^{\binom{t}{2}} X^t = \prod_{i=0}^{d-1} (1 + T^i X).$$

Since $d \ge 1$, the right hand side shows that $E_d(T, -1) = 0$, therefore

$$\sum_{t=0}^{d} (-1)^{t} {n \brack t} T^{\binom{t}{2}} \frac{v_{d} v_{n-t}}{v_{d-t}} = v_{n} \sum_{t=0}^{d} (-1)^{t} {d \brack t} T^{\binom{t}{2}} = v_{n} E_{d}(T, -1) = 0.$$

In order to deal with ${}^+\rho$, we may use a corresponding calculation. Alternatively, we may argue as follows: Without loss of generality, we may assume that S_i , S_j are the only simple R-modules, thus R is a finite ring, and, in fact a k-algebra for some finite field k. We apply the previous considerations to

the dual modules S_j^* , S_i^* , which we consider as R^{op} -modules. This is possible, since $\text{Ext}_{R^{\text{op}}}^1(S_j^*, S_i^*) = 0$. Given an R-module M, we have

$$\langle [S_i^*]^t [S_i^*] [S_i^*]^{n-t} | M^* \rangle = \langle [S_i]^{n-t} [S_i] [S_i]^t | M \rangle,$$

this finishes the proof.

As a consequence, we see that $\mathscr{C}(R)$ always may be considered as a factor algebra of $\mathscr{A}(R)/\mathscr{I}(R)$.

3. Adjunction of $Hom_{\mathbb{Z}}(K(\mathbb{R}), \mathbb{Z})$

Let R be a finitary ring. The class of all finite R-modules will be denoted by R-fin₀. Recall that a function d: R-fin₀ $\to \mathbb{Z}$ is said to be additive on exact sequences provided d(X) - d(Y) + d(Z) = 0 for any exact sequence $0 \to X \to Y \to Z \to 0$ in R-fin₀.

Lemma. Let $d: R-\sin_0 \to \mathbb{Z}$ be additive on exact sequences. Define an additive function $\delta_d: \mathcal{H}(R) \to \mathcal{H}(R)$ by $\delta_d(u_{[M]}) = d(M) u_{[M]}$, for any finite R-module M. Then δ_d is a derivation.

Proof. Let N, N' be finite R-modules. Then

$$\begin{split} \delta_{d}(u_{[N]} \, u_{[N']}) &= \delta(\sum_{[M]} F_{N,N'}^{M} \, u_{[M]}) = \sum_{[M]} F_{N,N'}^{M} \, d(M) \, u_{[M]} \\ &= \sum_{[M]} F_{N,N'}^{M} (d(N) + d(N')) \, u_{[M]} \\ &= d(N) \, u_{[N]} \, u_{[N']} + u_{[N]} \, d(N') \, u_{[N']} \\ &= \delta_{d}(u_{[N]}) \, u_{[N']} + u_{[N]} \, \delta_{d}(u_{[N']}). \end{split}$$

As in the previous section, let S_i , $i \in I$ be a complete set of finite simple R-modules. For $i \in I$, and $M \in R$ -fin₀, let $d_i(M) = (\dim M)_i$ be the Jordan-Hoelder multiplicity of S_i in M. Then d_i is additive on exact sequences (and $(d_i)_i$ is a basis of the free abelian group of all functions R-fin₀ $\to \mathbb{Z}$ which are additive on exact sequences). So we obtain a set of derivations $\delta_i = \delta_{d_i}$ of $\mathcal{H}(R)$.

Let $\mathcal{H}'(R)$ be obtained from $\mathcal{H}(R)$ by forming the skew polynomial ring

$$\mathcal{H}'(R) = \mathcal{H}(R) [T_i, \delta_i]_i$$

defined by the commutation rules

$$[T_i, T_j] = 0,$$

$$[T_i, u_{[M]}] = \delta_i(u_{[M]}) = (\dim M)_i u[M]$$

for all $i, j \in I$, and all $M \in R$ -fin₀.

