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1. Introduction

1.1. Let k be a field. Let T = T(n, k) be the category of locally nilpotent
finite-dimensional representations over k of the cyclic quiver A = A(n) with n 5= 2
vertices:

~J
Note that A is also called the quiver of type An_x with cyclic orientation. We
denote by Ao the set of vertices of A (and often we will identify Ao with Z/nZ, or
also with the set {xx, x2, •-, xn) or just with {1, 2, ..., n}, with arrows xt—>xi+l or
i->i + l).

There are n one-dimensional representations, corresponding to the vertices of
A; these are (up to isomorphism) all the simple objects of T. The simple
representation corresponding to the vertex a of A will be denoted by 5(a), and if
S' is isomorphic to S(a), we will write [5'] = a. Given a simple representation 5,
and I eNu there is (up to isomorphism) a unique indecomposable representation
S[l] of length / with top 5, and we obtain in this way all indecomposable
representations (again up to isomorphism). It follows that we can index the
isomorphism classes in T by the set IT of n-tuples of partitions; the representation
of A corresponding to n e U. will be denoted by M{JZ); see § 3.3.

1.2. The elements of Ao may be considered as letters in order to form words,
and we denote by Q = Q(A0) the set of words in these letters. Given a
composition series

of some representation M of A, we may form the word

co(F) = [F0/Fx][Fl/F2]... [Fm-JFm]

in Q, and call it the type of the composition series F. Given w e Q and n e II,
there is a polynomial (w, JZ) e Z[q] (the polynomial ring with integer coefficients
in the variable q) such that for finite fields k, the evaluation of (w, JT) at the
cardinality \k\ of k yields the number of composition series of M(n) of type w;
see §8.1.
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Let sQ. be the localization of the polynomial ring Q[q] at the maximal ideal
generated by q — 1, and consider the free jtf-algebra generated by Ao; it is just
the semigroup algebra i Q of Q over si. Similarly, we may consider the free
jtf-module with basis IT, and we may extend (-, - ) to an ^-bilinear map

Let 9t be the set of elements x e s$Q such that (x, - ) = 0; similarly, let & be the
set of all elements y e &4TI such that <-, y) = 0.

1.3. As in [7], we consider the polynomials

px{X,Y) = YX-XY,
p${X, Y) = YX2 -(q + \)XYX + qX2Y,
+p2(X, Y) = X2Y -(q + \)XYX + qYX2

in two non-commuting variables X, Y over Z[q], and also

p3(X, Y) = YX3 - (q + 1 + q~l)XYX2 + (q + 1 + q~l)X2YX - X3,

over Z[q, q'1].
In case n = 2, let 9V be the ideal of s&Q, generated by

whereas for n 2s 3, let 91' be the ideal of s£Q generated by

+p2(xh xl+1) = 0, pZ(xi+x, xt) = 0,

for all 1 =£ i ==£ n, and by px(xh Xj) = 0 for all j^i±\ (mod n).

THEOREM A. 91 = 91'.

We will call % = <£(«) = sAQI9l the composition algebra of A, since 91 just
exhibits all the relations which are universally valid for composition series of
representations of A.

Of course, the polynomials defining 91' are strongly related to (and for n = 2
identical with) the Drinfeld-Jimbo relations for the quantization °ll{x\+) of the
universal enveloping algebra of n+, where cj = n_ 0 f) © n+ is a triangular
decomposition of the Kac-Moody algebra of type An_x.

The corresponding result for Q a finite-dimensional semisimple complex Lie
algebra presented in [7] gave immediately a convenient description of %(f) © n+),
since in this case % is just the generic Hall algebra with coefficients in s&, and
therefore the free ^-module on the set of isomorphism classes of representations
of a corresponding quiver or species. Also in the case studied here, we will see
that ^ is a free ^-module, and we are going to exhibit explicitly a basis of %.

1.4. An n-tuple K = (JZ^\ ..., ;r(/l)) of partitions will be called separated,
provided for every integer /* s* 1, the dual of at least one of the partitions
JT(1\ ..., jr(fl) has no part of length h. Let IIs be the set of separated n-tuples of
partitions; this will be our basic index set. For n e II5, we will define a word
(on e Q; see §4.4.
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THEOREM B. The set of elements (on, with neHs, is the basis of a free
si-submodule of s£Q, and this submodule is a direct complement for 9t.

Of course, this means that the residue classes modulo £% of the elements a>n,
with n e IT, form a free ^-basis for c€. Also, we should remark that the set II*
itself is the basis of a free ^-submodule of s£H which is a direct complement
of y.

1.5. The main device in our consideration is a partial ordering < on IT, which
corresponds to elementary degenerations in T.

THEOREM C. Let JZ e IT. A representation M of A has a composition series of
type con if and only if M is isomorphic to some M(A) with X^n.

The number of composition series of M{JI) of type con can easily be exhibited.
Given a word w = s\\..se£ with letters s, e Ao, •s/^s/+1, and e,5=l for all i,
consider the polynomial

in Z[q].

THEOREM D. Let n eII5. Then (con, n) = r(con).

1.6. The proof of these results will rely on combinatorial considerations dealing
with words and with n-tuples of partitions. Given an n-tuple of partitions, we will
have to use ^-tableaux: as usual, we visualize partitions by diagrams made up
from squares, and now we label these squares by consecutive integers. Of
particular interest will be the so-called column-increasing jr-tableaux, since they
correspond to composition series of M{TC). The reduction from representations
and composition series to tableaux will be given in § 3.

The results presented here have been reported at the Bad Honnef workshop,
January 1990, the Tsukuba conference on Representation Theory of Algebras,
August 1990, and at the Scuola Normale Superiore in Pisa, March 1991. The
author is indebted to these institutions for their kind hospitality.

2. Composition series

In dealing with an object M in a length category, we may consider the various
composition series of M. As in the case of the category of representations of the
cyclic quiver, we may define the type of any composition series of M to indicate
the consecutive composition factors.

