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Let R be a finite-dimensional representation-finite hereditary algebra over some
field. Let 4 be its type, this is a disjoint union of Dynkin diagrams [DR].
Let @* be the set of positive roots for 4. Given xe @™, there is (up to isomorph-
ism) a unique indecomposable R-module M («) with dimension vector a. Given
a function a: &* - N, let M(a) denote the direct sum of a(x) copies of the
various M (c) with ae®*; in this way, the isomorphism classes of R-modules
of finite length correspond bijectively to the functions a: ¢* —N,. Given q,
b, c: & —» Ny, we denote by @& = @5, the corresponding Hall polynomial
[R1], it is a polynomial with integer coefficients which counts (for finite R)
the number of filtrations of M (b) with factors M(a) and M (c). If 4 is an arbitrary
commutative ring, and ge A, we define the Hall algebra # (R, 4, q) as the free
A-module with basis () indexed by the isomorphism classes of R-modules
of finite length, with multiplication

Uy Upnn = Z oNn (@) Urms
[M]

in this way, we obtain a (usually non-commutative) associative ring with 1.
In [R2], we have shown that we may identify # (R, €, 1) with the universal
enveloping algebra U(n,)ofn,, where g=n_@®h®n, is a triangular decompo-
sition of the semisimple complex Lie algebra of type 4.

It would be of interest to find a natural enlargement of # (R, €, 1) in order
to obtain U(g) itself. As we will show in Sect. 3, there is a canonical way for
obtaining at least U(b,), where b, =h@®n, is the Borel algebra. Let §,, ..., S,
be a complete set of simple R-modules. If M is an R-module of finite length,
let (dim M); be the Jordan-Hoelder multiplicity of S; in M. Then the map &,
of # (R, A,q) into itself defined by J;(ugp)=(dim M); usy is a derivation, so
we may define the skew polynomial ring

H'(R, A, 9)=H (R, 4,9) [T, 6,];

in s variables Ti, ..., T,. Since # (R, C, 1) is isomorphic to U(n,), it follows
that #’(R, €, 1) is isomorphic to U(b,).
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Instead of dealing with the degenerate Hall algebra 5 (R, €, 1), we are going
to consider the generic Hall algebra (R, C[q], q), where € [q] is the polyno-
mial ring in the indeterminate ¢, or its completion

#'(R)= lim #" (R, C[ql/(g—1)", q),

this is an algebra over the power series ring C[[g—1]]. Our aim is to give
a complete description of H' (R) by generators and relations.

1
In €{[g—1]], the ¢lement In g= Z (—1)"‘“;(q—1)’" is a multiple of

mz1

1
g—1, thus, for ceC, the element exp(clng)= ) Wc"‘(ln q)" is defined. We

mxzo M
also will write ¢° instead of exp(c In g), in particular, both g* and ¢~ * are defined.
We denote by [’tl] = the Gauss polynomials, where ¢,=(1—g)...(1—4g").
q (pt Pn—:

Let (a;;);; be the Cartan matrix of type 4, and (f;); the (minimal) symmetriza-
tion of A4 (so that f a;;=f;a;). Let q;=q". We will show that ﬁ(R) is, as
a complete €[ [g—1]]-algebra, generated by elements H,, ..., H,, X,, ..., X,
subject to the relations

[Hi:Hjjzoa

[Hi,Xj:I:ainj,
n n _tn—1) B . Lo
Z(—l)‘[t] q; * XiX;X{7'=0, with n=1—ga;;, and i#j.
t=0 qi

This description shows that # (R) is precisely the quantization U,(b,) of
U(b,) as described by Drinfeld in his Berkeley lecture [D] (with h=Ing). In

particular, it follows that # (R) is a Hopf algebra.
The Hall algebra approach yields a rather natural interpretation of the
awkward relations above. Consider besides

n n _tn—y
pa(@ X, Y)=z(—1)’[ ] g T XY
q

t=0 t

also the polynomials

P @ X, V)= (1) [':]q o) xeyxe,

t=0

n t
Toalg, X, Y)=) (1) m q(2)X""YX‘.
t=0 q
Observe that # (R, C[[q—1]], q) is a subring of #”(R). The elements X, ..., X,

of #" (R) are suitable multiples of the canonical generators u; =us,;, ..., =15
of #(R,C[[g—1]],9. The relations which are satisfied by
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uy, ..., us and which give rise to the relations above, depend on the orientation
of 4 defined by R. So assume Ext'(S;, S;)=0 for some pair i%j. We will show
that

p;—aij(qi’uiauj)=0a and +p1—aji(qjauj,ui):07

and a simple substitution transforms these relations into the symmetric ones
involving p instead of p* and *p. The relations involving p™ and *p will
be shown in a quite general setting in Sect. 2. In order to do so, we will introduce
in Sect. 1 the composition algebra % (R) for an arbitrary ring R.