Assume now that R is representation-directed, let Λ be an arbitrary commutative ring, and $q \in \Lambda$. Given a function d: R-fin₀ $\to \mathbb{Z}$ which is additive on exact sequences, we define $\delta_d: \mathcal{H}(R, \Lambda, q) \to \mathcal{H}(R, \Lambda, q)$ by $\delta_d(u_{[M]}) = d(M) u_{[M]}$, and

again we see that δ_d is a derivation. In particular, we obtain the derivations δ_i with $\delta_i(u_{[M]}) = (\dim M)_i u_{[M]}$, and we define

$$\mathcal{H}'(R, \Lambda, q) = \mathcal{H}(R, \Lambda, q) [T_i, \delta_i]_i$$

with the same commutation rules as above.

4. Completion

Let k be a finite field, let R be a finite-dimensional k-algebra with centre k which is representation-finite and hereditary. Let Δ be its type, it is a Dynkin diagram (since R is supposed to be connected). Let S_1, \ldots, S_s be the simple R-modules, we assume that they are indexed in such a way that $\operatorname{Ext}^1(S_i, S_j) = 0$ for j < i. We define $a_{ii} = 2$, and, for j < i

$$a_{ij} = -\dim \operatorname{Ext}^{1}(S_{j}, S_{i})_{\operatorname{End}(S_{i})},$$

$$a_{ji} = a'_{ij} = -\dim_{\operatorname{End}(S_{j})} \operatorname{Ext}^{1}(S_{j}, S_{i}).$$

Thus, $A = (a_{ij})_{ij}$ is the Cartan matrix of type Δ . Let $f_i = \dim_k \operatorname{End}(S_i)$, thus $(f_i)_i$ is the minimal symmetrization of A.

Let $\mathbb{C}[q]$ be the polynomial ring in the indeterminate q. We consider

$$\widehat{\mathcal{H}}(R) = \lim_{m} \mathcal{H}(R, \mathbb{C}[q]/(q-1)^m, q),$$

and the corresponding ring $\widehat{\mathscr{H}}(R)$, both are algebras over the power series ring $\mathbb{C}[[q-1]]$. We are going to describe both algebras $\widehat{\mathscr{H}}(R)$ and $\widehat{\mathscr{H}}(R)$ by generators and relations. Let $u_i = u_{[S_i]}$ and $q_i = q^{f_i}$, for $1 \le i \le s$.

Theorem. As a complete $\mathbb{C}[[q-1]] - algebra$, $\hat{\mathcal{H}}(R)$ is generated by $u_1, ..., u_s$, with relations $\rho_{1-a_i}^+(q_i, u_i, u_i) = 0 = {}^+\rho_{1-a_{ii}}(q_i, u_i, u_i)$ for all j < i.

Proof. Let $\mathscr{A}(R, \mathbb{C}[q]) = \mathscr{A}(R) \otimes_{\mathbb{Z}} \mathbb{C}[q]$, the free $\mathbb{C}[q]$ -algebra with generators $[S_1], \ldots, [S_s]$, and consider the algebra homomorphism

$$\eta \colon \mathcal{A}(R, \mathbb{C}[q]) \to \mathcal{H} = \mathcal{H}(R, \mathbb{C}[q], q)$$

defined by $\eta([S_i]) = u_i$. Let \mathscr{J} be the ideal of $\mathscr{A}(R, \mathbb{C}[q])$ generated by the elements $\rho_{1-a_{ij}}^+(q_i, [S_i], [S_j])$, and ${}^+\rho_{1-a_{ji}}(q_j, [S_j], [S_i])$ for all j < i. According to Sect. 1, we see that \mathscr{J} belongs to the kernel of η , thus we obtain an algebra homomorphism

$$\bar{\eta}: \ \bar{\mathscr{A}} = \mathscr{A}(R, \mathbb{C}[q])/\mathscr{J} \to \mathscr{H}.$$