2.1. Words. Let Ao be any set. We denote by Q = Q(A0) the free semigroup
with unit element, generated by Ao. The elements of Q will be called words;
there is the empty word 1, and the other words are of the form w =sxs2 ... sm

with s{ e Ao for 1 ^ i «s m, and m 3s 1. Any word has a length, the length of 1
being 0, whereas the length of w = s^s2 ... sm with s( e Ao is m. If w = s^s2 ... sm,



510 CLAUS MICHAEL RINGEL

with Si e Ao, then {1, 2,. . . , m) will be called the support supp »v of w, and for
/ c s u p p w , say I = {il<i2<... <i,}, we define w\l = siisi2... sit, and call w | / a
subword of w, and w\CI a complementary subword for w\l in w, where
C/ = supp w\I. (Note that a subword of w may have several complementary
subwords, depending on its embedding: for example, let AO={1, 2, 3} and
w = 1232. Then w' = 12 can be realized as w|{l, 2} with complementary subword
32, and as w\{\, 4}, with complementary subword 23.)

Let Q', Q" be two subsets of Q. The merging Q ' x Q " of Q' and Q" is the
subset

Q' xQ"={weQ\ there is / c supp w with w\l e Q', w|C/eQ"}.

Clearly, this is a commutative and associative operation on the set of subsets
of Q.

2.2. The types of composition series. Let (L be an abelian category. The
isomorphism class of an object M will be denoted by [M]. The direct sum of m
copies of M will be denoted by mM. Recall that IL is called a length category
provided every object in (L has a (finite) composition series. Now, assume that I is
a length category, and let Ao = A0(L) be the set of isomorphism classes of simple
objects in L (In case L = T(n, k), the notation is the same as in the Introduction).
Given an object M in Q_ with a composition series M = FQZDFXZ=> ... => Fm = 0, then

co(F) = [F0/Fl][Fl/F2]...[Fm_l/Fm]

is called the type of F; it is an element of Q = Q(A0). We denote by QM the set of
types of composition series of M. Of course, the zero module M = 0 has precisely
one composition series, and its type is the empty word 1 e Q(A0).

LEMMA 1. Let U be a subobject of M. Then

LEMMA 2. Let M,M' be objects in L Then

Proof. Let F be a composition series of M of type w = sxs2... sm, say

M = F 0 3F 1 3 . . . 3F W = 0,

where 5, = [F^JF,]. Let U be a subobject of M, and consider the filtration

Let / = {i\ l^i^m, / )_! D U*Ft D U}. Then w\l is the type of the composition
series of U induced by F, and w\CI is the type of the composition series of M/U
induced by F. This yields Lemma 1, and thus also the inclusion

in Lemma 2. For the other inclusion, let weQ, and let /csupp»v =
{1, 2,..., m), such that there is a filtration F of M of type w\l, and a filtration F '
of M' of type w|C/. We define a filtration F" of M © M' inductively as follows.
Let Fo = Fo©Fo = M 0 M ' . If F'/= Ft® F't^ is already defined for some
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lel, let F'/+1 = Fi+X ©F,'_;, whereas for
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l e t F't'+X =
Fi © F,'_/+1. Clearly, F" is a composition series of M © Af' of type w.

2.3. Reduced filtrations. Let us assume that for any simple object S in D. we
have Ext^S, S) = 0. In this case, it seems to be convenient to consider besides
composition series also certain filtrations with homogeneous semisimple factors.
Let w = Si'sf2•••sem with st e Ao, et e Nx, and $,_! =£s, for all Ki^m. A reduced
filtration G of an object M of I of type w is a filtration

such that Gi-JGj = e,S,, where [5,] = s,. Note that any reduced filtration of type w
can be refined to a composition series of type w, and conversely, given a
composition series F of type w, then there is a unique reduced filtration G of type
w such that F is a refinement of G: let u, = E/=i«i» a n d Gt = FUi, for 0=s* =S/n;
this is a reduced filtration of type w, since we assume that the simple objects have
no self-extensions.

3. Reduction

The problem we are interested in is to describe the possible types of
composition series of modules in T(n, k). Here, we will reduce this problem to a
purely combinatorial one.

3.1. The diagram of a partition. We recall some well-known definitions. A
partition is a decreasing sequence p = (pi, p2, P3, •••) of non-negative integers
with finite support; thus p^p2^••^Pm^Pm+i^••, and pm = 0 for m » 0 .
The numbers pt are the parts of p; we say that the ith part is of length ph If
pm+l = 0, we will usually write just p = (Pi,P2> •••,pm)\ thus we identify finite
sequences which only differ by adding some zeros at the end. The zero partition
(0,0,...) will be denoted by (0). The number of non-zero parts of p will be called
the height of p. Given a partition p, we denote by p the dual partition (thus, p, is
the number of parts of p whose length is at least i); in particular, px is the height
of p.

Recall that partitions are usually visualized by drawing corresponding (Ferrers
or Young) diagrams: if p = (pif p2, •••) is a partition, let

in drawing such diagrams, one usually adopts the convention that the first
coordinate i increases as one goes downwards, and the second coordinate
increases as one goes from left to right, and one replaces the nodes by squares;
thus, for example, the partition (5, 4,4,1) is depicted as
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The reason for using squares is the following: often it will be necessary to label
the nodes by letters or integers and it is convenient to write the labels into the
squares.

Let us consider now n-tuples of partitions. For n e IT, its diagram is given by

and we call the elements (a, i, j) the squares of ||JT||. The numbers a, i, j of
{a, i, j) will be referred to as the partition index, the row index, and the column
index, respectively. For any square (a, i, j) of ||;r||, we introduce its type
s(a, i, j) = a + i — 1, here a denotes the residue class of a e Z modulo n. In the
partition Ji(a), the squares in the first row have type a, those in the second have
type a + 1, and so on; in general, the squares in the ith row are of type a + i — 1.

3.2. Tableaux. Let n be an n-tuple of partitions and let \n\ = Eo,,-^,-o); this is
called the length of n. A bijective map T: \\n\\-* {1, 2,.. . , \jt\} is called a
n-tableau. (Sometimes, it will be convenient to allow as the value set an arbitrary
totally ordered set consisting of \n\ elements, instead of the canonical one
{1, 2,.. . , |^|}.) A ^-tableau yields a total ordering of the squares of the diagram
H l̂l of JI. Given a 7r-tableau T, we define a word co(T) e Q(Z/nZ) by

= s(T-1(l))s(T-\2))... 5(r-1(|7r|)),

where s: \\jz\\-*Z/nZ is the type function. A ^-tableau T is said to be
column-increasing in the case where T(a, i,j)<T(a, i + l,j) for all (a,i,j),
(a, i + 1, j) e \\JZ\\. Similarly, T is said to be row-increasing in the case where
T(a, i, j) < T(a, i, j + 1) for all (a, i, j), {a, i + 1, j) e \\JZ\\. Finally, T is said to be
standard provided it is both column-increasing and row-increasing.