The reader should be aware that g (and g;=¢’%) may denote an integer,
or a variable, in different parts of the paper.

The author is endebted to R. Dipper, B. Pareigis, and L. Scott for helpful comments: they insisted
that there should be a strong relationship between Hall algebras as presented in [R1] and [R2]
and the recent advances on Hopf algebras and quantum groups.

1. Composition algebras

Let R be any ring, let & be the set of isomorphism classes of finite simple
R-modules (where ‘finite’ means: having only a finite number of elements). Let
# (R) be the free semigroup with basis %, thus the elements of # (R) are words
of the form w=[S,][S,]...[S.], where S,, ..., S, are finite simple R-modules,
and [S;] denotes the isomorphism class of S;; here, t is the length of the word
w, and there is a unique word of length zero (denoted by 1). We denote by
o/ (R) the free (associative) algebra with basis %, Clearly, the additive group
of </ (R) is the free abelian group with basis #7(R). Given an element we # (R),
say w=[8,]...[S,], and an R-module M, let {w|M)> denote the number of
filtrations

M=My>M ;> ...oM,=0

such that M,_,/M;=S5;. (The number of such filtrations always is finite: if M
has at least one such filtration, then M is a fmite module, and so has only

finitely many submodules.) In general, given Z Aiwed(R), with LeZ,
w;e % (R), and an R-module M, we define i=1

(X WMy =3 4w, M.

i=1 i=1

Let #(R) be the set of all aeo/(R), with {a|M)> =0 for all R-modules M. This
is an ideal of &/ (R). (For ae</(R) and S a finite simple R-module, {[S]a|M)

=Y <(a|M), where the summation ranges over all submodules U of M such
U
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that M/U = §; similarly, <a[S]|M)>=> <a|M/V, where the summation ranges
over all submodules V of M with M/ V‘;somorphic to S.) Define
% (R)=/(R)/#(R),
the composition algebra of R. Note that { — | — ) yields a bilinear form
% (R)x K(R-fin)—~ Z.

Assume that the ring R is finitary, so that the Hall algebra s#(R) is de-
fined. Consider the ring homomorphism #: ./ (R) —» # (R) sending [S] to ug,.
Then #(R)=kern. (For, n([S:1...[SD=Y F  suu and F' g

M)
=<{[8,]...[S.]IM>; therefore, given ac .o/ (R), we have n(a)= > {a|M) uy,,.) As
[M]
a consequence, we can identify ¥(R) with the subring of #(R) generated by
the elements of the form ug, with [S]e .

2. The fundamental relations

Let R be a finitary ring. Let S;(iel) be a complete set of finite simple R-modules
(thus, they are pairwise non-isomorphic, and any finite simple R-module is
isomorphic to one of them). We assume that Ext!(S;,S)=0 for all i. Let g,
=|End(S))|. Let i=j with Ext'(S;,§,)=0, and

a;;= —dim Ext' (S}, S)gaas,)»
a;;= —dimgpq (s, Ext' (S}, S),
thus gj/ =qf.

Proposition. Both elements pf-a”(qi, [S:1.[S;1) and *p, —a;,(4;, [S;1, [S:]) belong
to J (R).

Proof. We first consider p*. We are going to calculate
a,(M):={[SJ [S[S:]"""IM)

for an arbitrary module M. We may assume that M is of length n+1, with
one composition factor §;, the remaining ones of the form §;. Since Ext'(S;, S;)
=0=Ext'(S;, S;), we can decompose M =N @ dS;, with N indecomposable and
some 0=d<n. The radical N' of N is isomorphic to (n—d) S;, and N/N'=S;.
Since dim Ext*(S;, S)gaasy=n—1, it follows that d>1. Note that M does not
have a factor module isomorphic to (d+ 1) S, thus a,(M)=0 for t >d. Therefore,
we may assume t<d. The composition series of M we are interested in are
of the form

M=M,>oM;>...oM,,,=0
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with M, /M, =8§;. In particular, N M,, since M/N~dS;. There are e (q)
possibilities for choosing chains V-

M=M,>M,>..5M,2N

:fn(])

s Al
1—Ty ways, M,
has a unique submodule M,,, with M,/M,,,=S§;, and since M, =(n—1) S,

there are v, _,(q;) composition series

with M; maximal in M, , for 1 <i<t, where v,=v,(T)=

M oM > ... oM, >M,,,=0.
Thus

a,(M)= f’b “I(g), forallt<d.