We denote by

$$\bar{\eta}_m\colon\thinspace \bar{\mathcal{A}}/(q-1)^m\bar{\mathcal{A}}\to \mathcal{H}/(q-1)^m\mathcal{H}$$

the induced map modulo $(q-1)^m$. According to [R2], the map $\bar{\eta}_1$ is bijective. We consider $\bar{\eta}_m$ as a map of Λ_m -modules, where $\Lambda_m = \mathbb{C}[q]/(q-1)^m$. Now,

 $\mathcal{H}/(q-1)^m\mathcal{H}$ is a free Λ_m -module, thus with $\bar{\eta}_1$ also $\bar{\eta}_m$ is bijective. It follows that $\bar{\eta}$ induces an isomorphism

$$\underbrace{\lim_{m} \overline{\mathcal{A}}/(p-1)^{m} \overline{\mathcal{A}}} \to \underbrace{\lim_{m} \mathcal{H}/(q-1)^{m} \mathcal{H}} = \widehat{\mathcal{H}}(R).$$

Corolary. As a complete $\mathbb{C}[[q-1]]$ -algebra, $\widehat{\mathcal{H}}'(R)$ is generated by the elements $T_1, \ldots, T_s, u_1, \ldots, u_s$ subject to the relations

$$[T_i, T_j] = 0$$
, $[T_i, u_j] = \delta_{ij} u_j$, for all i, j ,

and

$$\rho_{1-a_{ij}}^+(q_i, u_i, u_j) = 0 = {}^+\rho_{1-a_{ij}}(q_j, u_j, u_i), \quad \text{for all } j < i.$$

Here, δ_{ij} is the Kronecker delta: $\delta_{ii} = 1$, $\delta_{ij} = 0$, for $i \neq j$.

5. Revision of the relations

We keep the assumptions of the last section. We want to change the generators of $\widehat{\mathcal{H}}(R)$ in order to obtain more familiar relations. First of all, let

$$H_i := \sum_{j=1}^s a_{ij} T_j.$$

Since the Cartan matrix $A = (a_{ij})_{ij}$ is invertible, the \mathbb{C} -space of $\widehat{\mathcal{H}}'(R)$ generated by H_1, \ldots, H_s is the same as that generated by T_1, \ldots, T_s . Also, $[T_i, T_j] = 0$ for all i, j is equivalent to requiring $[H_i, H_j] = 0$ for all i, j. Similarly, $[T_i, u_j] = \delta_{ij} u_j$ for all i, j is equivalent to requiring $[H_i, u_j] = a_{ij} u_j$ for all i, j.

In order to rewrite the relations ρ^+ and $+\rho^+$, we will replace the elements u_i by suitable multiples $c_i u_i$, with c_i invertible in $\widehat{\mathscr{H}}(R)$. Given an element $b \in \widehat{\mathscr{H}}(R)$, the element $\exp(b \ln q) = \sum_{m \geq 0} (-1)^m \frac{1}{m!} b^m (\ln q)^m \in \widehat{\mathscr{H}}(R)$ is defined, since $\ln q$ is a multiple of q-1. If $b = h \in \widehat{\mathscr{H}}(R)$ commute, then $\exp((h+h))$

since $\ln q$ is a multiple of q-1. If b_1 , $b_2 \in \mathscr{H}'(R)$ commute, then $\exp((b_1+b_2) \ln q) = \exp(b_1 \ln q) \exp(b_2 \ln q)$; in particular, any $\exp(b \ln q)$ is invertible in $\mathscr{H}'(R)$, with inverse $\exp(-b \ln q)$.

