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Recent Advances
in the

Representation Theory
of

' Finite Dimensional ‘Algebras

CLAUS MICHAEL RINGEL

This is a report on advances in the representation theory of finite dimensional
algebras in the years 1984 — 1990. During these years, the German research council
(DFQ) has sponsered a Forschungsschwerpunkt devoted to the representation theory
of finite groups and finite dimensional algebras; it started in 1984 and will be finished
by 1991.

The topics we have chosen for this report are those related to investigations
carried out in the Forschungsschwerpunkt. However, we will not restrict our atten-
tion to these investigations, but try to cover the topies in full generality. The reader
will observe that two special classes of algebras reappear throughout the report: the
hereditary algebras, and the canonical algebras. The module categories of these alge-
bras are quite well understood, as we will outline below. These algebras serve as an
important source of inspiration; dealing with them, one may hope to get an answer
even to questions which in general may be impossible to attack. Despite of being
rather special, one should keep in mind that these classes comprise some of the most
important algebras. Also, quite surprising contacts to other parts of mathematics
have been found in the last years involving such algebras.

There are many subjects which we have to omit at all. We will refrain from
dealing with degenerations of modules. Also, infinite dimensional modules will be
discussed only when they shed light on questions dealing with finite dimensional
ones. As the title indicates, we will deal with representations of algebras which are
finite dimensional over some field. Of course, we know that algebras over higher
dimensional commutative rings have attracted a lot of interest in the last years,
and they have been discussed in the Forschungsschwerpunkt. But we will be able to
mention them only in case there is a direct relationship to finite dimensional algebras.
We will try to restrict our attention to those results where a full proof is available, at
least as a preprint; all other claims may be considered as mere conjectures. Similarly,
we regret that we can cover the Russian literature only so far as translations do exist.
Anyway, we had to be selective, and the results presented here are those which are
not too technical, and which should be of interest to a wider audience.

The reader is advised that several reports are available dealing with the develop-
ment of the representation theory before 1984: in particular, there were Riedtmann’s
Bourbaki talk in 1985, and the lectures by Auslander, and Gabriel at the ICM 1986
in Berkeley, see also the Proceedings of the Durham conference 1985.

In spite of its length, the list of references does not try to be complete; besides
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the papers quoted in the text, we have included only a few additional ones dealing
with related questions.

The author would like to thank D. Happel for his constant help when preparing
this survey. :

General conventions

We denote by k a commutative field, it will be the base field for all our algebras.
Quite often we will restrict to the case of an algebraically closed base field: many
problems of representation theory tend to get more lucid under this assumption, All
the rings we will consider are supposed to have sufficiently many idempotents, nearly
always they even will have a unit element (for example, in case we deal with a finite
dimensional algebra), however a subring B of a ring 4 is not supposed to have the
same unit element.

Modules usually will be left modules; module homomorphisms will be written
on the opposite side of the scalars, thus usually on the right, so that in this case, the
composition of f : My — M,, g : M, — M; has to be denoted by fg. For any ring R,
we denote by R-mod the category of finitely generated R-modules, by R-Mod the
category of all R~modules. If not otherwise stated, any algebra A and any A-module
considered will be finite dimensional (over our base field k), and we denote by rad A
the radical of A. We write s(A) for the number of isomorphism classes of simple
A-modules, let E(1),...,E(s(A)), be the simple A-modules; they may be indexed
by the vertices of the (Gabriel) quiver Q(A) of 4, note that there is an arrow z — y
in Q(4) if and only if Ext'(E(z), E(y)) # 0 (actually, we may consider Q(4) as a
valued quiver by attaching to any arrow the corresponding dimensions of Ext! over
the endomorphism rings of the given simple modules). The projective cover of E(z
will be denoted by P(z). We denote by I'(A) the Auslander—Reiten quiver of A, and

T or T4 is the Auslander-Reiten translation.

1. Tame and wild

L.1. The wild behaviour of what now are called wild algebras was first exhibi-
ted by Corner, and Brenner. Donovan and Freislich conjectured that there should be
a clear distinction between the tame and the wild algebras. In 1979, Drozd presen-
ted his tame-and-wild theorem: any finite dimensional algebra over an algebraically
closed field is either tame or wild. We refer to [C1] for a complete proof.

Recall that a finite dimensional algebra A over an algebraically closed field k is
said to be tame provided for any d € N, there is a finite number of Ak [T]-bimodules
Mi, ..., My which are free of rank d as right k[T]-modules, such that almost all
indecomposable A-modules of dimension d are of the form M; ® k(7 k{T]/(T = A) for
some 1 < i <n,and A € k. If A is tame, and d € N, the smallest possible number n
of such bimodules is denoted by p.4(d).

1.2. In general, we may consider A-k[T]-bimodules M which are free of fi-
nite rank as right k[7)~modules, and the corresponding functors Far = M ®r) —
from k[T]-mod to A-mod. In case almost all the modules Fy(k[T]/(T — X)) are
indecomposable, and pairwise non—isomorphic, we may call these modules an affine
one-parameter family of indecomposable modules. Different affine one-parameter
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families may intersect non-trivially. In case there are infinitely many (isomorphism
classes of} indecomposable modules which belong to two affine one-parameter fami-
lies, these families will be said to be equivalent. The union of all modules belonging
to the affine one~parameter families in one equivalence class may be called a complete
one-parameter family.

In order to avoid the difficulties of dealing with families of modules (see, for ex-
ample, the clumsy definition of a complete one-parameter family of indecomposable
modules), Crawley—Boevey [C8] has proposed to consider instead generic modules.
A generic R-module M over an arbitrary ring R is by definition an indecomposable
R-module of infinite length, such that M considered as an End{M)-module, is of
finite length (its endolength). Of course, the generic modules with endomorphism
ring a division ring just, form the vertices of the (Cohn) spectrum of R. Note that
given a functor of the form Fjs as considered above, we obtain a generic module
Fy(k(T)), where k(T') is the rational function field in one variable over k. The en-
domorphism ring of a generic module always is a local ring [C9], the proof of this
result uses concepts from model theory: a generic module satisfies the descending
chain condition on the socalled pp-definable subgroups.

Theorem (Crawley—Boevey). Let A be a finite dimensional algebra over
an algebraically closed field. The algebra A is representation finite if and only if
there are no generic modules, and A is tame if and only if for any d € N, there are
only finitely many generic modules of endolength d, if and only if for any generic
module M, the algebra End(M)/ rad End(M) is isomorphic to k(T). Also, in case A
is tame, End(M) is split over its radical, and any two splittings are conjugate.

The concept of a generic module seems to be so natural that one wonders why
it was not considered earlier. Obviously, generic modules should be of interest for
arbitrary rings, not just finite dimensional algebras or artinian rings.

Of particular interest will be the generic modules M without selfextensions.

For example, any tame hereditary algebra has precisely one generic module, and

this module does not have selfextensions. For the generalized Kronecker algebras
r

K(r) = ['g i;c ] with r > 3, Happel and Unger [HUZ2] have constructed infinite

dimensional generic modules without selfextensions such that the endomorphism

ring is a universal division ring of fractions for a free associative k—algebra in finitely
many variables.

1.3 Some remarks concerning methods of proof may be appropriate. The use
of bocses as introduced by Klejner and Rojter has turned out to be very essential.
Drozd’s tame-and-wild theorem and the modifications due to Crawley-Boevey deal
with bocses, and no other proof seems to be in sight. Of course, the theory of bocses
is now more accessible, see [C1] and [C9]. Some of the usual techniques of the
representation theory of finite dimensional algebras have been copied for bocses: in
particular, the existence of almost split sequences for bocses has been established
by Bautista and Klejner [BK], see also [BB]. Methods similar to the usual bocs
reduction may be applied also to the case of algebras over fields which are not
necessarily algebraically closed, or even to artinian rings. In particular, Crawley-
Boevey has shown in this way that given an indecomposable R~module M over some
representation finite artinian ring R, there is a simple R-module S such that the
division rings End(M)/rad End(M) and End(S) are isomorphic [C7].
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Let A be a finite dimensional algebra over some algebraically closed field, and
assume that A is not representation finite, The existence of a generic module for
A is derived from the positive solution of the second Brauer-Thrall conjecture. We
recall that a solution had been announced by Nazarova and Rojter in 1973. Cur op-
timistic report [7] does not seem to be appropriate; The usual strategy for attacking
: the problem is to choose a minimal non-zero ideal I, so that by induction, one may
1 assume that A/I is representation finite. The main difficulties arise in the case when
i the module 4 has selfextensions, and it is this case which has been treated insuffi-
ciently by Nazarova and Rojter. In the proceedings of the Ottawa conference 1984,
i Nazarova and Rojter [NR1] have presented another approach to the second Brauer—
Thrall conjecture: they claim to provide a new reduction of the representations of an
1 algebra to the representations of a completed poset, and to attach to each completed
3 poset a non—completed one of the same representation type. However, both reduc-
! tions do not work! It is not diificult, to exhibit counter examples to the proposed
methods of proof, as well as to the actual stated assertions. In the meanwhile, a
corrected version of part of the second reduction has been published [NR2].

nnnnnn

For fields of characteristic different from 2, the first complete proof for the second
Brauer-Thrall conjecture has been given by Bautista [Bau]. The assumption on
the characteristic of the base field has later been removed by Bongartz [Bo], and
modifications of the proof have been published by Bretscher-Todorov [BT] and
Fischbacher [Fi]. All these proofs rely on the existence theorem for a multiplicative
basis. The problem of finding a rather direct proof of the second Brauer-Thrall
conjecture still exists. Also, it would be of interest to have a proof for arbitrary
| base fields. Of course, the case of a perfect base field k follows from that of an
algebraically closed field, so the non—perfect base fields remain to be considered.

e e e A e e

1.4 There still is the problem of finding a convenient definition of tameness.
The definition used by Drozd, as well as Crawley-Boevey’s characterization in terms
of generic modules involve infinite dimensional modules. One may use instead con-
cepts from algebraic geometry, namely one may consider the sheets of indecomposa-
ble'modules. Is there a definition of tameness which only involves finite dimensional
modules, and avoids any reference to algebraic geometry?

Our survey [8] tried to present such a definition, but without success: we have
asked that for any dimension d, there is a finite number of embedding functors F;
from k[T]-mod to A-mod such that all but a finite number of indecomposable A~
modules of dimension d are of the form Fj(L) for some ¢ and some indecomposable
k[T]-module L. However, any wild hereditary algebra A over an algebraically closed
field k satisfies this condition: Consider the set M(z) of isomorphism classes of
indecomposable A-modules with dimension vector z. We may assume that z is an
imaginary root, thus the cardinality of M(z) is equal to that of &, let ¢ : & — M(z)
be any bijection. Now, define a functor F' from k[T]~mod to A-mod by sending the
k[T]-module Ly[n] = k[T]/(T — A)" to the direct sum nd()) of n copies of #()). The
inclusion and projection maps between the various modules Ly [n] with fixed ) shall
be sent under F to the inclusion and projection maps between the corresponding
direct sums (identify (n — 1)¢(A) with (n — 1)¢(X) @ 0 € né()).) Clearly, F is
an embedding functor, and, by construction, any indecomposable A-module with
dimension vector z is of the form F(X) for some simple k[T]-module. Of course,
the functor F' not at all is well-behaved, since ¢ is just a bijection of sets. Also note
that under F all exact sequences go to split exact ones.
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Two recent results may lead to intrinsic definitions of tameness. First of all,
Crawley-Boevey [C1] has shown that for a tame algebra A over an algebraically
closed field, almost all indecomposable A-modules M of fixed dimension satisfy
rM = M, thus almost all indecomposable A-modules M of fixed dimension belong
to tubes of rank one. Bautista has conjectured that this property may characte-
rize the tame algebras. Even for group algebras, this conjecture was solved only
recently by Erdmann [E2]. On the other hand, in the category of finitely generated
Cohen—-Macaulay modules over an isolated hypersurface singularity, all objects are
r—periodic, even in the wild case, as Eisenbud has shown (see {4]).

Second, one may consider the possible endomorphism rings of indecomposable
modules. There is a common feeling that the wild algebras may be characterized
by the property that any finite dimensional algebra can be realized as a factor ring
of the endomorphism ring of some module modulo some ideal. However, first of all
no proof that the wild algebras have this property, has been published yet. Second,
there are modules over certain tame algebras, for example string modules, which
have rather large endomorphism rings. Fortunately, for many tame algebras, there
are only finitely many isomorphism classes of algebras which occur as endomorphism
rings of indecomposable modules of fixed dimension. (However, the example of the
biserial algebra A = k(X,Y)/(X?,Y?) shows that the indecomposable modules in
a one-parameter family may yield a one-parameter family of endomorphism rings:

consider the factor rings Ay = k(X,Y)/(X?,Y?,XY — AYX) as A-modules: this is
a one-parameter family of indecomposable A-modules, and End 4(4)) = Ax.) But
even if there are only countably many isomorphism classes of algebras which occur as
endomorphism rings of indecomposable modules, it may be conceivable that there are
indecomposable modules M,, such that the algebra &{X,Y)/(X,Y)" is isomorphic
to a factor ring of End(M,), and then at least all finite dimensional local algebras
generated by two elements could be realized as factor rings of endomorphism rings.
One typical class of indecomposable modules over tame algebras has been studied in
detail by Krause [Kr2), the string modules. As Crawley-Boevey [C5] has shown, the
maps between string modules may be described combinatorially. Krause shows that
the class of factor rings of endomorphism rings of string modules is very restricted: if
rad A is generated by 2 elements, then A can be realized as a factor ring of End(M)
for some string module M only in case

dimy A/(rad A)* < 2n® — 2n + 1,
and even the algebra k(X,Y)/(X,Y)* cannot be realized as factor ring of the en-
domorphism ring of a string module, One may ask whether there is & polynomial p

such that for any indecomposable module M over a tame algebra A, any factor ring
A of End(M) with rad A generated by two elements satisfies

dimy A/(rad A)" < p(n).

1.5 In dealing with affine one-parameter families, say given by a functor Fy =
M @7y — : k[T]-mod — A-mod, it sometimes seems to be convenient to look for
factorizations of Fy of the form

k[T]-mod — K-mod £, A-mod
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where KX = K(2) is the usual Kronecker algebra and G again is exact. First of
all, we may ask whether it always will be possible to find such a factorization (for
A finite dimensional!). Second, we should remark that G, if it exists, may not be
uniquely determined, a typical example are the two embeddings G1, Gy, of K~mod
into A-mod, where A is the hereditary algebra of type Al,z

a [0 .
G(We _V)=WZ vV,
' B T3\1/"1/
G(W,Ea V) W“"a\V
G W V)= ,

8 Tl\W‘ﬁ/

where V, W are k-vectorspaces, and o, 8 : V — W are linear maps. The functors
Gy, G; coincide on the subcategory of K-mod given by all objects (V, W, @, 1), and
this subcategory is equivalent to k[T]-mod. We deal here with the situation of a
one-parameter family indexed by Pi, where the point (1 : 0) € Py occurs with
multiplicity two. In general, it often happens that we deal with a one-parameter
family indexed by the projective line Py, where finitely many points of P; occur with
a multiplicity greater than 1.

In order to study this phenomenon, consider pairwise different points Ay, ..., As
of P1, and attach to each A; some multiplicity p; = p(A;) 2 1 (or, equivalently, take
a function p : Py — Nj such that p ~ 1 has finite support, thus p — 1 is an effective
divisor). We can assume that r > 2, and that A\; = oo0,)\; = 0, and therefore
Ai € k\ {0}, for all i > 3. The corresponding canonical algebra C(p) is given by the
quiver :

(s4] a1
o] _O~t———0 O€———0 o)
/ - o \
0y _0O&——0 0€—— 0. 02

-
»
*

ar 0(——'——0
Uy

./

0——0% @y
or

with p; arrows labelled «;, and the relations
off = Ajod* +ab? for >3

Let 0 be the sink of the quiver, and w the source, and let A(p) be the quiver
obtained by deleting w, it is a star with several arms.