3.3. Tubes. A length category T will be called a tube of rank n provided
gl .dimT=l, and there are precisely n (isomorphism classes of) simple objects
5(1), ...,5(n) such that

Ext1(5(/), 5(y)) = 0 fory^Z + l (modn),

whereas Ext1(5(/), S(i +1)) is one-dimensional both as a left End 5(i)-space as
well as a right End S(i + l)-space, for 1 «s i ̂  n, and S{n + 1) = 5(1). In particular,
A(T) can be identified with Z/nZ, or with {1, 2 , . . . ,«}.

Note that the category T(n, A:) of locally nilpotent representations over k of the
cyclic quiver A(n) is a tube of rank n. It is well-known that any tube may be
considered as the category of finite length modules over some ring; thus we will
not mind calling the objects in T modules. In particular, the category T(n, k) is
equivalent to the category of finite length modules over the n x n-matrix ring

0 0 - • • 0'
(X) 0 • - - €
X

 m ={(aij)ijzMn(O)\ aije(X) for / > / } ,

l(X) . . - (X)

where <5>= [̂[Ar]] is the power-series ring over k in one variable X, and (X) is
the ideal generated by X; thus (A') is the maximal ideal of 0.



THE COMPOSITION ALGEBRA OF A CYCLIC QUIVER 513

Let T be a tube of rank n. Any indecomposable module in T is serial: it has a
unique composition series. Given a simple module S and a natural number / e 1̂ 11}

there is (up to isomorphism) a unique indecomposable module S[l] of length /
with top 5. Thus we can index the isomorphism classes of modules in T by the set
n of n-tuples of partitions, as follows: given partitions ;r(1),..., n^n\ let

where 7t{a) = (ji\a\ x2
a), •••) denotes the partition dual to Jt{a).

(The reason for invoking dual partitions is the following: the usual visualization
of a partition ;r(a) depicts the parts of iz{a) as rows of ||JT(O)||, and the parts of ir(a)

as columns of ||jr(fl)||. If we want to interpret a partition as a direct sum of serial
modules, it seems appropriate to consider the various columns as serial modules.
More precisely, we consider the squares of any column as consecutive composi-
tion factors: the upper square of a column will correspond to the top composition
factor, and so on, the lowest square of a column will correspond to the socle of
the module. In this way, the vertical structure of a column agrees with the usual
convention of drawing modules. Note however that Macdonald [5] uses the
opposite rule: for him, the indecomposable modules correspond to the parts of a
partition, they rest, apparently, with the top to the right and the socle to the left.)

3.4. PROPOSITION 1. Let n e II, iveQ. There exists a composition series of
M(JI) of type w if and only if there exists a column-increasing n-tableau T with
(o(T) = w.

Before we start with the proof, let us consider the problem of equivalence of
^-tableaux.

3.5. Equivalence of n-tableaux. Let n be an n-tuple of partitions. Two
^-tableaux Tu T2 are said to be equivalent provided the following conditions
are satisfied: first, <w(Tl) = (o(T2), and, second, if we write a)(Tl) = s\is2'

2... se^
with s,eZ/rtZ, e,eN], and Sj=^si+i for all i, then there is a permutation oe
2ei x 2e2 x ... x 2Cm such that T2 = o°Tx.

3.6. PROPOSITION 2. Let x e IT, w eQ. Then all column-increasing n-tableaux T
with co(T) = w are equivalent if and only if there exists at most one reduced
filtration of M(n) of type w.

We are going to present the proof of both propositions in this section.

3.7. Let JI e II. Given a column-increasing ^-tableau T, we define a composi-
tion series F(T) of M(JZ) with type o)(T).

As usual, we denote the radical of a module M by rad M; it is the intersection
of the maximal submodules. The modules S(a)[l], where 1 =s a =s n, I s= 1, are
serial; in particular, radS(a)[/] is the unique maximal submodule; note that
rad S(a)[l] = S(a + 1)[/ - 1], for 1^2, and rad S(a)[l] = 0. The submodules of
S(a)[l] are rad'S(a)[l], with 0<f^ / .

Let j re l l . A subset V C | | J T | | will be called closed provided it satisfies the
following property: if (a, i, j)eV, (a, i + 1, j) e \\n\\, then (a, i + 1, j)e V. Let V
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be a closed subset of ||a||. For 1 =£ a ^ n, and 1 =sy =s ji[a\ let hv{a, j) = h{a, j) be
the maximal number i such that {a, i, j) $ V (in the case where (a, 1, y) e V, we set
h(a,j) = Q). We define

V{V) = © © rad*^ 5(«)[ir}->] c M{n)\
a = l y

this is a submodule of M(JZ) of length | V|.
Let T be a jr-tableau. Clearly, T is column-increasing if and only if all the sets

V(T, u) = T~1{v\ U<V^\JZ\} with 0^u«s|w|, are closed subsets of ||a||.
Consider now the case of T being column-increasing. Let

F(T)U = U(V(T, u)).

Then F(T) is a composition series of M(n), and we claim that its type is co(T).
F o r , let 1 «= u ^ \ n \ , a n d T(a, i, j) = u. T h e n hv{T>u_x)(a, j) = i-l, hv{TiU)(a, j) =
i, and therefore

F(T)U_JF(T)U = U(V(T, u - \))IUiV{T, u))
= rad1"15(fl)[if}a)]/rad' S(a)[ji(ja)]

On the other hand, we also have

3.8. For n e IT, there are always column-increasing Jir-tableaux. One particular
example, Tn, is defined as follows: let

(we arrange the columns by ordering the pairs (a, j) lexicographically, and we
number the columns one after the other, from top to socle; thus we deal with the
lexicographical ordering with respect to considering first the partition-index, then
the column-index, and finally the row-index).