d-t

We claim that for 1 £d<n, we have

(—1y ['t’] 7le) Batee o, (%)

Uy

M=

t=0

But the evaluation of this polynomial at g; is just p;_, (4;,[S:],[S;]), so this
will finish the first part of the proof. We use

I:n]vd Un—t: Dn 3 Py Pp—y . 1 =p [d:l
t Ug—y Pt Pn—y Pyt (I_T)n " t ’

in order to rewrite the left hand side (*). We recall from [M] (1.2.Ex.3) that

E (T, X)= }d] m T{Q)szdﬁ] (1+T'X).

t=0 i=0

Since d =1, the right hand side shows that E (T, —1)=0, therefore

f -1)t” ()”"’””‘ Z(—l)’[d] 0o BT —1)=0.

t=0 -t

In order to deal with *p, we may use a corresponding calculation. Alterna-
tively, we may argue as follows: Without loss of generality, we may assume
that §;, S; are the only simple R-modules, thus R is a finite ring, and, in fact
a k-algebra for some finite field k. We apply the previous considerations to
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the dual modules S;-", S¥, which we consider as R°*-modules. This is possible,
since Extgop(S¥, SF)=0. Given an R-module M, we have

ISTYOSFILSTI ™ IM*)> =<[S;1" ' [SA[S,TIMD,

this finishes the proof.
As a consequence, we see that ¥{(R) always may be considered as a factor
algebra of &/ (R)/.# (R).

3. Adjunction of Hom,K(R), Z)

Let R be a finitary ring. The class of all finite R-modules will be denoted by
R-fing. Recall that a function d: R-fing—Z is said to be additive on exact
sequences provided d(X)—d(Y)+d(Z)=0 for any exact sequence
0—-X - Y->Z-0in R-fin,.

Lemma. Let d: R-fing »Z be additive on exact sequences. Define an additive
function 8;: # (R) »H(R) by 0,(upy) =d(M) upyyy, for any finite R-module M.
Then 8, is a derivation.

Proof. Let N, N’ be finite R-modules. Then

5d(“{N] u[N’]) =d( Z F;@N' “[M]) = Z FX\IJ‘?N’ d{M) upy

(M) ()
= 2 B (d(N)+d(N") uppny
(]

=d(N) upyy upny + gy d(N') ugy
= 04(upny) tpny + Upny OalUpn-)-

As in the previous section, let §;, iel be a complete set of finite simple
R-modules. For iel, and MeR-fin,, let d,(M)=(dim M), be the Jordan-Hoelder
multiplicity of S; in M. Then d; is additive on exact sequences (and (d;); is
a basis of the free abelian group of all functions R-fin, - Z which are additive

on exact sequences). So we obtain a set of derivations J;=9,, of J# (R).
Let 5" (R) be obtained from 3# (R) by forming the skew polynomial ring

H'(R)=H#(R) [T, 6,];
defined by the commutation rules
[T, =0,
LT, upany] = 0:(upa) = (dim M); u[M]

for all i, jel, and all M eR-fin,.

Assume now that R is representation-directed, let A be an arbitrary commu-
tative ring, and ge A. Given a function 4: R-fin, —Z which is additive on exact
sequences, we define 8,: # (R, 4,9)—> # (R, 4,q) by 6,(upan)=d(M) upy, and
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again we see that Jd, is a derivation. In particular, we obtain the derivations
0; with 0, (upp) = (dim M), u;,y,, and we define

H' (R, 4,q9)=H (R, 4,9) [T, 6,1,

with the same commutation rules as above.

4. Completion

Let k be a finite field, let R be a finite-dimensional k-algebra with centre k
which is representation-finite and hereditary. Let A be its type, it is a Dynkin
diagram (since R is supposed to be connected). Let S;, ..., S, be the simple
R-modules, we assume that they are indexed in such a way that Ext'(S;, S;)=0
for j<i. We define a;;=2, and, for j<i

= —dim Ext! (85 S)na(sy»

a;
e = —di 1
aj;=a;;= —dimg,4s, Ext*(S;, S)).

Thus, A=(a;;);; is the Cartan matrix of type 4. Let f;=dim, End(S;), thus (f});
is the minimal symmetrization of 4.
Let C[¢q] be the polynomial ring in the indeterminate g. We consider

H#(R)= lim_# (R, CLql/g— 1" q),

and the corresponding ring #' (R), both are algebras over the power series

ring €[[g—1]]. We are going to describe both algebras #(R) and # (R)
by generators and relations. Let u;=ug; and ¢;=¢”", for 1<i<s.

Theorem. As a complete C[[q—1]]—algebra, # (R) is generated by u,, ..., u,,
with relations p{_,, (i, Ui, u)=0="p _, (q;, u;, ;) for all j<i.