The defect of a representation M is by definition (M) = dimy M,, — dimy Mo.
Denote by T the representations which are direct sums of indecomposable represen-
tations of defect zero. Then we have shown [R1] that 7 is a standard tubular family
of tubular type (p1,...,pn), it separates the full subcategory C(p)-mod™ of all inde-
composable representations of negative defect from the full subcategory C/(p)-modt
of all indecomposable representations of positive defect. A more concise proof has
been given in [R3].
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Geigle and Lenzing [GL1], see also [DGL], have related the category C(p)~
mod to the category of coherent sheaves coh X(p) over what they call the *weighted
projective line’ X(p) of type p : P1 — Nj. In fact, they have shown that the derived
categories D*(C(p)-mod) and D¥(coh X(p)) are equivalent. The category coh X(p)
is an abelian category of global dimension 1, thus the structure of D?(coh X(p)) is
known as soon as we know coh X(p). Their direct description of coh X(p) therefore
yields a completely different, and very illuminating proof for the structure of the
category C(p)-mod.

Lenzing has stressed the importance of the rank-one modules over a canonical
algebra. Here, a module M is said to be a rank-one module, provided M is indecom-
posable, and §(M) = —1. For example, the radical @ of the injective hull of F(0) is
a rank—one module, and will examine the T—orbit of this module in detail.

First, let M be an arbitrary rank-one module. We claim that 7 is a rank-one
module, too, and the Auslander-Reiten sequence ending in M is conservative (this
means that proj.dim.M = 1 = inj. dim.7M). (Let us outline the proof: In case Z
is an indecomposable non—projective module of negative defect, and the Auslander—
Reiten sequence ending in Z is conservative, then the dimension vector of 72 can be
calculated by applying the Coxeter transformation of A to the dimension vector of
Z, and therefore Z and 7Z have the same defect. Now, all indecomposable modules
of negative defect have projective dimension at most one. Let us show that for any
non-projective rank-one module M, we have Hom(M, 44) = 0. Assume we have
a non-zero map ¢ : M — P(a), for some indecomposable projective module P(a).
Any non-zero submodule U of P(a) has defect §(U) < —1, thus the kernel of ¢ has
non-negative defect. But this is possible only in case the kernel is zero, thus M is
a submodule of P(a). It is easy to see that the rank-one submodules of any P(a)
are projective. This yields a contradiction. As a consequence, the Auslander—Reiten
sequence ending in M is conservative, and rM again is a rank-one module.)

As a consequence, we see: In case A(p) is Dynkin, the modules 77*Q are rank-
one modules, for all n € N. In case A(p) is wild, the modules 7"Q are rank-one
modules, for all n € N. (Consider first the Dynkin case. If r < 2, then the algebra
A is hereditary, thus 7~ respects the defect. Let r > 3. In this case, rad P(w) is an
indecomposable module and a predecessor of Q. It follows that Hom(r~"Q, P(w)) =
0 for all n € N. As a consequence, the Auslander-Reiten sequences starting with
T7="Q), for n > 0, are conservative. For r > 1, the module 7~ P(w) is of Loewy length
2, its socle is the direct sum of r — 1 copies of E(0), and its top is multiplicity free
(of length r). In the wild case, we have r > 3, therefore 7~ P(w) is not a rank-one
module. Since the set of rank—one modules together with the zero-module is closed
under T, it follows that 7#Q cannot be isomorphic to P(w), for any n € N, thus 7@
is a rank-one module, for any n € N.)

Given an endofunctor F' : Y — U of some full subcategory U of A-mod, and a
module M in U, Lenzing has introduced the ring -

AR U) = @ Hom(U, F"U),
n=0
the product of f : U — F™U, and g : U — F™U is given by the composition f-F"(g).

Theorem (Geigle-Lenzing) If A(p) is a Dynkin diagram, then the ring
A(77;Q) is the simple surface singularity of type A(p).
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Recall that the simple surface singularities are of the form k{X,Y, Z]/(f), where
f is given es follows:
(pya)  XPH4+YZ
(2,2,2s) X(Y2+YX*)+ 22
(2,2,2s5-+1) X(Y2+2X°)+ 22
(2,3,3) Y3+ X7 4 Z2
(2,3,4) Y?+ X3Y + 2%
(2,3,5) Y3 4+ X5 4 272,

Theorem (Lenzing) If A(p) is wild, thén the ring A(r;Q) is a ring of
automorphic forms.

For example, for the 14 cases p = (2,3,7),(2,3,8),...,{(4,4,4), and the base field
k = C, one just obtains the 14 rings of automorphic forms with three generators, thus
Arnold’s 14 exceptional unimodal singularities. Note that we obtain corresponding
rings for every base field k, even independent of the characteristic; for the 14 cases,
the rings are of the form k[X,Y, Z]/(f), where f is a polynomial which has been
calculated explicitly by Hiibner [Hii].

Let us add that canonical algebras may be defined more generally for an ar-
bitrary base field. We start with an arbitrary tame hereditary algebra A with
s(A) = 2, thus the A-modules are just the representations of a tame bimodule r Mg.

Here F, G are division k-algebras, pMg is an F-G-bimodule on which % operates
centrally, and (dimr M)(dim Mg) = 4; the algebra A being given by [Ig AG/I .
Let Q be the set of isomorphism classes of simple regular A-modules, and take a
function p : £ — N, such that p — 1 has finite support. In [R3], we have defined
the’ corresponding canonical algebra C(pMg,p), it has a standard tubular family
indexed by Q, such that the tube with index X is stable of rank p(}), as we want to
have it, and again, this tubular familly is separating. Note that the index set §2 for
an arbitrary tame bimodule pM¢ has been studied by Crawley—Boevey [C6].

1.6. A tame algebra may be said to be domestic with at most n one—parameter
families of tubes, provided p4(d) < n for all d € N. Typical examples are the tame
concealed algebras, these are the endomorphism rings of preprojective (or preinjec-
tive) tilting modules over a tame hereditary algebra. They have been classified by
Happel and Vossieck. Note that any tilting equivalence class contains precisely one
canonical algebra (this is one of the reason for the term 'canonical’)., The algebras
which are tilting equivalent to tame hereditary algebras have been studied in detail
by Assem and Skowroriski. The algebras which are tilting equivalent to a hereditary
algebra of type A, can be characterized in terms of quivers and relations: we ob-
tain in this way certain special biserial algebras [AS1]. Also, they have shown that
any representation infinite algebra which is tilting equivalent to a tame hereditary
algebra contains a unique convex subalgebra which is tame concealed, thus it can be

obtained from this tame concealed algebra by forming extensions and coextensions
(see [AS4]).

We recall that a cycle in A-mod is a sequence X = Xy — X — ++» — Xp—1 —
Xn = X of non-zero and non—invertible maps between indecomposable modules X;.
An indecomposable module M is said to be directing provided it does not belong
to a cycle, and M is said to be sincere, provided every simple A-module appears
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as a composition factor of M. Note that an algebra with a sincere directing module
M always is a tilted algebra. A tame algebra A with a sincere directing module is
domestic with at most two one-parameter families of tubes, as de la Peifia [P3] has
shown, and either A is representation directed, or a finite enlargement of a tame
concealed algebra, or a glueing of two tame concealed algebras.

Let rad(A-mod) be the radical of the category A-mod, and let rad**(A-mod)
denote the intersection of the powers rad"(A-mod), with n € N. Consider any non-
zero map f : X — Y, between indecomposable modules X,Y. If X,Y belong to
different components of the Auslander—Reiten quiver I'(4), then f € rad®(A4-mod),
whereas in case X,Y belong to one component, and this component is standard (or
finite), then f ¢ rad®(A4-mod). It follows easily (see [KSk]) that rad**(A4-mod) = 0
if and only if A is of finite representation type. Kerner and Skowrorski conjecture
that rad*(A~mod) can be nilpotent {or even T-nilpotent) only in case A is domestic,
and they prove this for ’standard’ selfinjective algebras.

One may call an algebra A cycle finite, provided no map in a cycle of A-mod
belongs to rad®(A-mod). Cycle finite algebras have been considered by Assem and
Skowroriski, they are tame, and maybe they are always of finite growth. But there
are even domestic algebras which are not cycle finite, for example

o )
o?o@o, with fv6 = 0.
v

Assem and Skowroriski have generalized the notion of a tube to that of a coil, these
are certain finite enlargements of tubes, where additional projective-injective vertices
and nodes are allowed. They call an algebra A a coil algebra provided every cycle
in A-mod is inside a standard coil, and they show that the minimal representation
infinite coil algebras are just the tame concealed ones [AS5].

1.7. The difference between finite growth and infinite growth representation
type was first observed by Nazarova and Zavadskij when dealing with representations
of posets, Note that an algebra A is said to be of finite growth provided A is tame
and there exists an n such that ps(d) < d" for all d € N.

Typical examples of algebras of finite growth which are not domestic, are the
tubular algebras, in particular the canonical algebras of Euclidean type. The main
goal of the lecture notes [R1] was to present the structure theory for the module
category of a tubular algebra. Some mathematicians have complaint that the book
does not contain a definition of tameness: it really only deals with examples of
algebras, and the tame ones occurring there are obviously 'tame’, so no definition
was necessary. One should see that only slowly a general theory of tame algebras is
emerging, a theory which seems to show that the examples studied in detail before
are the typical building blocks for general tame algebras.

The structure of A-mod, for A a tubular algebra, may be visualized by the
following picture:
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Here, Py is a preprojective component, @0 is a preinjective component, and
all the families 7; are one-parameter families of tubes, the index set for ¢ being the
set of non-negative rational numbers including the symbol co. The tubular family
To contains projective modules, and T, contains injective modules, the remaining
families 7; are regular. All the components of a tubular algebra are standard, and
the picture indicates the possible maps between components: there are only maps
going from left to right. It should be mentioned that this description relies on
an understanding of complete one-parameter families, and so it was stimulated by
Gabriel’s interpretation of the regular modules for the four subspace quiver in terms
of tubes, and it was guided by suggestions of Brenner to use tilting modules for
getting a complete classification of the indecomposable modules for a tubular algebra.
It is sufficient to consider the tubular algebras which are canonical, and the Geigle-
Lenzing approach via coh X(p) again may be used.

A personal comment: Skowrodski has started to rename the tubular algebras. Of
course, it is always nice to see the own name in print, especially when it appears parallel
to names like Dynkin and Euclid (but they may not even know what their algebras are
about), However, it seems that the name 'tubular’ is very suggestive, whereas I hope not
to look like being made up from tubes. Also, one should keep in mind the guiding intuition
of Gabriel, and of Brenner, and the parallel investigations of Zavadskij, so one may speak
of Gabriel-Brenner—-Ringel-Zavadskij-algebras, but may—be this sounds a little odd? And,
as Lenzing has noted, this all relates to Atiyah’s classification of vector bundles over elliptic
curves, so Atiyah-Gabriel-B-R-Z-algebras! '

One may construct further examples of algebras of finite growth by making in-
ductively suitable one—point extensions, see [HR], [PTo], in 1 particular, one may
consider convex subalgebras of the socalled repetitive algebra A of a tubular algebra
A, or also algebras which have A as a Galois covering. In section 5, we will deal with
A in more detail. Here we only note that Skowronski ([Sk2], see also [N'S]) has clas-
sified the standard selfinjective algebras B of finite growth: the representation finite
ones have been described by Riedtmann, so we can assume that B is representation
infinite, and then B has a Galois covering A with A being a tame tubular extension
of a tame concealed algebra.

There are corresponding tubular vectorspace categories, see [R1], the represen-
tations of those which are posets have also been described by Zavadskij [Za]. There
are other categories occurring in representation theory which may be described in a
similar way by reducing to tubular algebras or tubular vectorspace categories. The
most prominent one seems to be the category of lattices for a cyclic group of order
3 over a complete discrete valuation ring where 3 is 4-fold ramified. This problem
was solved by Dieterich [Di], he showed that the lattice type is tame, and that we
deal with a tubular problem of tubular type D,. Note that in all other cases, the
lattice type for finite groups and complete discrete valuation rings had been known
before, according to the work of Gudivok and others. The remaining cases are either
domestic, or of infinite growth, or wild.

1.8. Let us consider now the tame algebras of infinite growth. The Gelfand-
Ponomarev paper on the representations of the Lorentz group has put forward a
method which has turned out to be very fruitful, since it can be used for all special
biserial algebras. We should remark that Dowbor and Skowroriski [DS] have clarified
the procedure by putting it into the context of covering theory. Of course, what
Gelfand and Ponomarev have called the modules of the first kind, the strings, are
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just those indecomposable modules which are obtained by using a related covering
functor. Dowbor and Skowroriski show that the remaining modules, the modules
of the second kind, or bands, may be considered as corresponding to modules over
the group algebra k[T, T~!] of the infinite cyclic group Z, and that this is really a
categorical description: let A be special biserial, then the category obtained from
A~-mod by factoring out all maps which factor through strings is the categorical sum
of copies of k[T, T]-mod, one copy for each equivalence class of primitive cyclic
words.

The main advance concerning tame algebras of infinite growth has been the
study of Crawley-Boevey [C3] of what he calls ’clans’. In this way, he gave a
solution to the Gelfand problem of classifying the indecomposable representations of
the quiver

o1 Q2
T . .
G 0 o, with a;3f1 = agf2 nilpotent,

B B2

posed at the ICM in Nice, 1970. We recall that in 1973, Nazarova and Rojter
have shown that this is a tame problem, and they gave a partial solution to the
classification problem; however the normal forms which they proposed didn’t work.
The only assumption needed by Crawley—-Boevey is that we deal with a base fleld &
with at least three elements. Starting point of these investigations was his description
[C2] of the category of finite dimensional A-modules for the algebra

A=kX,Y)/(X? - X, Y?),

of course the A-modules are just given by pairs of ‘square matrices, one being idem-
potent, the other having square zero.

We have mentioned above that a general theory of tame algebras seems to be
emerging. But some crucial questions, even on the level of dealing with examples,
are still open. Let us mention at least two: what can be said about the biserial
algebras which are not special, for example, only few of the local biserial algebras
are special (but all have been conjectured to be tame in [6]), and what about the
representations of the algebras

EX, YV)/(X? — (YX)"Y,Y? - (XY)"X),

with n > 1. In characteristic 2, the group algebras of the quaternion 2-groups are,
when we disregard socles, of this form, and they are known to be tame by the theorem
of Drozd and Bondarenko: the proof uses the realization of a quaternion group as a
subgroup of index 2 in a semidihedral group. But for characteristic different from 2,
no such trick seems to work.

1.9. Investigations of Kerner on wild hereditary algebras give a completely
new interpretation of what may be called the *wild’ behaviour of wild algebras. This
seems to be the most spectacular development in representation theory in the last
years. In order to pin-point the result, let us recall the main features of wild algebras
known before. The intuitive notion of "wild’ algebras was built on investigations of
Corner and Brenner who showed that there are finite dimensional k-algebras A,
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such that for any finite dimensional k—algebra B, there is a full exact embedding of
the module category B-mod into A-mod; such an algebra A is said to be sirictly
wild, Clearly, in order to show that A is strictly wild, we only have to find for any
n € N a full exact embedding of F,-mod into A-mod, where F,, = k{X;,...,Xs),
the free algebra in n (non-commuting) generators X;, since we may write any finite
dimensional k—algebra as a factor algebra of some Fj,. For example, the algebra F
is strictly wild, a full exact embedding ¢, of F;;~mod into F;—mod is constructed as
follows: the F,—modules are of the form (V,¢y,...,¢@n), where V is a k-space, and
; are k-linear endomorphisms of V, and ¢n(V, ¢1,...,5) = (V**+%, a, ), where

0 1 7 r 0 7
0 1 1 0
o= and f=|¥1 1 0
0 1 T S
| 0. A ¢n 1 0

Of course, with F, all algebras F,, where n > 2, are strictly wild. The mutual
embeddings of the module categories of the various strictly wild algebras indicate
that these module categories are similarly complicated: a complete classification
of the indecomposable A-modules for one strictly wild algebra A would yield a
complete classification for any algebra (provided we can control the embeddings
effectively, but this often seems to be the case, see the example above): so it is not
surprising that no such classification is known (there are some papers who claim
to provide one, but they just outline an inductive procedure of what should be
done for any fixed dimension). Some features of a strictly wild k-algebra A should
be stressed: given any finite dimensional k-algebra B, there is an A-module with
endomorphism ring B, in particular, there are indecomposable A-modules which are
arbitrarily complicated, and a classification of the A-modules would also yield sort
of a classification of all finite dimensional k-algebras.