3.9. Let n e II. Given a column-increasing jr-tableau T, and a composition
series F of M(n), we define a column-increasing ^-tableau z(T, F), such that
CO(T(T,F)) = CO(F).

According to § 3.7, there is defined a composition series F(T). The comparison
of the two composition series F(T) and Fyields a permutation o of {1, 2, ..., \JI\}
such that

(*) F(T)U_JF(T)U = FO(U).JFO{U),

and we define x(T, F) = o°T. More precisely, let o(u) be minimal with

or, equivalently, let o(u) be maximal with

Then a is a permutation, and (*) is satisfied, according to the Jordan-Holder
theorem. It follows that the a(«)th letter in the type co(F) of F is
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[Fa(u)-JFaiu)] = [F(T)U.JF(T)U], but (o(F(T)) = co(T), and thus this letter is
s(T~\u)). On the other hand, the o(u)th letter of CO(T(T, F)) is

This shows that (o(t(T, F)) = (o(F).

3.10. Proof of Proposition 1. Let jzeH, weQ. If T is a column-increasing
^-tableau with (o(T) = w, then § 3.7 shows that F(T) is a composition series of
M(jt) of type w. Conversely, if F is a composition series of M(JZ) of type w, then
§ 3.9 shows that r(Tn, F) is a column-increasing ^-tableau with <o(r(r^, F)) = w.

3.11. Proof of Proposition 2. Let n e FT and w e Q, say w = ^f'sf2... 5^ where
Sf e Ao, e, e Nj and si_l =£ s, for all 1 < / «s m. Let u, = E,-=i £/> for 0 «£ t «s m. First,
assume that there exists only one reduced filtration G of M(JZ) of type w, and let
T, V be jr-tableaux with a)(T) = co(T') = w. The composition series F(T) and
F(T') are both refinements of G; thus we have

for O^f^m. But this means that V(T, ut) = V(T', u) for all /, and therefore T
and 7" are equivalent.

Conversely, assume that all column-increasing jr-tableaux T with w(r) = w are
equivalent. Let G, G' be reduced filtrations of M(JT) of type w. Let F be a
composition series which refines G, and T = T(7^, F). Then T is a column-
increasing ^-tableau and co(T) = w. By reversed induction, we show that
F(T)Ui= G't, for / = m, m — 1,..., 0. Nothing has to be shown for t = m. Assume
we know that F(T)Ui= G't for some t, and suppose F(T)Ui_t =£G,'_!. We refine G'
to a composition series F ' of M(JT) such that F(T)Mf_1 D F^-i = F(T)Ui. Consider
now the /r-tableau r(T, F'). By definition, z(T, F') = o°T for some permutation
o, and since both T and T(T, F') are column-increasing ^-tableaux with
to(7) = w = CQ(T(T, F')), the permutation o belongs to Se] x Se2 x ... x Sem. Let
M = a-1(M,). Then u,_l <u^ut. By the definition of a, we see that u, (= cr(u)) is
minimal with

However, we know that

FL.-1 n F(r)B_, c F ; . , n F(r)U(_, = F(T)UI S F(r)B,

and this contradicts the minimality of u,. This contradiction shows that F(T)Ui , =
G,'_i and finishes the induction proof. In particular, for G = G', we see that also
F(T)Ui= Gt, for all t; thus there is just one reduced filtration of M(JZ) of type w.

4. Index sets

We are going to exhibit some sets which will be needed as index sets in our
investigation. We use two different central concepts, namely words and tuples of
partitions, since our aim is to study composition series of serial modules: whereas
the type of a composition series is a word (in n letters, where n is the number of
isomorphism classes of simple modules), the isomorphism classes of serial
modules are indexed by n-tuples of partitions. Here, we will formulate the basic
definitions both for words and for tuples of partitions, and relate these concepts.
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We fix some natural number n 2=2. We identify A0 = Z/nZ with {1, 2,. . . , n};
given an integer z, its residue class modulo n will be denoted by z, and thus
1 s* z ^ n.

4.1. Adding and deleting parts. If l = (llf..., ln) is a partition, then / ' =
(/i,..., /,-_!, //+1,..., /„) is said to be obtained from / by deleting a part of length /,,
and / is said to be obtained from /' by adding a part of length /,.

Separated n-tuples of partitions. We will consider n-tuples JT = (JI;(1), ..., jr(n))
of partitions. The height of an n-tuple K is, by definition, the maximum of the
heights of JT(/), for 1 =£ i =s= n. We recall from the introduction that an n-tuple
x = (JT.(1), ..., Ji(n)) will be called separated provided that, for every 12* 1, there is
some 1 *£ a{t) «s n such that jr(a(f)) has no part of length t, and that IF will denote
the set of separated n-tuples of partitions. This set 11* will be our basic index set.
Given a (separated) n-tuple JZ = (JT.(1), ..., jt^n)) of partitions of length m, a
function a: {1, . . . , m}—»• Z/nZ such that jz^'^ has no part of length t will be
called a separator for jr. The set of pairs (jr., a), where JZ is an n-tuple of
partitions and a is a separator for jr., will be denoted by II". There is a unique
pair (jr., a) with JZ = ((0), ..., (0)), called the empty pair. Our convention of
identifying Z/nZ with {1,2,... ,«} provides a minimal separator an, for any
n e IT (with ^(f) defined as follows: jz{an{t)) has no part of length f, whereas JZ^
has a part of length t, for all 1 «s i < an{t)).

4.2. Towers of periodic functions. A tower <p = (<p(l), ..., <p(/i)) of periodic
functions is given by a chain /, c=/2cz. . . (=4, where /, is a set of f(n - 1)
consecutive integers, and cp{t)\ /,-»N0 is an (n - l)-periodic function (the image
of i e /, under q>{i) will be denoted by q>(t)h the periodicity amounts to the
equalities <?(*),+„_, = <p{t)h for i, i + n — le /,). A tower q> of periodic functions
will be said to be normalized provided either it is the zero tower, or else (p(h) ¥= 0
and at least one of 0 and 1 belongs to lx. We denote by <1> the set of normalized
towers of periodic functions. (The reason for the last normalization condition is
the following: towers of periodic functions which are obtained from each other by
shifting the intervals /, by a fixed multiple of n will behave rather similarly; using
such a shift, we may always assume that 0 or 1 belongs to /,.)