Proof. Let (R, C[q])=«/(R)®zC[q], the free C[g]-algebra with generators
[S.1 ..., [S:], and consider the algebra homomorphism

n: SR, Clq])—>H#=#(R,C[ql, 9

defined by n([S;])=u;. Let # be the ideal of «/(R,C[q]) generated by the
clements p;_,, (4:,[S:], [S;]), and *p,_,, (q;, [S;], [S:]) for all j<i. According
to Sect. 1, we see that ¢ belongs to the kernel of #, thus we obtain an algebra
homomorphism
i o = (R,CLq])/.F — K.
We denote by
fmi A Nq=10)" > Hf(q—1)"H

the induced map modulo (g—1)". According to [R2], the map #, is bijective.
We consider #,, as a map of A,-modules, where A,=C[q]/(g—1)". Now,
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Hg—1)"H is a free A,-module, thus with 7, also 7,, is bijective. It follows
that 7 induces an isomorphism

lim o f(p—1)"Z — lim #/(q—1)"H = H# (R).

Corolary. As a complete C[[q— 1] J-algebra, A (R) is generated by the elements
Tis ..., Ty, uy, ..., ug subject to the relations

[TE’ 7}]=0’ [le’uj]zéijuj’ foralli’ja
and
P;La,-,«(‘h’ uia uJ):0= +pl“aji(qj’ uj’ ui)’ fOV all.]<l

Here, §,; is the Kronecker delta: d;;=1, 3;;=0, for iz}.

5. Revision of the relations

We keep the assumptions of the last section. We want to change the generators
of #7 (R) in order to obtain more familiar relations. First of all, let

N

H;:=) a;
j

T,

1

Since the Cartan matrix A=(g,;);; is invertible, the C-space of H (R) generated
by Hy, ..., H is the same as that generated by T}, ..., T;. Also, [T, T;] =0 for
all i, j is equivalent to requiring [H;, H;]=0 for all i, j. Similarly, [ T;, u;]1=96;; u;
for all i, j is equivalent to requiring [H;, u;] =a;;u; for all i, j.

In order to rewrite the relations p* and *p, we will replace the elements

u; by suitable multiples ¢;u;, with ¢; invertible in 7 (R). Given an element
1
be# (R), the element exp(bIng)= ) (—~1)"‘Wb'"(1n q)’”eﬁ/f> (R) is defined,
mz0 :
since In g is a multiple of g—1. If b, bzegi’)(R) commute, then exp((b; +b,)
In g)=exp(b, In g) exp(b, In g); in particular, any exp(bIng) is invertible in
# (R), with inverse exp(—b In g).
For 1Zi<s, let

i—-1

1
Xl.:zexp(——i Y fiai; Tng)u;.

i=1

Theorem. As a complete €[ [q— 1]]-algebra, H (R) is generated by the elements
H,,...,H, X,, ..., X, subject to the relations
[Hi’ Hj] =0,
[Hi,Xj]=ainj,
P1 ~a,~j(CIi’ X, Xj):‘oa Sor i%j.
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Proof. For 1<j<i<s, let ¢;;=exp(—1 fia;; T;Ing), and ¢;=c¢;;...c; ;- (with
cy=1), thus X;=c;u;. For j=s, we have ¢;;u;=u,c;;, since [T}, u;]=0. On the
other hand, T, u;=u; T;+ u; = u;(T; + 1) implies by induction that T}" u;=u,(T;+ 1)"
for all m> 1. Therefore, for ceC

1 1
exp(cTIng)u;= 3, pleTingu= )3 oy €rin @) u(T+1)"

m=0 * mz0 °
=u; exp(c(T;+ 1) In g)=u; exp(cT; In g) exp(c In g)
=q‘-u; exp(cT;Ing),

thus we see that

ciu=q; Fujcy;.
For j<i, it follows that

C:

I

— . g ha; _
U=U;C;,  CUj=(g; > U; ¢, CiU=U; Cy,

and therefore, for all 0 <t <n,

Lta .t t n—t__ ,t n-—t
gt XX X = uiugul T e e

1a. t n—t t___.n—t t .n
q} fal X] XlXJ——-uJ uiujCjC,-,

where we have used that f;a;;=f;a;;, thus gfii=q%:. We assume now that n=
t gt t(t—1 1—n)t t(n—t
I—a;. Then< >+a” _ i )-l—( nt_ _te=t)

) 5 > 5 — , and therefore

pl-au-(qia Xian)=PfL—alj(qz', U;, “j) ¢,
P Aaj.(qj’Xj’Xi)z +P1—aj,(q1'> uj, u;) e
This finishes the proof.
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