Assume that A is a representation infinite hereditary finite dimensional k-
algebra, where k is an algebraically closed field. We can assume that A is, in addition,
basic and connected, thus A is the path algebra of some finite connected quiver A
without oriented cycles, and A is not.a Dynkin diagram. Now, A-mod has a pre-
projective, and a preinjective component. The preprojective modules, as well as the
preinjective modules, are easily classified, so it remains to consider the remaining
indecomposable modules: they are called the regular modules. One knows that A is
tame, if and only if A is a Euclidean diagram, and, in this case, the components con-
taining regular modules are stable tubes, and the set of these components is indexed
by the projective line Py (k) over k. In case A is neither a Dynkin nor a Euclidean
diagram, it is well-known that A is strictly wild, and the components containing re-
gular modules are of the form ZA.. In both cases, the modules on the boundary of
these components are called quasi-simple. Any indecomposable regular module M
has a filtration (unique up to isomorphism) M = Mp DMy D ++- D M4y D My =0
with all factors M;_, /M; quasi-simple, and M;_/M; & 73(M/M;), the number ¢
is called the quasi-length, the module M/M; the quasi-top of M. Any indecompos-
able regular module is uniquely determined by its quasi-length and its quasi-top,
and, conversely, given a quasi-simple module and a positive integer, there is an
indecomposable module with this quasi~top and this quasi-length.

Let us denote the set of regular components of A-mod by §2(A). We may use
Y A) also as index set for the r—orbits of the (isomorphism classes of) quasi-simple
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A-modules, keeping in mind that the modules belonging to a fixed regular component
are determined by the quasi-simple modules in this component.

The main, but rather hopeless problem is to obtain a reasonable description
of Q(A). Of course, for A tame, Q(A) may be identified with P;(k) (and for A
representation finite, 2(A)} = ). Assume now that A is wild. It is easy to see ([Z1])
that in this case any Auslander—Reiten component contains at most one isomorphism
class of indecomposable A—modules with a fixed dimension vector. Thus if we denote
by R(d) the set of isomorphism classes of indecomposable A—modules with dimension
vector d, where d € NJ is an imaginary root, then we may embed R(d) into Q(A4),
sending the isomorphism class of a module to the component containing it.

The investigations of Kerner center around the problem of describing Q(4) in
the wild case. What he shows, and this is very amazing, is that the set Q(A) may
be considered as being independent of A: given two wild hereditary algebras A, A’
over the same (algebraically closed) field, there are intrinsic bijections between 2(A)
and $(A'). We stress here the word ’intrinsic’: it is rather easy to see (and trivial
in case k is an uncountable field) that the set {2(A) has the same cardinality as
k, thus there are many bijections between £(A4) and (A’). The essential steps for
constructing Kerner’s bijections will be reviewed below. For the algebras A4, 4,
there are at most a countable number of such bijections, indexed by finite sequences
of tilting modules. At the moment it is not clear at all, whether bijections with
different indices are actually different or not: thus either there is even a unique such
bijection, or else, fixing one of these sets Q(A), there is a countable group G(A4) of
automorphisms operating on it, so that at least the orbit space (A4)/G(A4) is an
intrinsic set, independent of A (note that in case k is uncountable, the set Q(A4)/G(A)
still is uncountable). The reader should keep in mind that the classification problem
for wild hereditary algebras deals with many important mathematical problems,
such as the n-subspace problems, for n > 5, or the problem of classifying n-fuples of
matrices of the same size with respect to simultaneous multiplication from the left
and simultaneous multiplication from the right, for n > 3, and the assertion is that
for all these problems (after deleting the preprojective and the preinjective modules)
there are natural bijections!

Let us outline the construction in some detail. Let A be a representation-infinite
connected hereditary k-algebra, and 47" a tilting module which has no indecompos-
able preinjective direct summand. As StrauBl [St] has shown, there is a unique pre-
projective component in End(47T)-mod, and if I denotes its annihilator in End(4T'),
then C = End(47T)/I is a concealed algebra of the same representation type as 4,
and we say that 4 dominates C via T. For tame hereditary algebras A, C the domi-
nation relation can be read from the Euclidean diagrams, and it coincides with the
degeneration relation for the corresponding singularities. Consider the generalized
Kronecker algebras K(r), they are wild for » > 3, and the algebra H defined by the

quiver

L
o} O0€—0,
N’

According to Unger [U3], any connected wild hereditary algebra dominates one of
the form K(r), with r > 3, and the algebra H dominates any K(r), with r > 3;
this we will outline below. It follows that the equivalence relation generated by
the dominance relation consists of a unique equivalence class. Thus, in order to
construct the Kerner bijections, we may restrict to the case of a pair of algebras, one
dominating the other.
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Let A,C be connected wild hereditary algebras, and assume C is dominated
by A via some tilting module 4T. Let B = End(4T). We are going to construct
Kerner’s map 57 : Q(4) — Q(C).

Let M be a regular A-module. Then Kerner ([K2], [K4]) shows that there are
integers s(M), (M) such that 74 M is generated by 4T, for all ¢ > ¢(M), and such
that 75° Hom4 (4T, M) is a C-module, for all s > s(M).

Theorem (Kerner) Let M be an indecomposable regular A-module. Let

o ()
nr(M) =1g (ra™ M) Hom 4 (4T, ’I'L(M)M).

Then for indecomposable regular modules M, M' in the same component of A-mod,
the C-modules np(M), and np(M') belong to the same compaonent of C-mod, and
the induced map nr : Q(A) — Q(C) is bijective.

The situation is as follows: altogether we deal with countably many (isomor-
phism classes of) finite dimensional algebras, the path algebras of finite connected
wild quivers without cycles over some fixed algebraically closed field k. For any such
algebra A, the set 2(A) is defined, and there are at most countably many tilting
A-modules, thus there are at most countably many bijections of the form 7nr.

The further aim will be to look for properties of the sets Q( A) which are invariant
under the maps np. If we fix some connected wild hereditary algebra A as the basic
example (say K(3), or the 5-subspace quiver) and denote 2 = Q(A), we may consider
this set, together with its yet unknown additional structure of properties which
are invariant under the Kerner bijections, as a universal index set for handling the
representations of wild hereditary algebras. _

One may be curious to know what additional wild algebras have Q as index set
for their regular components. Lenzing and de la Pefia [LP] have shown that given a
wild canonical algebra C{(p), there are again intrinsic bijections between 2 and the
set of all components of C(p)-mod ™, as well as between and the set of components
of C(p}-mod.

1t seems worthwhile to indicate part of the proofs: The existence of the num-
ber (M) is an easy consequence of the following lemma [K2]: If X,Y are regu-
lar modules, then there exists an integer #(X,Y) such that Hom4(r*X,Y) = 0
for all ¢ > t(X,Y’). Note that this is the opposite assertion a lemma due to Baer
[B2]: If X,Y are regular modules, then there exists an integer s(X,Y") such that
Hom4(X,7°Y) # 0 for all s > s(X,Y). Taking both assertions together, we see
that in a regular component, globally, the maps are going in one direction, and this
is the opposite direction of the arrows in the Auslander-Reiten quiver. (The two
statements are actually interrelated: Kerner uses in his proof Baer’s lemma, and one
derives from his lemma the existence of the bound #(M) which may be considered
as a partial strengthening of Baer’s lemma: Let T = T}, @ T}, be a tilting module,
with T, preprojective, and T} regular, let M be a regular A-module, and define
t(M) = t(M,7T;). Then, for t > t{(M), 0 = Hom4(m*M,rT,) & ExtY (T, 7*M).
Since T}, is preprojective, and 7'M is regular, we also have Ext}, (Tp, 7¢M) = 0, thus
7'M is generated by 4T.) ‘

Let us exhibit in detail bijections 97 : QH) — QU(K(n)), for n > 3. The
indecomposable H-module with dimension vector (n + 1,n,0) will be denoted by
M(n). Since dimi Ext},(E(3), M(n)) = n, there is a universal extension of the form
0 = M(n)* — N(n) — E(3) — 0, and clearly N(n) is indecomposable and not
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preinjective. For n > 1, we can embed P(3) into M(n), and the cokernel is the direct
sum of n — 1 copies of M(n + 1). It follows that T(n) = M(n) ® N(n) @ M(n +1)
is a tilting module, and its endomorphism ring B(n) is given by the quiver

ay B

X o< T~
T

. 0
1247 ﬁn-—-l

and the relations

aifi =B, aip1fi=azp, «;fi=0 forj ¢ {i,i+1}.

Note that the algebra B(n) is a one-point extension of K(n) by an indecomposable
K (n)-module X(n) with dimension vector (2,n — 1). We have B(2) = H. So consi-
der now the cases n > 3. Under this assumption, all indecomposable K (n)-modules
with dimension vector (2,n — 1) are regular, thus, the preprojective component
of K(n)-mod is a component of B(n)-mod, and therefore H dominates K(n) via
T(n). What can we say about components of B(r)? By the Kerner lemma, any regu-
lar component of K(n)-mod has many indecomposable modules M such that both
Homg(n)(X (r), M) = 0 and Hompgn)(X(r), Tx(n)M) = 0, and for these modules
we have Tp(n)M = Tg(n)M; in particular, the B(n)-component containing M
again will be of the form ZA, provided it does not contain the module X (n). It is
surprising that we obtain in this way all regular components of B(n)-mod.

2. Combinatorial Methods I:

The Structure of Auslander—Reiten Components

2.1. Recall that the stable Auslander—Reiten quiver I';(A4) of an artin algebra
A is obtained from the Auslander-Reiten quiver I'(A) of A by deleting all translates
of projective or injective vertices (and the corresponding arrows). It is a stable valued
translation quiver and the length function yields a subadditive function with valuesin
N;. By definition, the regular components of the Auslander-Reiten quiver of an artin
algebra are those components which do not contain projective or injective vertices.
Thus, a regular component I is always a component of the stable Auslander—Reiten
quiver, and the length function is an unbounded additive function on I’ with values
in N1.

A stable valued translation quiver will be called smooth provided the valuation
is trivial (i.e. d(e) = d'(a) = 1, for all arrows «), and any vertex is end point of
precisely two arrows. Note that the last condition just means that the corresponding
topological realization is a manifold without boundary.

Given any valued quiver Q = (Qo, @1, 5, ¢,d,d'), we may follow Riedtmann in
order to define a stable valued translation quiver Z@Q: the vertex set of ZQ is given
by Z X Qq, for any arrow « : z — y in @, there are arrows (z,a) : (2,2) — (2,y) and
o(z,a) : (z—1,y) = (z,@) for any z € Z, the translation 7 is defined by 7(z,z) = (z—
1,z), and d(z, @) = d'o(z,a) = d{a),d'(z,a) = do(z,a) = d'(a). The structure of
connected periodic stable translation quivers with subadditive functions with values
in N; is known: their universal covering is of the form Z@Q, with @ a valued quiver
whose underlying graph is either a Dynkin diagram, a Euclidean diagram, or of the
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form Aeoy Booy Cooy Doo, 0r AR. There is the following general structure theorem for
non-periodic stable translation quivers with subadditive functions:

Theorem (Zhang) LetT' be a connected non-periodic valued stable translation
quiver with a non-zero subadditive function f with values in Nyg. Then either T is
smooth and f is additive and bounded, or else ' = ZQ for some valued quiver Q).

The proof [Z2] is rather complicated. One has to consider the first homology
group of the orbit graph of I' and some additive function on it measuring the diffe-
rence between the numbers of forward and of backward arrows in any walk. In order
to write I in the form Z(}, one has to find a suitable orientation on the orbit graph
of I'. Even in case the orbit graph is countable (and this is the case encountered in
representation theory), one needs transfinite induction in order to construct such an
orientation. -

Corollary Let T be o component of the stable Auslander-Reiten quiver I';(A)
of an artin algebra A. Then either I' is periodic, or else T' = ZQ for some valued
quiver ) without oriented cycles.

On T, there is the length function f. Note that it is impossible that f is both
additive and unbounded, since f is only additive in case I is a regular component,
und then f is unbounded, according to Auslander. Thus, in case I is non-periodic,
we see that I' = ZQ) for some valued quiver @, and @ cannot have an oriented cycle,
since this would yield sectional cyclic paths in I'(4), which is impossible according
to Bautista—Smalg.

2.2. It seems to be of interest to know what kind of valued quivers Q actually
can occur in I' = ZQ), where I is a component of I',(A) for some artin algebra A. Of
course, () cannot have oriented cycles. Also, @ has to be symmetrizable.

Let @) be a connected valued quiver without oriented cycles. If Q is a Dynkin or
a Euclidean quiver, then any additive function on ZQ with values in N; is bounded,
thus 2} cannot arise as a regular component of the Auslander—Reiten quiver of an
artin algebra.

Consider now the case where @ is neither a Dynkin, nor a Euclidean diagram.
In [R2], we have shown that a connected wild hereditary algebra H has a regular
tilting module if and only if there are at least three simple H modules. Let H be a
connected wild hereditary algebra with at least three simple modules, and let Q(H)
be its valued quiver. Let gT be a regular tilting module. Then the connecting
component of B = End(xT) is regular and of the form ZQ(H).

Also, let @ be a connected symmetrizable valued quiver without oriented cycles
and assume that after deletion of finitely many vertices and arrows we obtain a
disjoint union of quivers of type Ao, (With trivial valuation). Then there are algebras
R with regular components of the form ZQ, see [CR].

2.3. We have asked in [10] whether an Auslander-Reiten component I' may
contain infinitely many isomorphism classes of indecomposable modules of the same
dimension. Zhang [Z1] has observed that this is impossible in case we deal with
a hereditary algebra. Consider now an arbitrary algebra, and let T' be a regular
component. In case I' is periodic, it is a regular tube, and therefore for any non—zero
additive function f on I, the fibres are finite. Thus assume that T is non-periodic.
By Zhang’s theorem, I' = ZA for some valued quiver A. In case A is finite, or of the
form A%, Beo, Coo or Deo, We have shown in a joint paper with Marmolejo [MR] that
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T’ can contain only finitely many isomorphism classes of indecomposable modules of
the same dimension. In all other cases, the question seems to be open. Let us
remark that it should be difficult to use only combinatorial properties of translation
quivers to answer the question. For, let A be a finite connected symmetrizable valued
quiver with no oriented cycle, but with at least one (non-oriented) cycle. Assume
in addition that there are at least three vertices and that A is not of type A,. Let
A’ be some infinite covering of A, Then, we claim that ZA' has an additive function
f! with values in Nj, such that all fibres of f' are infinite. Namely, as we have
mentioned above, there exists a tilted algebra with a regular component of the form
ZA. Let f be the length function of this component. Denote by 7 : ZA! — ZA a
covering map, and let f' = fo,

2.4. Let us consider the special case of the group algebra kG of some finite
group G over an algebraically closed field k of characteristic p. Let B be a block of
kG, and 6(B) its defect group. According to Webb, any non-periodic component
I’ of the stable Auslander-Reiten quiver I's(kG) is of the form ZA, where A is a
Euclidean diagram, or else of the form A, Deo, or A,

First, let us consider the case when A is Buclidean (in particular, I' is not a
regular component). Then the defect group &(B) has to be elementary abelian of
order 4, and I is of the form ZA4, 3, or ZA3 3 (see [Ok], [Bs], [ES]).