Given a tower <p = (<p(l), ..., <p(h)) of periodic functions with <p(/): /,—>!%>»
we define e{cp) e I F as follows: when cp is the zero tower, let e(q>) be the empty
pair. Otherwise, let /, = {a(t) - 1, ..., a(t) - t(n - 1)}, for 1 ^ t *s «, and define
partitions JZ{1), ..., jz{n) so that, for l ^ i ^ n - 1 , the partition jf^0"0 has
precisely q){t)a~i parts of length t, whereas jr(°^) has no part of length t. By
definition, the function a (with a(t) = a(t)) is a separator for (JZ^\ ..., J T ^ ) ; thus
e((p) := {JZ, a) belongs to II" (and we let e(<p) := JZ).

LEMMA. The map e: O—»H" is bijective.

Proof. The inverse map is constructed as follows: let JZ be a separated n-tuple
of partitions, and let a be a separator for JZ. Let n be the height of JZ, and assume
n 2s 1. We define inductively a'{t) e Z as follows: a'{\) = a(l), and, for 12= 2, let
a'{t) be the smallest number with a'{t) = a{t) (modn) and a'(f- 1) ̂ a'(t). Let
7, = {zeZ| a'(0 - 1 ̂ z ^a'(t) - f ( n - l ) } . Since 0^a'(t) -a'(t- l ) ^ n - 1, it
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follows that / H c / , , for all 2^t^n. It remains to define (p(t): /,->N0, for all
1 «£ t *s h. Since we want to have that cp(t) is (n - l)-periodic, it suffices to define

o-i f°r l^i^n — 1, and extend q>(t) periodically. For l«£/sSn —1, let
(/)-/ be the number of parts of ir^'^"0 of length t. In this way, we obtain a

tower q> of periodic functions, and clearly <p is normalized.

4.3. Words. Let us consider Q = Q(Z/nZ). The words in Q of the form
a[l] = a(a + 1)... (a +1 - 1) for some a el and some / e N, will be said to be
indecomposable. By definition, a[0] = l, for all l^a^n, but this is not an
indecomposable word.

Any word w =£ 1 in Q = Q(Z/nZ) can be written in scooping form,

(*) w = (z- l)e'-(z - 2)e-2. . . (z - m)e>-,

where z e Z , ez_, 5=0 for all l^t^m and m minimal (the minimality of m is
equivalent to the requirements e z _ 1 >l , ez_ms*l, and that there are no n — 1
consecutive zeros in the sequence (e2_t, ez_2> •••, ^z-m))- Note that for w in
scooping form (*), the data z —1 and ez_!, e2_2,..., ez_m are uniquely deter-
mined by w. We say that w is of (scooping) height h, provided h = \m/(n — 1)1,
where [*] is the smallest integer y satisfying x^y. By definition, the scooping
height of 1 is 0.

LEMMA. Let w be a word of scooping height h, and v an indecomposable
subword of w. Then the length of v is at most h, and if the length of v is h, then v
has a unique complementary subword in w.

Proof Let (*) be the scooping form of w. Let v = a[l] for some 1 ^ a *s n and
some / e f̂ !, and assume v = w I, where I = {il<i2<...< i/}. Assume that l^h.
Consider w' = (z - n)ez-"(z — n — l)e*-"-' ... [z — m)e*-m; this is a word of scooping
height at most h — \, and thus by induction, v cannot be a subword oi w'. It
follows that a = z — t(modn) for some 1 ^sr^n — 1, and E/=lez_,<ix =£
EJ=i ez-,. The second letter of a[l] is a + 1 = z - 1 + 1, and this is the /2th letter of
w. But z-t + l does not occur in (z -t)ez-(z -1 + l)e*-'+1... (z-n + l)'*--+l; thus
E/^i1 ez_, < iz, and v' = (a + 1)[/ - 1] is a subword of w'. By induction, / - 1 *s
h — 1, and thus l = h. Also by induction, the complementary subword u' of v' in
w' is uniquely determined; thus there is only one complementary subword u for v
in w, namely, (z — 1)'*-'... (z — n + l)^-"+lu', where ez_, = ez_, for all i =£f, and

4.4. Condensed words. Let (p = ((p(l), ..., (p(/i)) be a tower of periodic
functions, with (p(t): I,—>N0, for l^t^h. We extend cp(i) to all of /,, by zero;
thus q)(t)i = O for ielh\lt. Let e = e(<p): /,,—»N0 be defined by e,- = E?=i <p(0/-
Note that the function e(<p): //,̂ f̂̂ 0 together with the subsets /„ for l
determine cp uniquely. We define (o(cp) e Q by

= (z - l)e-'(z - 2)e-2. . . (z - h(n - l))e-*<—),

where /,, = {z — 1, z — 2, ..., z — h(n — 1)}. The words (o(q>) obtained in this way
will be called condensed words. In particular, 1 is a condensed word, since
1 = (o(q)) for cp the empty tower. We denote by Qc the set of condensed words.
(Clearly, for forming condensed words, we may assume that we start with a
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normalized tower of periodic functions: if q> is not the zero tower, we may assume
q)(h)^0, and we may shift the intervals /, by a fixed multiple of n, since the
letters of (o(q>) are residue classes modulo n).

REMARK. If <p(/i)=£0, then there are at most n-2 consecutive zeros in the
sequence (ez_u ez-2> •••> ez-h(n-i))', also, if / is minimal with ez_i¥

:0, and j is
maximal with e2_; =£ 0, then (h - \){n - 1) <j - i + 1 =£ h(n - 1). It follows that
the scooping form of (o(cp) is

(O((p) = (z - lf'"{z - i - l ) e - ' - ... (z - / ) * - ' ,

and the scooping height of co(q)) is h.

EXAMPLE. Let n = 4. Let

A = {-1,0,1}, / 2 = { - 3 , - 2 , . . . , 2 } , 73 = {-4 , -3 , . . . ,4},

7 4 = { - 4 , - 3 , . . . , 7 } , 75 = {-4, - 3 , ...,10}.