For $1 \le i \le s$, let

$$X_i := \exp\left(-\frac{1}{2}\sum_{i=1}^{i-1} f_i a_{ij} T_j \ln q\right) u_i.$$

Theorem. As a complete $\mathbb{C}[[q-1]]$ -algebra, $\widehat{\mathcal{H}}(R)$ is generated by the elements $H_1, \ldots, H_s, X_1, \ldots, X_s$, subject to the relations

$$[H_i, H_j] = 0,$$

 $[H_i, X_j] = a_{ij} X_j,$
 $\rho_{1-a_{ij}}(q_i, X_i, X_j) = 0, \quad for \ i \neq j.$

Proof. For $1 \le j < i \le s$, let $c_{ij} = \exp(-\frac{1}{2} f_i a_{ij} T_j \ln q)$, and $c_i = c_{i1} \dots c_{i,j-1}$ (with $c_1 = 1$), thus $X_i = c_i u_i$. For $j \ne s$, we have $c_{ij} u_s = u_s c_{ij}$, since $[T_j, u_s] = 0$. On the other hand, $T_i u_i = u_i T_i + u_i = u_i (T_i + 1)$ implies by induction that $T_i^m u_i = u_i (T_i + 1)^m$ for all $m \ge 1$. Therefore, for $c \in \mathbb{C}$

$$\exp(c \, T_i \ln q) \, u_i = \sum_{m \ge 0} \frac{1}{m!} (c \, T_i \ln q)^m \, u_i = \sum_{m \ge 0} \frac{1}{m!} \, c^m (\ln q)^m \, u_i (T_i + 1)^m$$

$$= u_i \exp(c \, (T_i + 1) \ln q) = u_i \exp(c \, T_i \ln q) \exp(c \, \ln q)$$

$$= q^c \cdot u_i \exp(c \, T_i \ln q),$$

thus we see that

$$c_{ij} u_j = q_i^{-\frac{1}{2}a_{ij}} u_j c_{ij}.$$

For j < i, it follows that

$$c_i u_i = u_i c_i$$
, $c_i u_j = q_i^{-\frac{1}{2}a_{ij}} u_j c_i$, $c_j u_i = u_i c_j$, $c_j u_i = u_j c_j$

and therefore, for all $0 \le t \le n$,

$$q_{i}^{\frac{1}{2}a_{ij}t} X_{i}^{t} X_{j} X_{i}^{n-t} = u_{i}^{t} u_{j} u_{i}^{n-t} c_{j} c_{i}^{n},$$

$$q_{i}^{\frac{1}{2}a_{j},t} X_{i}^{n-t} X_{i} X_{i}^{t} = u_{i}^{n-t} u_{i} u_{i}^{t} c_{i}^{n} c_{i},$$

where we have used that $f_i a_{ij} = f_j a_{ji}$, thus $q_i^{a_{ij}} = q_j^{a_{ji}}$. We assume now that $n = 1 - a_{ij}$. Then $\binom{t}{2} + \frac{a_{ij}t}{2} = \frac{t(t-1)}{2} + \frac{(1-n)t}{2} = -\frac{t(n-t)}{2}$, and therefore

$$\rho_{1-a_{i,j}}(q_i, X_i, X_j) = \rho_{1-a_{i,j}}^+(q_i, u_i, u_j) c_j c_i^n,$$

$$\rho_{1-a_{j,i}}(q_j, X_j, X_i) = {}^+\rho_{1-a_{j,i}}(q_j, u_j, u_i) c_j^n c_i.$$

This finishes the proof.

References

- [D] Drinfeld, V.G.: Quantum groups. In: Proc. Int. Congr. Math. Berkeley 1986. Am. Math. Soc., 1987, pp. 798–820
- [DR] Dlab, V., Ringel, C.M.: On algebras of finite representation type. J. Algebra 33, 306-394 (1975)
- [M] Macdonald, I.G.: Symmetric functions and Hall polynomials. Clarendon Press: Oxford, 1979
- [R1] Ringel, C.M.: Hall algebras. In: Topics in Algebra. Banach Centre Publ. 26. Warszawa (To
- [R2] Ringel, C.M.: Hall polynomials for the representation-finite hereditary algebras. Adv. Math. (To appear)