Of course, the defect group §(B) is cyclic if and only if the block B is repre-
sentation finite. Bondarenko and Drozd have shown that the block B is tame, and
not representation finite, if and only if p = 2, and é(B) is dihedral, semidihedral or
quaternion. In this case, there is no component of the form ZAo, (if §(B) is dihedral,
there are also no components ZD,, and for §(B) elementary abelian of order 4, or
quaternion, all regular components are periodic), as Erdmann [E1] has shown.

One may use the knowledge on Auslander-Reiten components in order to obtain
information about the block and its representations. This is the main philosophy
of Erdmann’s treatment of tame blocks [E1]. She determines the possible structure
of all symmetric algebras with non-singular Cartan matrix which have prescribed
components similar to those which are known to exist for tame blocks. In this way,
she copies the approach of Riedtmann of classifying the representation finite selfin-
jective algebras. However, one should observe that there is an intrinsic difference: if
A is a representation finite algebra, we know that rad®°(A-mod) = 0, thus we can
recover all maps in A-mod from the Auslander-Reiten quiver; in particular, this
holds true for maps between indecomposable projective modules. Since the algebra
is given by maps between the indecomposable projective modules, it does not seem
to be surprising that we are able to recover the algebra. Actually, we know that
non-standard representation finite algebras do exist only in characteristic 2. In the
representation—infinite case, the situation is different: the maps between indecom-
posable projective modules usually will belong to rad*’(A-mod), even if we deal
with modules in one component, thus there is no way to recover these maps directly
from the mesh category. Let us explain one detail of her advance: In order to reco-
ver A from I'(A), one needs to know in particular the quiver @(A4). As mentioned
above, we may consider the arrows in Q(4) as being special maps f : P(y) — P(z)
between indecomposable projective modules. We also may ask whether they define
special meshes in the Auslander-Reiten quiver, and indeed, they do. Consider the
cokernel M of f. The middle term of the Auslander-Reiten sequence ending in M
is indecomposable [BRY), so certain of the meshes with a unique middle term will



158 C.M, RINGEL

correspond to the arrows of Q(A). For example, for A any string algebra, all meshes
which have a unique middle term, and which do not belong to homogeneous tubes,
arise in this way.

For B a wild block, there are infinitely many components of the form ZA,,
[E2]. But also there are always many tubes. In fact, an indecomposable non-
projective B—module M is T—periodic if and only if its complexity is equal to one,
thus if and only if the subvariety Xe(M) of the maximal spectrum of the even
cohomology ring H*”(G, k) is one-dimensional, and Carleson has shown how to
construct indecomposable modules with prescribed irreducible subvarieties, see the
book by Benson [Be].

2.5. Directing modules are quite rare. Of course, all the indecomposable mo-
dules which belong to a preprojective, or a preinjective component are directing,
and also the indecomposable modules in the connecting component of a tilted alge-
bra are directing. Skowroriski and Smalg[SS] have shown that an Auslander-Reiten
component I' of a finite dimensional algebra A which consists entirely of directing
modules, can have only finitely many 7—orbits. In case I is in addition regular, then
I' is the connecting component of some convex subalgebra B of A which is a tilted
algebra. It follows that an algebra can have only finitely many components which
contain directing modules only.

Recall that a finite dimensional algebra A is said to be representation directed,
provided it is representation finite, and we can order the indecomposable represen-
tations Mj,..., M, in such a way that we have Hom(M;, M;) = 0 for : > j, or,
equivalently, provided the Auslander-Reiten quiver is finite and does not have ori-
ented cycles. The position of sincere modules in the Auslander~Reiten quiver of a
representation directed algebra has been studied further by de la Pefia [P1].

3. Combinatorial Methods II:

Quadratic Forms and Roots

Recall that a polynomial x = x(Xy,...,X,) of the form

X(Xl, son ’Xn) = ZX? + EXinin
i i<j

with integer coefficients y;; is called an integral quadratic form in n variables. The
quadratic forms which are of interest in the representation theory of finite dimensio-
nal algebras are integral, at least if we deal with an algebraically closed base field.
Let x be an integral quadratic form in n variables. An n—tuple z = (21y+.0y%n) Of
integers is called a root provided x(z1,...,2,) = 1. Note that the canonical base
vectors e(i) with e(é); = 1, and e(i); = 0 for j # i, are roots. The quadratic form
x defines a symmetric bilinear form (—,—) on Z", thus any root z defines a reflec-
tion oz by 04(y) = ¥ — (y,z) - z. The group generated by the reflections O(i) With
1 £ ¢ < nis called the Weyl group for y, and the images of the base vectors e(s)
under the elements of the Weyl group are called Weyl roots. Of course, Weyl roots
are roots. In case the coefficients x;; all are non-positive, so that the quadratic
form x is given by a generalized Cartan matrix, then a corresponding Kac-Moody
Lie-algebra is defined, and therefore also the socalled imaginary roots, but we stress
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that for an imaginary root z, we have x(z) < 0, thus imaginary roots are not roots
in the sense defined above.

3.1. Let A be a finite dimensional hereditary algebra, say over an algebraically
closed field k, thus A is the path algebra of a quiver Q(A) without oriented cycles.
The theorem of Kac asserts that the dimension vectors of the indecomposable A-
modules are just the positive roots z of the corresponding quadratic form xq(4).
Note that we may distinguish between the real roots (with xg(4)(z) = 1) and the
imaginary roots (with xg(4)(z) < 0). If z is a positive real root, there is precisely
one indecomposable A-module with dimension vector z. If z is an imaginary root,
there is an n—parameter family of indecomposable A~modules with dimension vector
x, where n = 1 — xg(4)(2). A positive root « is called a Schur root provided there
exists a module M with endomorphism ring & and dimension vector z. Observe that
z is a real Schur root if and only if there exists an indecomposable module M with
dimension vector ¢ such that Ext*(M, M) = 0.

There is the following inductive procedure for constructing indecomposable mo-
dules without selfextensions: Let M;, Ms be indecomposable A-modules without
selfextensions, assume that :

Hom(M1, M2) =0, Hom(Mg,Ml) =0, and Extl(Mg, M1) =0,

and let dimy Ext*(M;, Mz) = n. Let (¢, d) be a real root for the generalized Cartan
2 -n
-n 2
sequence 0 — dM; — M — ¢Mj — 0, and M has no self extensions. The set of
modules obtained in this way will be called the line determined by M, M;.

Theorem (Schofteld) Let M be an indecomposable A-module M without
selfextensions, and let s be the number of isomorphism classes of composition factors
of M. Then M belongs to precisely s — 1 lines.

matrix . Then there is a unique indecomposable module M with an exact

In particular, we see that we obtain all indecomposable modules without selfex-
tensions starting from the simple modules and forming inductively lines.

The main tool for this investigation is the perpendicular category M-+, Given
a set § of A-modules of projective dimension at most 1, the subcategory

SL={M| Hom(5,M)=0, Ext'(S,M)=0, forall §eS&}

is called the right perpendicular category to S, it is an abelian subcategory and the
inclusion &+ C A-mod is exact. This construction is very useful, it has been con-
sidered in detail by Geigle-Lenzing [GL2]. Note that in case we have in addition
Ext'(8,8) = 0 (s0 that § & add § for a basic partial tilting module 5), the ca-
tegory S* is equivalent to a module category B-mod, for some finite dimensional
algebra B. Happel has pointed out that always s(4) = s(B) + s(End 5). Indeed,
take indecomposable A-modules Si,..., S, such that § = P S;, and let Ey,..., E;
be the Bongartz complement. Let E! be the trace of S in E;. According to [RS],
this is a proper submodule of E;, and we let Q; = E;/E!. On the one hand, P Q; is
a progenerator for S+ (see [H7]), on the other hand, one can show easily that the
modules @; are indecomposable and pairwise non—isomorphic.

There are several conjectures due to Kac [Kc] dealing with representations of
quivers. As we have mentioned above, given a real root z, and k an algebraically clo-
sed field, there exists a unique indecomposable representation M(x) with dimension
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vector z. In case the characteristic of k is non~zero, Kac had shown that M(z) is
defined already over the prime field, and Schofield could show that the same is true
in characteristic zero, thus solving Conjecture 4 of Kac. On the other hand, Con-
jecture 9 asserted that given a representation M with endomorphism ring k, there
is no non—trivial way of writing the dimension vector of M in the form y + z, with
¥,z € N§, and (y,2) 20, {(2,y) = 0, however, as Le Brujn [Le] has observed, there
are obwous counter examples: conmder the quiver 0¥ o "o, there is a unique inde-
composable representation M with dimension vector (2,1, 2), and its endomorphism
ring is k. Let y = (1,1,1), and z =(1,0,1).

3.2 Let A be a finite dimensional algebra over an algebraically closed field,
and assume its quiver has no oriented cycles. Then we may attach to A two integral
quadratic forms, namely the Tits form and the Euler form. These forms often will
determine the representation type of A, and we even may obtain complete informa-
tion about the dimension vectors of the indecomposabie A~modules in terms of these
forms. We refer to the report [P2] of de la Pefia which surveys the known results:
he calls an algebra good provided its quiver has no oriented cycles, it satisfies the
separation condition, it is Schurian (i.e. dimy Hom(P,P') < 1, for P, P’ indecom-
posable projective), and there is no full subalgebra which is hereditary of type An.
He conjectures that the good algebras are controlled by the Tits form. Note that
the Bongartz criterion asserts that a good algebra is representation finite if and only
if it does not contain as a convex subalgebra an algebra from the Happel-Vossieck
list.

The integral quadratic form x in n variables is said to be weakly positive, pro-
vided we have x(z) > 0 for all positive z € Z* (here, z € Z" is said to be positive,
written z > 0, provided all coordinates of = are non—negative, and z # 0). An
element z € Z" with all coordinates z; # 0 will be said to be sincere.

If A is a representation directed algebra, then, as Bongartz has shown, the Tits
form is weakly positive, and the dimension vectors of the indecomposable A-modules
are just the positive roots. In order to study an indecomposable module, we may
assume that its dimension vector is sincere. We recall that A is said to be sincere
provided there exists a sincere indecomposable A-module.

Bongartz has exhibited a list of 24 series of sincere directed algebras which in-
clude all sincere directed algebras A with s(A) > 14. The list of the remaining sincere
directed algebras has been published by Drixler [D2], it should be of interest to ob-
tain a better understanding of these exceptional algebras and their indecomposable
modules, or, combinatorially, of the corresponding quadratic forms and their positive
roots. For example, Drixler has observed that any sincere directed algebra has a
unique minimal sincere indecomposable module: the coefficients of the corresponding
root x4 should be a measure for the zero relations needed to define the algebra (for
example, A is given by a fully commutative quiver if and only if all the coefficients
of z4 are equal to 1). On the other hand, there usually will be several maximal
sincere positive roots, and it is an interesting question to determine the number of
such roots in advance. For example, the form

0
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has precisely 10 maximal roots, this is the largest number which can occur. Note
that Unger [U5] also has shown that there is only one sincere directed algebra A
with indefinite quadratic form x4 which has more than one maximal sincere positive
root, namely '

22— 2—2 1 1 1 2 1
! N / | AR /

/ \ /I / \ ’I
2 0Nl LN 2
I/ \\ /, I ',’ \i/ I
1—2—1—1 1—2 —2-—2

The list of all tame concealed algebras as presented by Happel and Vossieck is a
list of integral quadratic forms. This list (as the one given by Dréxler) was produced
with the help of a computer. A purely combinatorial approach to this list which
abandons the use of a computer, has been given by von Héhne [H5)]. He classifies
certain integral quadratic forms which are Z-equivalent to to a quadratic form of
type xﬂin,ﬁn,ﬁ‘s , B7, B, and singles those out which appear as quadratic forms for
tame concealed algebras.

An integral quadratic form x in n variables is said to be critical provided x(z) >
0 for every non—sincere vector ¢ € Ng, but there is a vector z € N} with x(z) < 0.
Similarly,  is said to be hypercritical provided x(z) > 0 for every non—sincere vector
x € N2, and there is a vector 2 € N} with x(z) < 0. The forms which occur in the
Happel-Vossieck list are typical critical forms. Unger [U2] has calculated the list of
all minimal wild concealed algebras, clearly the corresponding quadratic forms are
hypercritical; this list should be of interest for a further study of tame algebras (see
[P2]). Note that for every wild concealed algebra 4, say of type A, with s(A) 2 3,
there exists a representation infinite concealed factor algebra B obtained from A by
factoring out the twosided ideal generated by some primitive idempotent, such that
the type of B is a connected full subquiver of A, see [HU1].

3.3. A famous result of Ovsienko asserts that the coordinates of a positive
root of a weakly positive integral quadratic form f are bounded by 6. Also, he has
shown that if y is weakly positive, and there exists a positive root for x with at least
one of the coordinates equal to 6, then x is a form in at least 8 variables. Note that
the quadratic form s for the Lie algebra Eg has a positive root with coordinates

3
9—4~f—5—4—3—2"

and is even positive definite.

Ostermann and Pott [OP] have shown that a weakly positive quadratic form
with a sincere positive root with at least one of the coordinates equal to 6 is a form
in at most 24 variables. Also, there is a unique such form x24 with 24 variables:

1}
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Any weakly positive quadratic form with a sincere positive root with at least
one of the coordinates equal to 6 is a radical extension of the form yg and has x24
as a radical extension. This shows that there is a full control over all such forms.

This result can be applied to representation theory. Assume that A is a repre-
sentation directed algebra with a sincere indecomposable module X with dimension
vector z. Then x is a positive root for the quadratic form x4, and x4 is weakly posi-
tive. Ovsienko’s theorem asserts that all the coefficients of z, thus all Jordan Hélder
multiplicities of X, are bounded by 6. In case one of these multiplicities is equal to
6, we see that y 4 is a radical extension of the quadratic form xs, in particular, x is
positive semidefinite. But this implies that y is either of type Eg or of type Es, and
therefore the number of variables is 8 or 9. Thus A is an algebra with 8 or 9 simple
modules. (Actually, the case of 9 simple modules cannot occur).

Let us denote by F, the set of weakly positive integral quadratic forms y which
have a sincere positive root with at least one component equal to n, and such that
all components of positive roots of y are bounded by n. Ovsienko’s result means that
Fn is empty for n > 6, and, as'we have seen above, the forms in Fs are forms in at
most 24 variables, and are positive semidefinite. For n < 6, It is easy to construct a
form in F, in 30 — n variables (by splitting the central vertex of the form yz4 into
7 —n vertices). For n < 3, there are forms in F,, with arbitrarily many variables:
take the forms A, Dy, and the following ones (exhibited together with the maximal
root)

all these forms are realized by finite dimensional algebras. For n =4 and n = 5, we
do not know whether F, contains finitely or infinitely many forms; but according to
Bongartz, only finitely many can be realized by algebras.

3.4. One may use the Hochschild cohomology in order to single out some
combinatorial properties of algebras. We assume that the base field is algebraically
closed. For a representation directed algebra A, Happel has shown that the Hoch-
schild cohomology groups H¥(A) are zero, for all i > 2, and, in addition, H*(4) =0,
if and only if the quiver of 4 is a tree [H5].

For further assertions concerning the interplay of the combinatorics of the quiver
(and the relation) defining an algebra on the one hand, and the Hochschild cohomo-
logy on the other, we refer to [H5]; in [H10],there are several results dealing with the
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Auslander algebra of a representation directed algebra, thus with the combinatorial
behaviour of the Auslander-Reiten quiver.

3.5. Let A be a connected finite dimensional hereditary algebra, and let C4
be its Cartan matrix. The Coxeter matrix @4 = —Cth’A is an important tool in
representation theory, since for any indecomposable non-projective A-module M,
with dimension vector dim M, we have dim 7M = &4(dim M). Let p = p4 be the
spectral radius of & 4, it is called the growth number for A.

‘We note that in case A is representation infinite, then p is an eigenvalue of ® 4.
Of course, for A tame, we have p = 1, and we will assume that A is wild.