Let q>(t) be defined by the initial values

<K4)_4 = 0,

Then z = 11, and the values of z - / and e2_,, for 1 *s / ss 15 = h(n - 1), are given
as follows:

z — i

z-i

10

2

0

9

1

1

8

4

0

7

3

0

6

2

1

5

1

0

4

4

1

3

3

2

2

2

1

1

1

5

0

4

2

- 1

3

2

- 2

2

3

- 3

1

2

- 4

4

1

Thus a)(<p) = 12432215423223124.

LEMMA. Let w # 1. //" w w condensed, then there exists an indecomposable
subword v of w with length of v equal to the scooping height of w, and for any
such v, the complementary subword is condensed.

Proof Let w = <o(q>) for some normalized tower <p = (<p(l), ..., <p(/i)) of
periodic functions; where q>(t): It^N0. Let Ih = {z — I,..., z — t{n — 1)}; thus
w = (z — l)e*-'... (z — /i(n — l))e*-*<'>~'> We see that the scooping height of w is at
most h. Since (JP(A)^O, there is some l^t^n — 1 such that q)(h)t^0. Then
(z - /*)[/*] is a subword of ft>((p), it is indecomposable, and of length h; thus the
scooping height of w has to be h. The complementary subword will be co(q)'),
where <p'= ((p(l),..., (p(h-l), <p'(h)) with (p'(h),, = (p(h),,- 1 for all i with
i = / (mod n - 1), and <p'(h)i = <p(/i)« f ° r aU *' w i t n i & t (mod n — 1).

REMARK. For n = 2, the word w = 122122 is of scooping height 4, the subword
v = 1212 is indecomposable and of length 4, and the complementary word u for v
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in w is u = 12. Note that u is condensed, whereas w is not condensed. This shows
that the converse of the lemma is not valid.

The lemma yields a direct way of associating to a condensed word w an n-tuple
e(w) of partitions: for w = 1, let e(l) = ((0),..., (0)). For w a condensed word of
scooping height h^l, choose an indecomposable subword v of w of length h, say
v = a[h] where l«sa=sn, and let u be the complementary subword for v in w.
Inductively, e(u) is denned, and E(W) is obtained by adding to the partition
£(M)(O) a part of length n, and keeping the remaining e(w)(/). Note that for q> e <t>,
we have

Altogether, we have the following commutative diagram:

<D _ £ _ > nss

Qc -^-> IT

where pr: IP—* IP is the canonical projection, pr(jir, a) = n, for (n, a) € Uss.

Definition of the word (on, for n e TV. For n 6 n*, we define

(on = (o$~\n, an)\

here, we use the minimal separator an as defined in §4.1, and the fact that
e: O—> Tlss is bijective. In this way, we obtain for n e II5 an explicit word con such
that e((oJl) = JZ. Actually, in all our considerations, we may and will consider,
instead of con, any condensed word wn such that e(wn) = n.

4.5. Dimension vectors. For any n-tuple n of partitions, for any tower <p of
periodic functions, as well as for any word w eQ = Q(Z/nZ), we are going to
define its dimension vector dim n, dim cp, and dim w, respectively, the dimension
vectors being n-tuples of non-negative integers. Let l=sy^n; we define the yth
component of the dimension vector as follows. Let n be an n-tuple of partitions.
Then

where the summation extends over all pairs {a, i) satisfying a + i — 1 =/'. We will
give below a visualization of these numbers (dim JT)J. For pairs {n, a) e IVs, let
dim(jr, a) = dim n.

Let (p be a tower of periodic functions. Then, by definition,

Let w e Q, say w = slt ...,sn with 1 «ss, «sn for all i. Then we define (dim w)y as
the number of indices / such that st =y.

LEMMA. The maps e: O-»n^, e: Qc^-n*, 00: <*>-»Qc and pr: n J 5 -*n 5

commute with dim.
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The proof is straightforward.
Given d e N£, we denote by 11̂  the set of separated n-tuples JZ of partitions,

with dim JZ = d.

4.6. The type of a column. Consider a fixed column, say the squares
(a, 1, /), (a, 2, j),..., {a, h, j) with a, j fixed, and h = jzja\ The square (a, 1, j) will
be called the top of the column, the square {a, h, j) the socle of the column.

The sequence of types s{a, 1, j), s{a, 2, j),..., s(a, h, j) yields the word

s(a, 1, j)s(a, 2, j)... s(a, h, j) = a[h]\

thus we will say that this column is of type a[h). In this way, we may speak of
adding or removing columns: if JZ = (JZ(1\ ..., tf(fl)), A = (A(1),..., A(n)), with
JJ.(I) = ^(o for ajj j ̂  a> an ( j (̂o) j s obtained from ir(a) by deleting a part of length
/i, then we will say that A is obtained from JZ by deleting a column of type a[h],
and K is obtained from A by adding a column of type a[h). (Note that we allow
the case h = 0, which amounts to JZ = A.)

4.7. The natural ordering on Tl. We are going to introduce a partial ordering
on the set IT of n-tuples of partitions. Let JZ, A e IT. We write A < JZ provided
there are integers r^l, s^O, t^\, and l^a^n such that the n-tuple /zel l
obtained from JZ by deleting one column of type a[r + s +1], and one column of
type a + r[s], is the same as that obtained from A by deleting one column of type
a[r + s) and another column of type a + r[s + t] (note that for obtaining ju from A,
we have to stress that we remove two columns, since we allow r = 0 (mod n) and
r = t). We write K<JI in the case where there is a sequence A = Ao r< A, re... r<
Xm = JZ of length m 5= 0. It is easy to see that < is a partial ordering, and we call
this the natural ordering on IT.

LEMMA. Let \<JZ in IT. Then dim A = dim JZ.

Proof. We may assume A < JZ. In order to obtain ju, we delete from JZ columns
of type a[r + s +1] and a + r[s], and to obtain A, we add to (i columns of type
a[r + s] and a + r[s +1]. The squares of fi do not change their type when
considered as squares of n or of A. On the other hand, we clearly have

dim a[r + s +1] + dim a + r[s] = dim a[r + s] + dim a + r[s + t].