Let us assume in addition that rad® A = 0, and let (ugy, Vzy) be the valuation on
the arrow z — y in Q(A). Then we obtain an n x m matrix U = (uzy), and an n X m
matrix V = (vzy), where n is the number of sources, and m the number of sinks of
Q(A). In this case, it is very easy to calculate all the eigenvalues of @4, since they
are naturally related to the eigenvalues of non-negative matrix UV?; in particular
A’Campo and Subbotin-Stekolshchik have shown that any eigenvector of ® 4 is real
or of absolute value 1. This has been used by de la Pefia and Takane [PTa] and by
Zhang [Z3] in order to show that there are vectors p, ¢ with positive coefficients such
that for any preprojective or regular module X and for any preinjective or regular
module Y, we have real numbers ap(X) > 0, aq(X) > 0, with

lim_ -pl?dim 77" X = ap(X)p, and 1:15%0 ;]:;dim Y = ag(X)g.

Also, one can use the vectors p, ¢ in order to obtain a numerical criterion for an inde-
composable module M for being preprojective, regular or preinjective: M is prepro-
jective if and only if (dim M, p) > 0, and preinjective if and only if (¢, dim M) > 0;
also, if M is regular, then (p,dim M) > 0, and (dim M,q) > 0, see [PT]. Here,
(—,~) is the usual (non—symmetric) bilinear form on Z°*(4) which encodes the ho-
mological behaviour of A-modules. It seems to us that all these assertions should
be true also in the general case of rad® A being arbitrary.

Xi [X4] has shown that the smallest possible growth number p4 for A wild,
occurs for the path algebra of the quiver

RYZ RV We e

it is the largest root of the polynomial #1® + 2% — 27 — 2% — 2% —2* —2® + 2 +1,
thus approximately 1.176. Note that growth numbers can be used to deal with the
structure of Auslander-Reiten components, see [Z3].

3.6. These investigations have also other applications. Chains of finite dimen-
sional semisimple algebras (say defined over Z or C)

Ay CA 1 CA-,

the inductive limits, and their completions, have been considered in detail in the
theory of C*-algebras, for a survey see [GHJI].

In particular, starting with a semisimple algebra A; and a semisimple subalgebra
Ag, containing the unit element, there is the socalled fundamental construction of
Jones of taking as A; the endomorphism ring End 4, (A1), note that 4; embeds into
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Aj as the set of right multiplications. We use induction in order to obtain the tower
(A;) corresponding to the pair Ag, A;, namely let A;y1 = Endg,_, (A;).

Let B = Ay,C = A;, and form the matrix ring A = ['g g] . This is a

hereditary algebra with rad’ A = 0. Note that every hereditary algebra A' with
C

rad® A’ = 0 is Morita equivalent to one of the form [Ig C’] . By definition, the
Jones index of the tower is just the spectral radius of U4V}, and the Bratelli graph
is the underlying quiver of the preprojective component of A. In this way, we see
that one may relate questions concerning such towers of algebras to those arising
in the representation theory of hereditary algebras. In particular, the values > 4 of
the Jones index are related to the growth numbers of wild hereditary algebras: for
example, the algebra exhibited by Xi yields a tower with Jones index approximately
4.026, this is the smallest possibe value > 4. See the joint paper [DR8} with Dlab.

4, Combinatorial Methods III:

Representations of Posets

It was one of the first devices of the new representation theory of finite di-
mensional algebras, to reduce problems to the consideration of vectorspaces with
prescribed subspaces. This is the method of the earlier papers of the Kiev school
of Nazarova—Rojter, as well as of Gabriel’s work on quivers of finite representation
type; but at the same time, we also should mention Corner’s and Brenner’s investi-
gations on wild behaviour. The school of Nazarova~Rojter showed the importance
of the representation theory of posets, in particular, all their attempts to solve the
second Brauer-Thrall conjecture use reductions from representations of algebras to
representations of posets. The representation theory of posets disposes of rather stri-
king results, there is the Klejner criterion for representation finiteness, Nazarova’s
criterion for tameness, the Nazarova—Zavadskij criterion for being of finite growth:
always, there is given a small number of 'bad’ posets which have to be excluded.
There are also corresponding lists of the ’good’ posets, say the Klejner list of sincere
representation finite posets, or Zavadskij’s list of the sincere posets of finite growth;
they are longer, but still it is possible to overlook them. In contrast, similar results
for finite-dimensional algebras cannot be expected, as already the algebras with two
simple modules show: there are so many algebras that any list will tend to be useless.

Representations of a poset S were defined by Nazarova~Rojter in terms of par-
titioned matrices, and Gabriel has introduced the concept of an S-space; the cor-
responding categories of representations of § and of S-spaces are very similar, the
precise relationship was determined by Drozd and Simson.

4.1. Let us assume that the base field k is algebraically closed, and assume we
are dealing with a representation finite k-algebra A. The use of S-spaces can best
be demonstrated when we add the assumption that A is representation directed. In
addition, we may assume that A is basic. Let A-ind be a complete set of indecom-
posable A-modules, one from each isomorphism class. Let @ be the quiver of A. For
any vertex = € @, let E(r) € A-ind be the corresponding simple A-module, and
let P(z) € A-ind be its projective cover. Given an A-module M, and z € Q, we
denote by M, the vectorspace at the vertex z, note that we can identify M, and
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Hom4(P(z), M); also, we may identify M and ,cq, M-

For any vertex z of @, we will define a poset S(z) = Sa(z), and for any A-
module M, we will endow the k—vectorspace M, with subspaces so that it becomes
an S(z)-space M,. Let 4~ind,; be the set of A-modules M € A-ind with M, # 0.
Then, the S(z)-spaces M,, with M € A-ind, are indecomposable, pairwise non-
isomorphic, and, up to isomorphism, any indecomposable S(z)-space occurs in this
way. We may reformulate this as follows: Consider the direct sum

O M- O O

MeA-ind MeA-ind z€Qp

and identify for any z € Qo the direct sum P pre 44nq9 Mx with the direct sum of the
total spaces of all indecomposable S(z)-spaces (one from each isomorphism class).

Let us define S(z), for © € Q. Vertices of §(z) are the modules U € A-ind,,
which are different from P(z}, such that (U), = 0. Given two modules U,U’ in
S(z),let U < U' it and only if there is a map f : U' — U such that Hom(P(z), f) # 0.
(According to v.Hohne [H8), it follows from (7U), = 0 that dimy Hom(P(z),U) < 1,
and therefore the relation < defined on S(z) is transitive.) Also, any A-module M,
the vectorspace M, may be endowed in a canonical way with subspaces indexed by
the elements of S{z) : for U € S(z), take as subspace of M, = Hom(P(z), M) the
set of maps P(z) — M, which factor through U.

For a proof, we refer to the joint paper [RV] with Vossieck, further information,
as well as examples, may be found in [R10]. The notion behind the result mentioned
above is that of a hammock, namely the Auslander—Reiten quiver of the category
of §(z)-spaces, or, equivalently, the hammock of all modules in A-~ind;, thus of
all indecomposable A~modules M with M, # 0. Hammocks of this kind have been
considered by Brenner [Br] in order to give a numerical characterization of finite
Auslander-Reiten quivers (the intuition is the following: the modules in A-ind,
strech from P(z) to Q(z), the injective envelope of E(z), these are the pegs to which
the hammock is fastened. In between, there are the (Auslander-Reiten) meshes, in
this way, the hammock is knitted.) In [RV], we have given a combinatorial definition
of hammocks as the finite translation quivers I' with a unique source w, and no
oriented cycle, such that there is an additive function h on I (called the hammock
function) with h(w) =1, h(p) = 33, _,, h(y), for all projective vertices different from
w, and with h(g) = 3> _,, h(y), for all injective vertices. The hammocks turn out
to be just the Auslander-Reiten quivers of the categories of S—spaces, where S is a
representation finite poset. Given the hammock I, we can recover the corresponding
poset as follows: its vertices are the projective vertices of I' different from the unique
source, and the partial ordering ist derived from the existence of maps in the mesh
category of I'.

It is not difficult to see that the full translation subquiver of I'4 given by
the vertices [M] with M € A-ind, form a hammock, with hammock function
dimy, Hom(P(z), —), the hammock function just counts the Jordan-Holder multi-
plicity of the simple module E(z).

In case z is a source of @, we deal with a one—point extension, say A = B[M],
for some algebra B and M = rad P4(z). Then S4(z) is given by Homp(M, ).
A similar description exists in case z is a sink for @. The general case where z is
an arbitrary vertex of @ can be reduced to the consideration of these two special
cases: namely, as Scheuer [Sr2] has shown, §(z) has a canonical decomposition into
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an ideal S(z)~ and a coideal S(z)*. Let S(z)* be the subset of S(z) given by all
U with Hom(U, E(z)) # 0. Then S(z)t is a coideal, and we denote by S(z)~ its
complement. Let A} be the restriction of A to the subquiver of @ obtained by
deleting all proper predecessors of z, similarly, let A7 be the restriction of A to the
subquiver of () obtained by deleting all proper successors of z (thus, # is a source
for A}, and a sink for A7.) Then S(z)* can be identified with §,4(z), and S(z)~
with S, (z). '

4.2. It is rather difficult to decide whether a given algebra is representation
finite or not. The usual procedure is to use covering theory, and then to invoke the
Bongartz criterion. In this way, we have to deal with the Happel-Vossieck list of
critical algebras. Of course, it would be easier if we only would have to invoke the
Klejner list of critical posets. As we have seen above, the hammock approach allows
to attach to each vertex z of a representation directed algebra the poset S(z), but we
note that the elements of S(z) already may be rather complicated modules. Dréxler
[1D3] has proposed to consider a smaller poset, namely the full subposet S'(z) of all
thin modules, a module M being called thin provided dimy M, < 1, for all vertices
y. Actually, for any good algebra A, we may define S'(z) as the set of isomorphism
classes of thin indecomposable modules M which are not isomorphic to P(z), such
that M, # 0, and (M), = 0. This set becomes a poset by defining [M] < [M']
provided there is a map f : M — M’ such such that f, : M, — M. is non-zero.
Drixler shows that a good algebra is representation finite if and only if all the posets
S'(x) are representation finite. Let us stress that this is a very effective criterion:
clearly, the thin modules always are easy to write down, thus the sets S'(z) can be
computed without difficulty, and then we can use the Klejner list.

4.3. We have considered above representation directed, or, more generally,
good algebras. For an arbitrary representation finite algebra A, we can define ham-
mocks S(z) for every vertex z of the quiver of A, by going to the universal covering
A of A, or also directly by considering the socalled radical layers in A-mod. If we
work with A itself, and not with A4, and consider the full translation subquiver I'(z)
of the Auslander-Reiten quiver I'(A), given by all indecomposable modules M with
M, # 0, then this will be a hammock if and only if all indecomposable A-modules
have k as endomorphism ring [D4].

There are other hammocks which appear rather naturally in representation
theory, see Scheuer [Srl]; also, we will see in section 6 that for quasi-hereditary
algebras, we similarly obtain hammocks such that the hammock function counts the
multiplicity of the standard module A(z) in a A-good filtration.

For general algebras, one has to replace poséts by vectorspace categories. A
detailed study of the vectorspace categories S(z) attached to the vertices of appro-
priate algebras has been carried out by Xi. His general observations may be found
in [X1]. For a tame concealed algebra [X2], the vectorspace categories S(z) all
contain precisely one critical subset, this subset is convex in S(z), and leads to a
filtration of S(z) by ideals, which may be described in terms of the defect. Also we
should note that one obtains in this way partial tilting modules, Xi also has studied
the corresponding problem for tubular algebras [X3], and obtains (what one would
expect) convex subsets of §(z) which are tubular, and which may be embedded
as convex subsets into the pattern exhibited in [R1]. However, what seems to be
astonishing, is that these subsets may be rather large, they usually contain several
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critical subsets.

4.4. Let us add some remarks concerning the situation when the base field &
is not algebraically closed. In this case, we have to take field extensions into account;
in particular, we cannot expect that we may deal with posets. A generalization of
the notion of a hammock to this setting has not yet been considered, but will be
needed. The calculations of Hall polynomials mentioned in section 7 rely on one-
point extensions of representation directed algebras over finite fields, so a substitute
of the Kleiner list is needed. Fortunately, Klemp and Simson [KSi] have exhibited
the full list of all sincere directed vectorspace categories of finite type which may
be used. For a general report on the interplay between the representation theory of
algebras and of vectorspace categories, we refer to Simson [Si].

5. Modules with Finite Projective Dimension

5.1. Let A be a finite dimensional k-algebra over some field k. It is not
known whether a simple A-module E with finite projective dimension, has to satisfy
Ext'(E, B) = 0. However, if k is algebraically closed and all simple A-modules have
finite projective dimension (thus, if A has finite global dimension}, then no simple
A-module has self-extensions. In terms of quivers, it may be reformulated as fol-
lows: the quiver of a finite dimensional algebra of finite global dimension has no
loops. Essentially, this is an old result of Lenzing [L1]. A recent paper by Igusa
[Ig] reproves it in the context of algebraic K-theory. Let us remark that Lenzing
actually has shown the following stronger theorem: Assume that Ext'(E,E) # 0
for some simple A-module E. Then there exists a module M with infinite projec-
tive dimension such that M/rad M = E. The assertion stated in Lenzing’s paper
is the following: Assume that a is a nilpotent element in some noetherian ring
R, such that all left ideals Ra® have finite projective dimension. Then a belongs
to the commutator subgroup [R, B]. In order to apply this result, let us assumme
that A is a basic finite dimensional k-algebra over some algebraically closed field
k. Consider an indecomposable length 2 module X with top and socle isomorphic
to E = A/rad Ae, for some primitive idempotent e. Then [A, 4] annihilates X.
(Note that 1 — e annihilates X, since A is assumed to be basic. Now, take ele-
ments b,c € A,z € X. Then [b,c]z = [ebe,ece], since 1 — e annihilates X. But
[ebe, ece] € [eAe,eAe] C rad® ede C rad? A, since for any local algebra B over an
algebraically closed field, we have [B, B] C rad® B. Of course, rad® A annihilates X.)
On the other hand, there exists an element a = eae € rad A with aX # 0. Since we
have seen that a cannot belong to [4, A], it follows that one of the modules Aa™ has
infinite projective dimension, therefore also Ae/Aa”.

Schofield [Sf1] has shown that that there is a function f such that the global
dimension of the k—algebras of finite global dimension with k-dimension d is bounded
by f(d). In general, nothing is known about this bound f(d), however, there are
several results dealing with special classes of algebras. There are some classes of
algebras A for which the global dimension may be bounded by the number s(A) of
simple modules. For example, the quasi-hereditary algebras considered in the next
section all have global dimension at most 25(A) — 2. On the other hand, there are
examples of algebras with s(A) = 2 and arbitrarily large global dimension. The first
such examples have been exhibited by E. Green, they have been studied in detail



168 C.M. RINGEL

by Happel [H6]. Kirkman and Kuzmanovich [KK] have shown that there are even
algebras A with s(4) = 2 and rad* A = 0 of arbitrarily large finite global dimension.
On the other hand, in case rad® A = 0, the finitistic dimension is bounded by s(A)?,
see [Zil].

5.2. Given a finite dimensional algebra A, we denote by fd A the finitistic
dimension of A, by definition, this is the supremum of proj. dim. M, for all (finite
dimensional) A-modules M of finite projective dimension. It has been conjectured
a long time ago that the finitistic dimension fd A is always finite; this conjecture is
usually contributed to Bass, to M. Auslander, or to Rosenberg and it has attracted a
lot of interest in the last years. The conjecture has been verified for special classes of
algebras: by Green, Kirkman and Kuzmanovich [GKK] and by Igusa and Zacharia
[IZ] for monomial algebras, by Green and Zimmermann—Huisgen [GZ] for algebras
A with rad® 4 = 0.

. Note that we also may consider the supremum of proj. dim. M, for arbitrarily,
not necessarily finite dimensional A-modules M of finite projective dimension, it is
called the big finististic dimension and denoted by Fd A. Of course, fd A < Fd 4, and
a second conjecture asserts that we should have equality. For monomial algebras,
Zimmermann-Huisgen [Zi2] has shown that fd A and Fd A may differ by at most
one. Her proof rests on a structure theorem for modules which occur as second
syzygy of some module, thus for kernels of maps between projective modules: they
are isomorphic to direct sums of left ideals of A, each of which being generated by
a path (note that a monomial algebra A is defined as the factor algebra of the path
algebra of a quiver by an ideal I generated by some paths, thus the paths which do
not belong to I yield a multiplicative basis of A),

5.3. Following Miyashita [My], an A-module M will be called a tilting module
provided proj. dim. M is finite, Ext'(M, M) = 0 for all > 1, and there is an exact
sequence 0 — 44 — My — -+« — M, — 0, where all modules M;, with1 <i<n
belong to add M. (Actually, Miyashita has considered arbitrary rings and modules,
thus he had to add suitable finiteness conditions.) The case of tilting modules of
projective dimension at most 1 had been discussed in detail before; these modules
have turned out to be very useful.

We recall that Bongartz has shown that any module M with projective dimen-
sion at most 1, and Ext'(M,M) = 0, can be written as a direct summand of a
tilting module of projective dimension at most 1. The corresponding assertion for
tilting modules of arbitrary projective dimension is no longer true: Rickard and
Schofield [RS] have exhibited a module M with finite projective dimension, and
Ext'(M,M) = 0, for all i > 1, which cannot be written as direct summand of
a tilting module: Let K be the Kronecker algebra, let X be an indecomposable
A-module of length 2, form the one—point extension C' = K[X], let P be the inde-
composable projective module corresponding to the extension vertex; now form the
one-point coextension B = [P]C, and identify the sink and the source of B in order
to obtain an algebra A with a node. The algebra A together with the simple module
E corresponding to the node is the desired example: F has projective dimension 2,
and Ext'(B, E) = 0, for all ¢ > 1, and if Ext’(X, E) = 0 = Ext?(E, X) for some
A-module X, then X is in fact a regular K~module, and therefore Ext'(X,X)#0
in case X # 0. This shows that E cannot be a direct summand of a tilting module.

Given a module M, let s(M) denote the number of isomorphism classes of
indecomposable direct summands of M. There still is the problem whether a module
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M with finite projective dimension, with Exti(M ,M) =0, for all 1 > 1, and with
s(M) = s{A) has to be a tilting module.

For example, assume that any indecomposable injective A-module has finite
projective dimension, and consider the injective cogenerator D(4A), where D =
Homp(—, %) denotes the duality with respect to the base field k. Then D(44) has
finite projective dimension, Ext*(D(44), D(4A)) =0, forall 2 > 1, and s(D(44)) =
s(A). Note that in this case D(4A) will be a tilting module if and only 44 has also
finite injective dimension, but already here, it is not known whether this always has
to be so. Algebras A, for which D(4A) has finite projective dimension, and 44
has finite injective dimension, have been called Gorenstein algebras. They form a
convenient generalization of algebras of finite global dimension, as well as of self-

injective algebras. For an outline of their properties, we refer to the papers by
Auslander—Reiten [AR2] and Happel [H9] in this volume.

Given an A-module M, we denote by ann(}) its annihilator in A. The modu-
les M which are tilting A/ ann(M)-modules, have been considered by D’Este and
Happel [DH]. They show that these modules yield the representable equivalences
which are represented by faithful modules in the sense of Menini and Orsatti [MO].

Let £ be the set of isomorphism classes of basic modules M with projective
dimension 1 and without self-extensions, thus the modules M in £ are just the
direct summands of tilting modules with projective dimension at most 1. In case we
deal with a wild finite quiver without oriented cycles, the elements £ just correspond
to the real Schur roots.

Note that £ may be considered as a simplicial complex; here, [M] will be a face
of [My] if and only if M; is a direct summand of Mj. Thus, a module M in € will be
a simplex of dimension s(M) — 1. We can rephrase the result of Bongartz by saying
that all maximal simplices are of dimension s — 1, where s = s(A), (this means that
£ is a pure simplicial complex).

Consider a module M in £ which is an (s — 2)-simplex, thus s(M) = s(4) — 1.
Then there are at most two isomorphism classes ‘of indecomposable modules M’,
such that M @ M’ is a tilting module, and there are two such classes if and only
if M is faithful, see [RS] and [H7]. Also, in case M’ and M" are non-isomorphic
indecomposable modules such that M @ M' and M @ M" are tilting modules, then
we can assume that Ext'(M",M') # 0, and then there exists a non-split exact
sequence of the form 0 — M’ — E — M" — 0, with E € add M. It follws that £
is unramified, and its boundary is given by the non—faithful modules in £. We see
that & is nearly a pseudo-manifold with boundary. In case £ is finite, Riedtmann
and Schofield [RS] have shown that its geometric realization is just a ball.

In case € is infinite, Unger [U6] shows that £ usually is not locally finite, it may
be non-connected, and also inside a connected component, it may be impossible to
connect two (s — 1)~simplices by an alternating sequence of simplices of dimension
s —1 and s — 2, such that consecutive simplices are incident. She has considered
in detail certain links of simplices. Recall that given a simplex & of some simplicial
complex X, its link 1k(o) is the subcomplex of T consisting of those simplices 7 for
which ¢ U7 is a simplex, and & N7 is empty. Thus, given a module M in &, the link
lk(M) is the simplicial complex of all isomorphism classes of modules M’ such that
M @& M' is a basic tilting module of projective dimension at most 1. Assume that
M is an (s — 3)~simplex in &, thus Ik(M) is a graph and any vertex has at most two
neighbors. If M is faithful, then k(M) is connected, thus it is of the form A3 or
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A,. I M is not faithful, then lk(M) is either of the form A, or the disjoint union of
two graphs A,

5.4. Let A’ be a subcategory of A-mod. Recall that X is said to be resol-
ving provided it is closed under extensions, under kernels of surjective maps, and
contains all projective modules. For example, the classes P* of all modules M with
proj.dim. M < ¢, and the class P™ of all modules with finite projective dimension
are resolving. Given an A-module M, a right X—-approzimation of M is a map
g: X — M with X € X such that for any map h: X' — M with X' € X, there
is a map h' : X' — X such that o = h'g. In case every A-module has a right
X—approximation, X is said to be contravariantly finite in A—mod.

Subcategories of A-mod which are both resolving and contravariantly finite have
been studied by Auslander and Reiten [AR1], on the basis of previous investigations
of Auslander and Buchweitz [AB]. On the one hand, there are many important
classes of modules which have these properties, on the other hand, the results of
Auslander and Reiten give a clear picture of the behaviour of such subcategories.

Assume that X is a resolving and contravariantly finite subcategory. Let X; —
E; be right X-approximations of the simple A-modules F,...,B,. Then X can
be recovered from knowing the modules X;, namely X = add F(Xy,...,X»), where
F(X1,...,Xy) denotes the class of modules which have a filtration with factors of the
form X;. This result has the following consequence: Assume P is contravariantly
finite, for some algebra A, and let X; — E; be right P*-approximations. Then
fd A is just the maximum of proj.dim.X;, in particular, fd A is finite. We should
remark that there do exist examples of algebras such that P is not contravariantly
finite [IST]: Take a one-point coextension B = [R]K, where K is the Kronecker
algebra, and [R] is indecomposable of length 2, and identify the sink and the source
in order to obtain an algebra A with a node. Then P* = P!, and these modules are
obtained from preprojective and regular B-modules, therefore the simple A-module
corresponding to the node cannot have a right P*-approximation.

IfZisa subca.tegory of A-mod, let °Z be the full subcategory of all X satisfying
Ext‘(X,Z) = 0, for all i > 1, and Z° that of all ¥ satisfying Ext'(Z,Y) = 0, for
all i > 1. If X is a contravariantly finite and resolving subcategory of A-mod, then
X° has the dual properties: it is a covariantly finite and coresolving subcategory.
In this way, we obtain a bijection between the contravariantly finite and resolving
subcategories and the covariantly finite and coresolving subcategories.

Auslander and Reiten have related these concepts to tilting theory. If T is a
tilting module, then T is always a covariantly finite and coresolving subcategory.
For simplicity, let us now assume that A is of finite global dimension. We obtain a
bijection between the isomorphism classes of basic tilting modules, and the covari-
antly finite and coresolving subcategories, since we can recover the tilting module T
from X = T°, due to the fact that X N X° = addT. Also, we obtain J = X° from T
as °T. Alternatively, we can describe the modules in X as those modules which have
a finite T—coresolution, and the modules in ) as those ones which have a finite 7-
resolution. Duality shows that the given tilting module T is also a cotilting module,
thus for algebras of finite global dimension, the tilting modules and the cotilting
modules coincide. An interesting example of the correspondence between tilting mo-
dules, contravariantly finite and resolving subcategories and the covariantly finite
and coresolving subcategories will be exhibited when we deal with quasi—hereditary
algebras,
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5.5. Given afinite dimensional k—algebra A, we denote by A the corresponding
repetitive algebra, it is constructed as follows: Take copies A; of 4, indexed by the
integers, and consider Q; = Homgi(4, %) as an A;_;—A;-bimodule. Then A is the
trivial extension of the ring @:ez A; (with componentwise multiplication) by the

bimodule P;cz @i Note that A is an infinite dimensional algebra (without unlt'),
the indecomposable pro jective A-modules are just the indecomposable injective A-
modules, and our main interest lies in the stable category A-mod (its objects are
the A-modules, and the morphisms are the residue classes of module maps modulo

maps which factor through projective modules). Note that A-mod is a triangulated
category. This is a result which essentially is due to Heller, see [H1], [H4].

Theorem (Happel) For any finite dimensional algebra A, there is an ezact
embedding (of triangulated categories)

D} A-mod) — A-mod.

The categories D¥(A-mod) and A-mod are equivalent if and only if A has finite
global dimension,

The main difficulty had been the definition of an appropriate embedding functor.
Happel's original proof uses induction on the width of a complex. Keller and Vossieck
[KV], [KI1] have proposed a different construction: they define such an embedding
as the composition of four rather natural functors. This may be used for a better
understanding, but it is still quite complicated. A very natural and straight forward
definition has recently been given by Happel [H8]: The canonical embedding functor
from A-mod to A-mod is exact, thus it extends to an exact functor from D?(A-mod)
to D¥(A-mod). Compose this functor with Rickard’s functor considered below:

D¥(A-mod) — Db(A-mod) — A-mod,

in order to obtain the desired embedding. For A of finite global dimension, this em-
bedding functor actually is an equivalence of triangulated categories. In order to de-
cide whether the triangulated categories D¥(A-mod) and A-mod may be equivalent
also for other algebras, Tachikawa and Wakamatsu [T'W] have considered Grothen-
dieck groups. Always, the Grothendieck groups of A-mod (modulo exact sequences)
and the Grothendieck group of D(A-mod) (modulo triangles) are isomorphic, and
they show that the Grothendieck groups of A-mod and A-mod (modulo triangles)
are isomorphic if and only if the determinant of the Cartan matrix of A is equal to
41, Since there do exist algebras with infinite global dimension such that the deter-
minant of C4 is 1, one needs other methods to decide the question: Happel [H8]
has shown that for A of infinite global dimension, not all indecomposable objects in
the category D?(A~mod) do have sink or source maps, whereas in A—mod, all have,
thus the categories D*(A-mod) and A-mod cannot be equivalent (even if we forget
the triangular structure).

5.6. Algebras A, B will be said to be tilting equivalent, provided there is a
finite sequence of algebras A = Ag,41,...,4, = B, such that for 1 <z < n, one
of the algebras Aij—1 and A; is the endomorphlsm ring of a tilting module over the
other ring. And A and B are said to be derived equivalent, provided Db(A-Mod)
and D¥(B-Mod) are equivalent as triangulated categories. One knows that 2 tilting
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module 4T" with endomorphism ring B yields an equivalence of the derived categories
D*(A-mod) and D*(B-mod), and also between D*(4-Mod) and D?(B-Mod), thus
tilting equivalent algebras are derived equivalent. The converse is not true: let A, B
be tilting equivalent, such that the trivial extension algebras T'(A), T(B) are not
Morita equivalent, for example, take the two algebras given as follows:

0<«—0<—0  and 0%—04=0,

— -

it is easy to see that the second algebra B is the endomorphism ring of a tilting
A-module, and dimy T(A4) = 12, dim T(B) = 10, thus T(A), T(B) cannot be iso-
morphic; they are basic, so they are not Morita equivalent. The only tilting modules
for selfinjective algebras are the progenerators, thus they cannot be tilting equivalent.
But Rickart [Rc2] has shown that with A, B also T(A), T'(B) are derived equivalent.

An algebra has been called piecewise hereditary and piecewise tubular provided
it is derived equivalent to a hereditary of a tubular algebra, respectively. These
algebras have the advantage that one has full control over the corresponding derived
categories. Clearly, if A is hereditary, then the derived category D®(A-mod) is
obtained by taking the disjoint union of countable many copies of A-mod, and
adding maps. in one direction (using Ext!), the derived category of any canonical
algebra can be calculated by using Happel’s theorem, see [HR)], [10], or else using
the Geigle-Lenzing equivalence D*(C(p)-mod) & D%(coh X(p)), and the fact that
coh X(p) has global dimension 1, so that again we just take countably many copies .
of cohX(p) and add maps in one direction. Piecewise hereditary and piecewise
tubular algebras are derived equivalent if and and if they are tilting equivalent, see
[HRS], and [AS3]. The algebras which are derived equivalent to a tame hereditary
or a tame canonical algebra can be characterized as follows [AS3]:

Theorem (Assem-Skowroniski) A finite dimensional algebra A is derived

equivalent to a tame hereditary or ¢ tubular algebre, if and only if A is locally support
finite and cycle finite.

Here, an infinite dimensional algebra B whose indecomposable projective mo-
dules are finite dimensional (like A) is said to be locally support finite provided for
every indecomposable projective B~module P, there are only finitely many simple
B-modules which can occur as composition factors of indecomposable B-modules
M with Hom(P, M) # 0. One may conjecture that A can only be cycle finite, if it
is also locally support finite. Assem and Skowrorski have shown that in case A is

cycle finite, then A itself is either ’simply connected’ or else tilting equivalent to a
hereditary algebra of type 4,,.

5.7. Rickard [Rcl] has determined precise conditions for derived categories to
be equivalent: Let R be an arbitrary rings. Let R-proj be the category of finitely
generated projective R-modules. If R is a full subcategory of R-Mod, let K*(R)
denote the category of bounded complexes over R modulo homotopy.

Theorem (Rickard). The rings R, R' are derived equivalent if and only of

there is o bounded complez T* of finitely generated projective left R-modules such
that

(1) R is the endomorphism ring of T* in K%(R-proj),
(i) HQmK"(R-proj)(T’T[z']) =0 fori#0,
(i) add(T") generates K¥(R-proj) as a triangulated category.
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A bounded complex T* with the properties listed in the Theorem may be called
a tilting complez. Konig [K8] has given a corresponding characterization for recolle-
ments of derived categories of module categories in terms of the existence of suitable
partial tilting complexes.

5.8. Rickard {Rc2] has shown that two selfinjective algebras A, B which are
derived equivalent, also are stable equivalent. Namely, we can obtain the stable ca-
tegory A—mod as a quotient category of the derived category D*(A-mod) as follows:
An object of D¥(A-mod) can be represented by a complex P* = (P!, §%) of fini-
tely generated projective modules bounded to the right, with bounded cohomology.
Assume that H¥(P*) = 0 for all { < n, where n < 0. Let

7(P*) = B%(Cok(P™* — P™)),

then this defines a functor 7 : D¥(A-mod) — A-mod, and this is the quotient functor
for the embedding of K®(A-proj) into D*(A-mod).

Broué [Br] has exhibited examples of selfinjective algebras which are stable
equivalent, but not derived equivalent. Alperin and Auslander—Reiten have conjec-
tured that algebras which are stably equivalent, should have the same number of
non—projective simple modules. This conjecture has been settled for representation
finite algebras by Martinez [Mal], but is open otherwise, even in the case where one
of the algebras is local. Martinez [Ma2] has shown that it is sufficient to verify the
conjecture for selfinjective algebras.