5. Tableaux

5.1. THEOREM 1. Let w be a condensed word, and JZ an n-tuple of partitions.
Then the following assertions are equivalent:

(i) there exists a column-increasing jz-tableau T with co(T) = w;

(ii) there exists a standard jz-tableau T with co(T) = w;

(iii) JZ < e(w).
The proof will be given in this section. We need some preparations. First,

consider an individual partition / (note that we also use the definitions exhibited
above in the case n = 1).
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5.2. REORDERING LEMMA. Let T be a column-increasing l-tableau. Then there
exists a permutation o of \\l\\ fixing the row-index such that T°o is a standard
l-tableau.

Proof. First, let T be an arbitrary /-tableau. Fix some i and consider the values
T(i, j) with 1 =ssy ^/,-. There is a permutation a, of {1,2,...,/,} such that

Let o(i,j) = (i, Oj(j)); thus a is a permutation of ||jr|| fixing the row-index, and,
by construction, r ° a i s row-increasing. Assume that Tis column-increasing. Let
(i, j), (i + 1> /') e ll^ll- Now, (T°o)(i, j) is the maximum of the values

with 1 =Sf «=/', and these are the j smallest possible values. Thus this maximum is
less than or equal to the maximum over; arbitrary values of Ton the tth row; and
we take the squares (/, oi+l(t)) with 1 ^ t =sy:

(ToO)(i, j) = max T{i, o,(t)) ^ max T(i, oi+l(t)).
l=sr=sy 1 ==/==/

But T(i, oi+i(t)) < T(i + 1, oi+,(/)), since T is column-increasing; therefore

max T(i, ai+l(t)) < max T(i + 1, oi+l(t)) = (7° o)(i + 1, j).

This shows that (T ° o)(i, j) < (T° o)(i + 1, j).

REMARK. Let n be an n-tuple of partitions, and T a ^-tableau. Let a be a
permutation of ||;r|| fixing the partition-index and the row-index. Then

^(rojj-^jor1,

and thus o)(T) = <o(T ° o).

Proof. Let (a, /, j) € \\JZ\\ and let o(a, i, j) = (a, i, / ' ) ; thus u := (T° o)(a, i, j) =
T(a, i, j ' ) . Then s°{T°o)~\u) = s{a, i, j) = a + i-1 = s(a, i, j') = (s°T)(u).

COROLLARY. / / T is a column-increasing n-tableau, then reordering of the rows
of \\JZ\\ yields a standard n-tableau T' with co(T') = (o(T).

In particular, we obtain in this way the equivalence of (i) and (ii) in Theorem 1.

5.3. Let c be a tower of periodic functions. We are going to construct a
standard e((p)-tableau T^ as follows.

Let <p = (cp(l), ..., (p(h)) with q>(h)*0, let Ih = {z - 1, ..., z -h(n - 1)}.
There is z -l^a^z -n + 1 with (p(h)a =£0. For 1 ^ t ^ h , let

a, = a + (t - l)(n - 1).

As usual, e = e(q>), and we denote u, = E,>o, et. Since (p(h)a s= 1, the (n — 1)-
periodicity of <p(h) yields (p(/i)O(5=l for all l^t^h. Let a)(q>) = sxs2 ... sn, with
5, eZ/nZ, and we note that sUi+l =dt. The first column of e(<p)(a) has length h,
and we define T^d, t, 1) = u, + 1, for 1 =ss t ̂  h.

The remaining squares of ||e((p)|| may be considered as the squares of ||£(<p')||,
where cp' = ((p(l), <p(2), ..., cp(h - 1), <p'{h)), and cp'{h)i = cp{h){ - 1 for i = a
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(mod n - 1), and <p'{h)j = <p{h)j for i & a (mod n - 1). By induction, T^ is defined.
Let

be monoton and bijective, and define

iTy.^b, i, j) for b =£ a,
Tyib, i, j) = \ iT^b, i, j - 1) for b = a,j>\,

[ut + 1 forb=a,j = l.

It is obvious that 7^ is column-increasing: by induction, this is true for T^-, and
for l^t<h, we have u,<ut+l; thus Tv also increases on the first column of
||£(<p)||. Similarly, by induction, T^ is row-increasing on e{<p'). It is not hard to
see that for a square {a, t, 2) in ||e(<p)||, we have u, + 1< T(d, t, 2). Therefore, T^
is also row-increasing.

REMARK. Avoiding induction, we may write down e{cp), and Tv directly, as
follows. Let I, - {a(t) - 1,..., a(t)-t(n-l)}. For a{t) - \^a ^a{t) -n + 1, the
partition e((p)(a) will have precisely <p(t)a columns of length t. Assume that these
columns have column-index j + 1, j + 2,. . . , y + (p(0a- Then, for 1 *ss =ss cp(t)a)

T(d, i,j + s) = s+ 2 es + 2 ^(f')fl+(,--i)(«-i).
»>o + (i —l)(n —1) r'>»

The tower (p presented as the example in § 4.4 yields the e(cp)-tableau shown in
Fig. 1.

1

2

4

12

19

8

17

9

18

10 11

(1)

14

21

FIG. 1

5

13

20

15

e(<P)
(3)

16

(4)

There is an effective way for writing down e((p) and T^ simultaneously. Display
the functions (p(t): I,-+NQ by a bar diagram, with /, arranged vertically, and f̂ 0

horizontally, starting with cp{h) on the left, and continuing -to the right until we
reach the bar diagram of <p(l). Now number the squares line by line, and only
afterwards separate the squares into columns and distribute them to form the
partitions e(<p)(1), ..., e{q)){n). In our example, the sequence of bar diagrams
together with the numbering looks as shown in Fig. 2; we have added a circle to
the top squares of the columns which arise.
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12

19

13

14

16

20

21

17 18

z — a

2

1

4

3

2

1

4

3

2

1

4

3

2

1

4

FIG. 2

5.4. LEMMA. Let X<JZ in II. Let T be a column-increasing 7i-tableau. Then
there exists a column-increasing X-tableau T' with o)(T') = O)(T).

If T is a ^-tableau, it sometimes will be convenient to abuse the notation as
follows: let 1 ^ a =s n, 1 =̂ y =s jt\a\ Then we define

T{a, 0,y) = 0 and T(a, jija) + 1, /) = |jr| + 1.