Let us add that algebras which are derived equivalent, always have the same
Hochschild cohomology ring [Ha5], [Re3].

5.9. In 1979, papers by Bernstein—Gelfand-Gelfand and Beilinson have exhi-
bited algebraic descriptions of the derived category coh Db(P,) of the category of
coherent sheaves on the projective complex n—space Py, namely they construct a fi-
nite dimensional algebra. A, of finite global dimension and equivalences of categories

D%(coh P,) & D¥(Aq-mod) and D¥(cohPy) 22 Rp-mod.

The precise relationship between the these equivalences and the one given by Happel
has been determined by Dowbor and Meltzer [DM]. As an application, one may
pass rather freely between the categories D¥(cohPy), Db(A,-mod) and A,-mod.
This may be of interest for explicit calculations of vector bundles over Py,.

Similar descriptions of the categories of coherent sheaves over other algebraic
varieties are by now available.

Let X be a nonsingular projective variety. Baer [B3] has introduced the concept
of a tilting sheafon X, this is a coherent sheaf without selfextensions that generates
C%(coh X) as a triangulated category, and such that its endomorphism ring has finite
global dimension. (She even has considered nonsingular ‘weighted’ projective varie-
ties, in order to cover also the weighted projective lines X(p), as considered by Geigle
and Lenzing.) A tilting sheaf 7 induces an equivalence D*(coh X) — D¥(B-mod),
where B is the endomorphism ring of 7. Of course, B is a finite dimensional alge-
bra, thus we see that the existence of a tilting sheaf means that questions concerning
coherent sheaves over X may be reduced to questions dealing with modules over
some finite dimensional algebra. Meltzer [Me] has exhibited tilting sheaves for
X =Py x Py, and for X the flag variety F(1,2), and Kapranov [Ka] has considered
the case of an arbitrary flag variety. Tilting sheaves and related objects have been
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studied extensively by Russian mathematicians, we refer to a collection of papers and
surveys presented in the Seminaire Rudakov [Ru]. Let us note that in all known
cases, the quiver Q(B) (and even Q(ﬁ)) may be endowed with an integral value
function s such that arrows z — y only exist in case s(z) 4 1 = s(y) (in particular,
Q(B) is directed), often these algebras B are 'quadratic’, so that we can form B’
and B and B' tend to be Ext-dual to each other.

6. Quasi-hereditary algebras

Quasi-hereditary algebras have been defined by Cline, Parshall, and Scott ([S],
[CPS2], [PS]) in order to deal with highest weight categories as they arise in the re-
presentation theory of semisimple complex Lie-algebras and algebraic groups. Many
algebras which arise rather natural have been shown to be quasi-hereditary: the
Schur algebras, the Auslander algebras, and it seems surprising that this class of
algebras (which is defined purely in ring theoretical terms) has not been studied
before by mathematicians devoted to ring theory. Even when Scott started to pro-
pagate quasi-hereditary algebras, it took him some while to find some ring theory
resonance.

6.1. The definition of a quasi-hereditary algebra which we will give, follows a
suggestion of Soergel [Soe3]. We have to start with an algebra A and an ordering
of the simple A~modules, thus let E(z), with i € A, be the set of simple A-modules,
where A is a (totally) ordered set. For i € A, let P(s) be the projective cover, and
Q(2) the injective envelope of E(i). We denote by A(4) the maximal quotient of P(3)
with composition factors of the form E(j), where j < 4, and similarly, let V(i) be the
maximal submodule of Q(¢) with composition factors of the form E(j), where j < i.
Our notation A(z), V(7) should indicate the shape of the modules: by definition,
A(%) has simple top, and V(z) has simple socle.

The algebra A is said to be quasi-hereditary with respect to the ordering A
provided: (a) End(A(7)) is a division ring, for all i € A, and (b) Ext?(A(7), V(j)) =0
for all 2, 7.

For a quasi~hereditary algebra A, the modules A(4) are called the standard mo-
dules (in some special cases, they are also called Verma modules, or Wey! modules,)
the modules V(i) the costandard modules. It turns out that for a quasi-hereditary
algebra A, also the dual conditions for the costandard modules are satisfied, since
clearly End(A(7)) 2 End(V(3)). In particular, we see that the opposite of a quasi-
hereditary algebra is quasi-hereditary, again.

If X is a set of modules, we denote by F(X) the set of modules which have
a filtration with factors in X, these modules may be said to be X~good. For any
M € F(X)and X € &, let [M : X] denote the number of factors isomorphic to X in
some X'—filtration of M, provided this is well-defined. We will be interested in the
A-good and the V-good modules. Note that in case the condition (a) is satisfied,
condition (b) is equivalent to the requirement that 44 belongs to F (A). In this way,
we see that for a quasi-hereditary algebra 4, the category A-mod together with the
set A of standard modules becomes a "highest weight category’, with weight set A, as
defined by Cline, Parshall, Scott, and conversely, any highest weight category with
finite weight set is the module category of a quasi-hereditary algebra.

6.2.  The usual (and equivalent) definition of quasi-hereditary algebras uses
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heredity ideals. A heredity ideal of an algebra A is an idempotent ideal I, with
I(rad A)I =0, and such that 41 is a projective left module (or, equivalently, I4 is a
projective right module). A chain of ideals

A=I0_D.I12"'2In=0

is called a heredity chain provided I;_; /I is a heredity ideal of R/I;, for 1 <t < n.
A finite dimensional algebra is quasi—hereditary if and only if it has a heredity chain.
(Note that a heredity chain may always be refined so that for every ¢, the indecom-
posable summands of a fixed module 4(I;—1/I}) are all isomorphic, say isomorphic to
some A(t), and then these modules are just the standard modules. Conversely, given
an algebra A which satisfies the conditions (a) and (b), then for every ¢ there exists
a maximal left ideal I; of A which belongs to F({A(t +1),...,A(s(A))}, it clearly
will be a twosided ideal, and, in this way, we obtain a heredity chain (I;) for A.
Note that the A/I;-modules are just those A-modules which only have composition
factors of the form E(z), with ¢ < .

Given a heredity chain (I;); for A, the factor algebras A/I; again will be quasi-
hereditary. An algebra A such that all factor algebras are quasi-hereditary, is neces-
sarily hereditary [DR1]. A quasi-hereditary algebra usually will have many ideals,
and even heredity ideals, such that the corresponding factor algebras are not quasi-
hereditary. Examples of the latter have been given by Agoston [Ag] and Wiedemann
[Wi]. On the other hand, Xi [X6] has shown that an algebra A with 4/rad" A
quasi~hereditary for some n > 2, is quasi-hereditary itself.

An ideal I; which belongs to a heredity chain is always idempotent, thus we
may choose an idempotent e which generates I as an ideal. Then the subalgebra
ede is quasi-hereditary [DR1]. On the other hand, for an arbitrary idempotent f
in a quasi-hereditary algebra A, the subalgebra fAf may be far away from being
quasi-hereditary. In fact, using a construction due to Auslander, a joint paper
with Dlab [DR3] shows that given an arbitrary finite dimensional algebra B, there
exists an idempotent f in some quasi-hereditary algebra A with B = fAf. We will
see below that there are important classes of quasi-hereditary algebras which are
endomorphism rings of faithful modules over selfinjective algebras.

Any ideal I which belongs to a heredity chain of an algebra A gives rise to a
recollement: choose an idempotent e which generates I as a twosided ideal:

DY(A/I-mod) E D*(A-mod) —» D'(eAe-mod),

thus D*(A-mod) is built up (via recollments) from the rather trivial derived catego-
ries D¥(D;-mod), where D; are division rings. This was one of the reasons for Cline,
Parshall, Scott to introduce heredity chains, see [PS], [CPS1].

6.3. Any algebra with directed quiver Q(A) is quasi-hereditary in two ways
which are essentially different (provided A is not semisimple): we can take all sim-
ple modules as standard modules, then F(A) = A-mod, or else, we may take the
indecomposable projective modules as standard modules, then F (A) contains only
the projective modules.

All algebras A of global dimension at most 2 are quasi-hereditary [DR1]: any
idempotent ideal I of A with minimal possible Loewy length is a heredity ideal, and
the global dimension of A/I again is at most 2. Recall that any representation finite
algebra B gives rise to an algebra of global dimension at most 2, take the endomor-
phism ring of an additive generator of B-mod. For these Auslander—algebras, there
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are several choices of standard modules which reflect properties of the B-modules,
and are related to the preprojective or preinjective partitions introduced by Aus-
lander and Smalg, or to the Rojter measure on B-mod, see [DR2}. On the other
hand, Uematsu and Yamagata [UY] have exhibited examples of algebras of global
dimension 3, which are not quasi-hereditary. It is easy to see that a serial algebra A
is quasi—hereditary provided there exists just one heredity ideal, and this happens if
and only if there is a simple module with projective dimension 0 or 2 [UY].

There are some classes of quasi-hereditary algebras which may be considered
more natural, and which Cline, Parshall, Scott had in mind when they introduced
this concept: see the famous 'moose’—notes by Parshall and Scott [PS]. Let us direct
the attention at least to some of these algebras.

We start with a semisimple finite dimensional complex Lie algebra g, with a
Cartan subalgebra h and a Borel subalgebra b O b, and consider the correspon-
ding category O as defined by Bernstein, Gelfand, Gelfand, it is the category of
all finitely generated g-modules, which are locally b-finite, and semisimple as §-
modules. The simple objects in @ are indexed by the dual space h*, and O is a
highest weight categories with standard modules the Verma modules, Also note
that O is the categorical sum of blocks which are abelian length categories with only
finitely many simple modules, and all of them are equivalent to module categories
for (finite dimensional) quasi-hereditary algebras. The most interesting case is the
principal block Oy containing the trivial representation of g. The block ( has a
unique indecomposable module P which is projective and injective. Its endomor-
phism ring has been calculated by Soergel [Soel]: Consider the Weyl group action
on §*, let I be the ideal in the ring R of regular functions on §* generated by the
homogeneous invariants of degree at least one; it is known that the factor algebra
R/I is a finite dimensional, local, selfinjective C-algebra. Soergel shows that the
center of the universal enveloping algebra U(g) maps surjectively on End(P), and in
this way, there is a canonical identification of R/I with End(P). Also, he constructs
certain R/I-modules M(w), indexed by the elements w of the Weyl group, forms
A = End(®,, M(w)), and obtains a categorical equivalence between the category
O and A-mod. Since 4 is the endomorphism ring of a faithful module over a self-
injective algebra, the dominant dimension of A is at least 2. Soergel shows that 4 is
‘quadratic’, so that we can form A!, and 4 and A' are Ext-dual to each other (this
was conjectured before by Beilinson and Ginsburg [BG]). These considerations are
extended in [Soe2] to other blocks.

Another important class are the Schur algebras. Let us consider the classical
case of the Schur algebras of G = gl,(k), they are defined as follows: let V' be the
canonical n—dimensional gl,-module, and form the r—fold tensor power V", There
is a diagonal action of G' on V'®7, thus an algebra homomorphism

T, : kG — End(V®T),

where kG is the group algebra of G, and the Schur algebra S(n, r) is just the image of
this map. In {Pa], Parshall has shown that the Schur algebras are quasi—hereditary,
with standard modules the Weyl modules. Note that for any subgroup H of G,
the image of kH under T, will be a subalgebra of S(n,r), denoted by S(H). Let
B~ and B* be the Borel subgroups of @ of all lower, or upper triangular matrices,
respectively. Then S(B~)S(B*) = S(n,r), the algebras §(B~) and (B+) are quasi-
hereditary and isomorphic (since B~ and B are conjugate), see J.A.Green [Gr].
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Note that there is the obvious permutation action of the symmetric group ¥y on
V@ on the right; in this way, V®" becomes an S(n,r)-X,—bimodule, and it is known
that S(n,r) is the full endomorphism ring of V&, considered as a right &;~module.
For n > r, the right Z,—module V'®" clearly is faithful, and since the group algebra
kX, is selfinjective, we see that the dominant dimension of the Schur algebra S(n,r)
is at least 2.

We remark that Xi [X6] has exhibited the structure of the Schur algebras
S(p,p), for p a prime, using only the fact that s(S(p,p)) = s(Zp) + 1. In fact,
he shows that there are only few quasi-hereditary algebras A with an idempotent ¢
such that eAe is selfinjective and s(A4) = s(eAe) + 1. Of course, in this way, he also
gets a new proof for the structure of kX,.

6.4. The quasi-hereditary algebras satisfy some rather restrictive conditions.
Let A be quasi-hereditary.

First of all, as we have noted above, the global dimension of A is always finite
[PS], in fact it is bounded by 2s(4) — 2, see [DR1]. For certain examples, like
the Schur algebras, it had been considered a mystery that they are of finite global
dimension (for Schur algebras, this had been established by Akin-Buchsbaum and
Donkin), before it was realized that this is really a trivial consequence of being
quasi-hereditary.

Second, the Loewy length of A is bounded by 923(4) _1, This is easy to see: Let
I be a heredity ideal, then rad is an A/I-module, thus the Loewy length LL(A)
of A is bounded by 1 + 2LL{A/I).

Also, we note that given a quasi-hereditary algebra A, we can bound its di-
mension if we know A/rad? A, and the ordering A. A quasi-hereditary algebra A
is said to be shallow, provided for any standard module A(3), its radical is semi-
simple. And, A is called deep provided rad A(3) is projective when considered as an
A/Ji—i1-module. For any algebra B with rad? B = 0, and without loops (this means,
Ext!(E,E) = 0, for any simple module E), and any total ordering A of the simple
modules, there exists a corresponding shallow algebra S(B,A) and a deep algebra
D(B, A), such that for any quasi-hereditary algebra A with B = A /rad® A, and this
ordering A, we have [DR5]

dim S(B,A) < dimi A < dimy D(B, A).
6.5. Important problems of representation theory center around the Jordan-
Hslder multiplicities of the standard modules (for example, the Kazhdan-Lusztig

conjectures are questions of this kind). For simplicity, let us assume that the base
field is algebraically closed. There is the following reciprocity formula,

(PG : AW = V) : BG)]

(it is usually referred to as the Bemstein—-Gelfand-Gelfand-reciprocity law), see
[CPS2]. Recall that the Cartan matrix C' of A is by definition the transpose of
the matrix dim P, thus we can reformulate the reciprocity formula as follows:

¢ = (dim A)t - (dim V).

In particular, we see that the determinant of the Cartan matrix is equal to 1. Of
particular interest will be the case when there exists a duality * on A-mod with



178 C.M. RINGEL

E(i)* = E(3), for all 4. In this case, we have A* 2 V, thus the reciprocity formula
becoms [P(5) : A(F)] = [A(Z) : E(7)).

6.6, There is an inductive procedure for obtaining all quasi-hereditary alge-
bras, the 'not-so—trivial-extension’ method by Parshall and Scott [PS]. Let B be
a ring, D a division ring. Recall that the one—point extension of B by a bimodule

BMp is the a,lgeb'ra, [‘g Ag] . Similarly, the one—point coextension of B by the

bimodule pNp is the algebra [ﬁ. g} . Now assume both bimodules BMp,pNs

are given, thus we can consider the tensor product pM ®p Ng. Let B be a Hoch-
schild extension of B by the bimodule pM ®p N, thus Bisa ring with an ideal
J with J?2 =0, and B/J = B, so that we may consider J as a B—B-bimodule, and
we require in addition that this J is isomorphic to pM ®p Ng. The algebra we are
looking for is
B M
A= [ b

There is the ideal I = D

this is a heredity ideal of A, and A/I = B. On the other hand, given a minimal
non-zero heredity ideal of a basic finite dimensional algebra A, with a heredity ideal
I, choose an idempotent e which generates I as a twosided ideal; note that D = ede
is a division ring, and let B = A/I, M =rad Ae, N =rad(eA)4, then clearly we are
in the situation depicted above. -

Another inductive procedure has been introduced by Mirollo and Vilonen [MV]
in the context of categories of perverse sheaves; it avoids the use of Hochschild ex-
tensions, and deals instead with tensor products and bimodule maps. Whereas the
not-so-trivial-extension method relates A and A/I, where I is a heredity ideal, here
we deal with an idempotent e such that the multiplication map Ae .4 eA — Aed
is bijective, and such that there exists a division subring D which complements
(1 —e)AeA(1 —e) in (1~ e)A(1 — ¢). We should remark that for any ideal Aed in
a heredity chain, the corresponding multiplication map is bijective, and the second
condition will be satisfled in case A/AeA is a division ring, and the base field is
perfect. Thus, for algebras over a perfect base field, we obtain in this way an al-
ternative way for constructing all quasi-hereditary algebras, sce [DR4]. For some
time, we had thought that tensor products and bimodule maps are easier to handle
than Hochschild extensions, however actual calculations show that sometimes this
is not the case. The Hochschild cohomology group H?(B, M ® N) which plays the
decisive role in the not-so-trivial-extension approach is just Ext} (Homg(N, k), M),
and its elements are often very easy to handle, see [DR7].

J M M®N M
N D]%[ J% AD/[]E[ ]@D[N D], clearly,

6.7. Let us consider the module category of a quasi-hereditary algebra in more
detail, following [R4] and {R6]. The category F(A) of A~good modules has (re-
lative) almost split sequences, thus we can deal with the corresponding (relative)
Auslander-Reiten quiver T'r(a). The relative projective modules in Fi (A) are just
the projective modules, and for any index i € A, there is precisely one indecompos-
able, relative injective module T'(:), with A(i) embedded into T'(s), and such that
T(s)/A(%) has only composition factors of the form E(5), with j < 1.

There are no loops or sectional cycles in P#(ay (however, in contrast to a full
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module category, the composition of maps along a sectional path may be zero). It
follows that in case the indecomposable A-good modules are of bounded length,
then there are only finitely many isomorphism classes of indecomposable A-good
modules: so the analogue of the first Brauer—Thrall conjecture holds. Also, for the
stable components for I's(a), there are the same restrictions as in the case of a
full module category: periodic components will be of the form ZA/G, where A is
either a Dynkin diagram or else of the form A., and G is a non-trivial group of
automorphisms of ZA, and non-periodic components are of the form ZA, where A
is a connected valued quiver without cyclic paths.

Let us assume that F(A) is finite, and that the base field is algebraically closed.
In this case, we can define for any i € A a corresponding hammock (inside the uni-
versal covering of 'z(a)), such that the hammock function counts the multiplicities
[M : A(2)], for A-good modules M. Note that in I'z(a), we have to take into account
multiple arrows: they actually may occur even under our assumption that F(A) is
finite, but fortunately only from an injective vertex to a projective vertex, thus never
inside a mesh.

There are corresponding assertions for the category F(V) of V-good modules.
Note that we have

F(A) =F(V) and °F(V)=F(A),

and F(A) is a contravariantly finite and resolving subcategory, whereas F(V) is a
covariantly finite and coresolving subcategory, so we are in the situation studied by
Auslander and Reiten, see section 5. The intersection F(A) N F(V) is just add T,
where T = @ T(¢), thus this is a tilting module, and we can recover from T the
structure of A as a quasi-hereditary algebra. This A-module T, and its direct
summands seem to be of special interest. In the case of the category O, these
modules have been described by Collingwood and Irving [CI]: clearly, the T'(i) are
just the indecomposable self-dual modules which have a Verma-filtration.

The endomorphism ring A’ of T is in a canonical way again a quasi~hereditary
algebra, the A'-modules A'() = Hom(T, V(z)) being the standard modules, but
we have to reverse the ordering of A. Then the category of V-good A-modules is
equivalent (under the functor Hom(T,—)) to the category of A'-good A’-modules.
Thus, we see that there is no difference between categories which arise as categories of
A-good or V-good modules. Also, the category of A-good A-modules is equivalent
to the category of V/'—good A'~modules, thus we see that the two subcategories are
really exchanged in A-mod and in A'-mod. If we repeat these considerations, we
will return to A in the next step: the endomorphism ring of an additive generator

of F(A"YN F(V') is always Morita equivalent to A.

7. Combinatorial Methods IV:
Hall Algebras

The free abelian group with basis indexed by the isomorphism classes of finite
p—groups may be endowed with a product by counting filtrations of finite p-groups:
we obtain what is called the Hall algebra H(Z,) of the ring Z, of p-adic integers. It
is a commutative and associative ring with identity element and plays an important
role in algebra and combinatorics. It first was considered by Steinitz in 1900, and
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later, in 1959, Ph. Hall started a detailled investigation. The basic concept may be
generalized to fairly arbitrary rings. Under a mild finiteness condition on the ring
R, one may define a similar product on the free abelian group with basis indexed
by the set B of isomorphism classes of finite R~modules (where finite means to have
finitely many elements, not just finite length), and one obtains an associative ring
H(R) with identity element, the integral Hall algebra of R. In contrast to the case
R = Z,, the Hall algebras in general do not need to be commutative, in fact the
main concern are the corresponding Lie-algebras.

7.1. Let Rbe any ring, and Ny,--- , Ny, and M finite R—modules. Let F}\}’{,_,Nt
be the number of filtrations

M=U2U12---2U;=0

of M. such that U;—1/U; & N;, for 1 £ 1 < t. (Note that in case Ny,...,N; are
in addition simple, we just count the number of composition series with prescribed
composition factors).

We call a ring R finitary, provided for all finite R-modules M, M’ also the
extension group Ext!(M, M’) is finite. Note that all noetherian rings as well as all
rings which are finitely generated (over Z) are finitary. Assume that R is a finitary
ring. Let H(R) be the free abelian group with basis (u[as)[a), indexed by the set
of isomorphism classes of finite R~modules. We define on H(R) a multiplication by
the following rule

U] = ) FR vt
[M]

note that on the right, we deal with a finite sum, since R is assumed to be finitary.
Clearly, H(R) is an associative ring with 1, the identity element is u[yj, and the
associativity of this multiplication follows from the fact that the coefficient of u[a) in
either w{n,](u{n,juN,]) OF (UNa]U[N,] Ui, I8 Just FRE n. v, - We call H(R) the integral
Hall algebra of R. The special case of R = Z, is the one considered by Steinitz and
Ph. Hall. In contrast to R = Z,, the Hall algebras in general are not commutative.
E k
0 k _
finite field k. Then there are two non-isomorphic simple R—modules Ey, B2, and a
non-split exact sequence 0 — E; — P — E; — 0, whereas Exti(Ez, 1) = 0. It
follows that in H(R), we have

For example, let R = [ , the ring of upper triangular 2 x 2 matrices over the

U U E,] = Y[E 0B, + Y[P]
but
WE,U[E:] = U[E\8E;)-

In particular, we can write u[p| as a commutator:
uip) = (v, v

7.2. Let us assume that A is a representation directed algebra, thus A is
representation finite, and we may index the indecomposable A—modules in such 2
way that Hom(Xj;, X;) = 0 for ¢ > j. Also, we assume that A is connected. Then
Guo [G2] has shown that the center of H(A) is trivial (i.e. equal to Z) except in
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case all indecomposable A-modules are of length at most 2, thus the center of H(A)
is non~trivial only in case A is serial and rad® A = 0. Also, Guo [G1] has shown
that the Hall algebra H(A) determines A to a large extend. Namely, if also A’ is
representation directed, then the rings H(A), and H(A') are isomorphic if and only
if there is a bijection E; ++ E! between the simple A-modules F; and the simple
A'-modules E! such that |Ext’(E;, E;)| = |Bxtly, (B, E})| for t = 0,1,2, and all
2y

7.3. Recall that in the classical case H(Z,), the multiplication coefficients are
evaluations of polynomials at p, and these Hall polynomials play a decisive role. The
same is true for the Hall algebras H(A), where A is a representation directed algebra.
In the classical case, the Hall polynomials are indexed by a tripel of partitions,
since the isomorphism classes of abelian p—groups correspond bijectivly to partitions.
Consider now the case of an algebra A with a connected Auslander-~Reiten quiver
I'(A) (we have in mind the finite dimensional representation finite algebras, and
suitable localizations of the path algebras of the cyclic quivers). Let B be the set
of functions b : I'(4)g — Ny with finite support. The finite dimensional A-modules
correspond bijectively to the elements of B: for any vertex i € T'(A), let M(A,7)
be a representative of the isomorphism class ¢, then b € B will be attached to the
isomorphism class of the module M(A4,b) = @ b(i)M(A, ). Note that the set B may
have different interpretations for certain rings. For example, for A representation
directed, we may identify T'(A), with the set of positive roots for a corresponding
quadratic form, whereas in case we deal with the cyclic quiver with IV vertices, we
may identify B with the set of all N-tuples of partitions. In case A is representation
directed [R7] as well as in case we deal with a cyclic quiver [R11], given a,b,¢ € B,
there exists a monic polynomial ¢}, € Z[T] such that

M(AD b
FM((A,G))M(A,c) = ¢ac(qA)

for some fixed number q4. These polynomials may be called Hall polynomials, they
depend on the Auslander—Reiten quiver I'(4), but not on A itself.

Some Hall polynomials have been calculated explicitly in [R8]. Note that in the
classical case, for M indecomposable, we always have FI{‘T{ n, = 0or 1. Inthe case of a
representation directed algebra, the situation is much more complicated: even if we
assume that all three modules M(A4,a), M(A,b), M(A4,c) are indecomposable, the
polynomial ¢%, may have degree 5. Here is the list of all polynomials ¢t different
from 0 and 1 which occur for a representation directed algebra A which is given by
a quiver with relations:

T -2, -
(T - 2)2a
(T - 2)31

T3 —5T2% + 10T — 7,
(T —2)(T® — 4T* 4 8T - 6),
TS — 67T% + 15T° — 2372 4 25T — 13.

There are similar polynomials in case A is given by a species with relations. The
polynomials have been calculated using suitable one-point extension algebras, and
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counting rational points of certain algebraic varieties. It may be of interest to obtain
an interpretation of the various coeflicients. Let us remark that for the polynomials
exhibited above we have |¢2.(1)| = 1, in the general case, we have |¢% .(1)| < 8.

7.4. In those cases where Hall polynomials do exist, we may introduce the
generic Hall algebra H(A,Z[T]) and the degenerate Hall algebra H(A), as follows:
In order to obtain H(A,Z[T]), take the free Z[T]-module with basis (us)ses, and
define the multiplication by

Uglle = Z ¢ up.

beB

In order to obtain H(A);, take the free abelian group with basis (u3)ses, and define
the multiplication by :

Ualhe = Z $ac(Lus-

beB

Of course, both are associative rings with 1.

There is the following interesting property of the numbers FI{}’*I N,» for A-modules
N1, N2, M, where A is a k-algebra over a finite field k. If N1, N; are indecomposable,
and M is decomposable, then |k| — 1 divides Ff . — F{ .. This has the following
consequence: We may consider I'(4)y as a subset of B, by identifying an element of
I'(A)o with its characteristic function. Then T — 1 divides ¢}.(1) — ¢2,(1) in case
a, ¢ belong to I'(A)e, and b not. As a consequence, the subgroup of H(A); with basis
(ub)ber(a), is a Lie subring of H(A),. By definition, this subgroup is the free abelian
group on the set of isomorphism classes of indecomposable A-modules, thus we may
consider it as the Grothendieck group K(A-mod) of all finite A~modules modulo
split exact sequences. In particular, we see that K(A-mod) is, in a natural way, a
Lie ring.

Theorem Let A be a hereditary algebra of Dynkin type A. Let g be the semi-
simple complex Lie algebra of type A, with triangular decomposition g = n_ ®hdHn,.
Then K(A-mod) is a Chevalley Z-form of ny., and. H(A)1 may be identified with the
corresponding Kostant Z-form of the universal enveloping algebra U(ny.).

Indeed, the elements uj with b € T'(A), themselves form a Chevalley Z-basis of
ny. This is a consequence of the explicit determination of certain Hall polynomials.
Ir}; particular, it is necessary to know the corresponding values |4t (1)|, as mentioned
above.

Let us add that the rather technical form of the basis elements of the Kostant Z-
form of U(n4.) gets a very natural interpretation in terms of the Hall algebra. Since A
is representation directed, we may assume that we have indexed the indecomposable
A-modules M(1), M(2),...,M(m), such that Hom(M(3), M(5)) = 0 for i > j. Let
b:{1,2,...,m} = N; be an element of B, and consider ug(ll()l)ugg,z()z) u;%,)‘) in
H(A). We want to write it as a linear combination in our basis (uiaa))imy, and we
see that the only non—zero coefficient can occur for M = @) b(:)M (i) = M(b), since
any filtration of the type considered has to split. Also, the only remaining coefficient
can be calculated without difficulty; in H(A);, it is the evaluation of a polynomial
¢, with ¢(1) = [] b(2)!. It follows that

WDy @ bm) H b(&)! - us,



RECENT ADVANCES 183

and therefore
ug(l) ug@) u%m)

BN B2 B(m)

The theorem brings to an end investigations started by Gabriel: In 1972, he
showed that for a hereditary algebra A of type Ay, D,,, Eg, E7, Eg, the indecomposa-
ble modules correspond bijectively to the positive roots of the corresponding simple
complex Lie algebra. This result was extended to all hereditary algebras of Dynkin
type in joint work with Dlab. Thus, it was known for a long time that we may
identify K (A~mod) ®z C with ny as C-spaces, and there was the problem whether
it is possible to recover the Lie multiplication of ny in terms of the representation
theory of A. We see that the Hall algebras provide a possibility to do so.

7.5. One may ask whether it is possible to use representations of algebras to
recover the whole Lie algebra g and not only nj. It is easy to define an extended
Hall algebra H'(A) in order to obtain U(b) as the corresponding degenerate extended
Hall algebra: We form the twisted polynomial ring over H(A) by adjoining variables
X1,...,Xsa), such that [X;,upg] = (dim M);upp. Schofield [Scd] has proposed
another way by dealing with the varieties of all composition series of modules with
fixed dimension, and he is able to construct in this way the complete Lie algebra g.

7.6. The Hall algebra approach presented above yields, in fact, a g-analogue of
the enveloping algebra of U(n4 ), and it turns out that this is really the quantization of
the universal enveloping algebra as defined by Jimbo and Drinfeld [Dr]. For details,
we refer to our survey [R10]. One may consider in the same way any hereditary
algebra A say of type A, and one obtains a canonical ring homomorphism from the
quantization of the universal enveloping algebra of the Kac-Moody Lie algebra of
type A, or better from a Z-form, into the Hall algebra of A. The image will be the
subalgebra generated by the simple modules, or the semisimple modules, we call
this the composition algebra, or the Loewy algebra of A. At least in the case of
a Buclidean diagram, we can show that we obtain in this way a realization of the
corresponding quantum groups. Let us add that Lusztig [Lu] has used this approach
in order to define canonical bases for the universal enveloping algebras of all finite
dimensional semisimple Lie algebras over C.

If we want to handle the Euclidean quivers, the main difficulties arise already
in the special case of an oriented cycle. Of course, the corresponding path algebra is
not a finite dimensional algebra, but even if we only are interested in the remaining
cases (which give finite dimensional algebras), we have to consider the modules which
belong to non—homogeneous tubes, and this is just the case of dealing with the (lo-
cally nilpotent) representations of an oriented cycle. The corresponding composition
algebra has been exhibited in detail in [R11], and we think that the combinatorial
methods introduced should be of interest elsewhere. Let us remark that Guo [G3]
has considered the structure of the complete Hall algebra of an oriented cycle.

It seems surprising that the parameter ¢ used for the quantization of the uni-
versal enveloping algebra U(b) has an interpretation as a variable which stands for
the cardinality of a finite field, but this is what we encounter when identifying the
quantization with a Hall or Loewy algebra.
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