Proof. We only have to consider the case k<n. So assume that there are
integers r2=l, s^O, t^l and 1 ^ a =£ n such that we obtain the same (j, € H when
deleting one column of type a[r + s + t] and one of type a + r[s] from JZ, and when
deleting one column of type a[r + s] and one of type a + r[s + t] from A. Let T be
a column-increasing ^-tableau; we are going to define a corresponding A-tableau
T'. By definition, 7 ' shall coincide with Ton the columns which are not changed.
(Note that this is easy to say and easy to visualize, but our notation is not
well-adjusted for writing this down with formulae: deletion of columns and
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addition of columns will always change the column index of the remaining
columns!)

Assume we have removed from x{a) the jth column, with squares
(a, l,j), (a,2, j),..., (a, r + s + t, j), and from Jt<p+r) the j'th column, with
squares {a + r, 1, / ' ) , (a + r, 2, j'),..., (a + r, s, j ' ) . Let ut = T{a, i, j), for
l^i^r+s+t and vt = T(a + r, i, j ' ) , for 0 ^ / ^ 5 + 1. Then, we deal with two
columns of the shape illustrated in Fig. 3, and we have inserted into the squares
the values under T and squares on the same horizontal level have the same type.

t<

" r n

FIG. 3

Now consider A, and assume we have removed from_A^a) the kth column with
squares (a, 1, k), {a, 2, k), ..., (a, r +s, k) and from A(fl+r) the fc'th column with
squares (a + r, 1, k'), ..., (a + r, 2, k'), ..., (a + r, s + t, k'), in order to obtain JU.
We have to assign to these squares the values uh vt. Suppose there is some
0 ̂  i0 =£ s with both

Then let

ur+IO < vio+i and vin < ur+io+l.

U; for 1 «s i ^ r + i0,
Vj-r for r + i0 < i ^ r + s,

Vj for 1 ^ i: *£ i0)

ui+r for /0 < / ^ r + t.

Our assumptions are made in such a way that T' is column-increasing and that
s°T~l =s°(T')~l. It remains to find /0. If 5 = 0, let /o = 0. So assume now that
sssl . If ur<vx, let io = 0. If vs<ur+s+u let iQ = s. Thus, we can assume that
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i»1<wr and ur+s+1<vs. The latter inequality shows that ur+s_l<ur+s+1<vs,
taking into account the fact that T is column-increasing. In particular, we must
have s 2*2, since for s = 1, we get a contradiction. Consider the pairs (wr+l_1, t»,).
For i = 1, we have ur > vx; for i = s, we have ur+s_x < vs, and thus there is some
i0 with 1 s£ iQ < s such that

vio and ur+io

This completes the proof.

Note that this lemma yields the implication (iii)=>(i) in Theorem 1. Let w be
condensed. According to § 5.3, there exists an e(w)-tableau T with a)(T) = w. If
n is arbitrary with n < e(w), then the lemma shows the existence of a Jir-tableau
7' with co(T') = co(T) = w.

5.5. We are going to reverse the considerations of the previous lemma. Let T
be a column-increasing jr-tableau. A crossing of T is a pair (a, i, j), (a', V', j') of
squares of n belonging to different columns (that is, (a, j) =£ (a1, j')) such that the
following conditions are satisfied:

(1) the length condition: i^i', irja) - i ^ n{p -V\
(2) the type condition: a' + i' = a + i + l (mod n);
(3) the value condition: T(a, i,j) < T(a', i'J'), T(a', i' - \,j') < T(a, i+l,j).
If we write u, = T(a, t, j) for 1 ^ t ^ m = x)a\ and v, = T(a', t, j') for 1 =s/ *s

m' = 3ift'\ we may visualize a crossing as in Fig. 4, where again squares on the
same horizontal level are supposed to have the same type. Since we allow i = m,
and V = 1, there are also the possibilities shown in Figs 5 and 6. (The name
crossing should indicate that we are looking for sequences of squares on which T
increases and that going down columns, we may change from one column to the
other. This is what will be done in the proof of the next lemma.)

•

•

Vi'-l

v.

•

FIG. 4

LEMMA. Let T be a column-increasing n-tableau with a crossing. Then there
exists A with X<n and a column-increasing X-tableau T' such that co(Tr) = co(T).
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w,

vr

FIG. 5

FIG. 6

Proof. Let (a, /, y), (a', * ' , / ' ) be squares of n, where a crossing occurs. Let
m = 7t)a), m' = nj?'\ Let y. be obtained from ;r by deleting the yth column of n{a)

and they'th column of n(a). Let

r:=i-i' + l, s\=m-r, t : = m ' -s = (£}?'>-i') - (ir}f l )-i) + 1.

Then r 2s 1, 5 3s 0, t ^ 1, and m = r + s, m' = s + t. In order to obtain A, we add to
ju(fl) a column of length r + s +1 and to ySa) a column of length s. Thus A r< n. The
A-tableau 71' is defined as follows: it should coincide with T on those columns
which are not changed. Let u, = T(a, t, y), for 1 =s t =sm, and v, = T(a', t, / ' ) for
1 s? t ss m'. The values of T' going down the new column of A(a) of length r + s + t
shall be ux, u2,..., w,, u,-, v,-+i, •••, uw-, and going down the new column of A(o)

of length s, these values shall be vx, v2,..., iV-i> "i+i> W/+2> •••> "m- The value
condition implies that T' is column-increasing. Also, s°T~l = s°(T')~l, and thus
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5.6. It remains to study ^-tableaux without crossings.

LEMMA. Let it be an n-tuple of partitions. If there exists a column-increasing
n-tableau without crossings, then n is separated.

Proof. Let T be a column-increasing jr-tableau. Assume that there is some t
such that any nia) has a column of length t, say let jrjg?) = t for 1 *£ a ^ n. Choose
a such that T(a, 1, j(a)) is minimal; in particular, we have

T{a, !,/(«)) <T{a + 1,1, j{a + 1)).

But then {a, 1, /(«)), (a + 1, 1, j{a + 1)) is a crossing.

PROPOSITION. Let w be a condensed word and n an n-tuple of partitions. Assume
that there is a column-increasing JZ-tableau T with (o(T) = w and that no
column-increasing n-tableau T' with co(T') = w has a crossing. Then n = e(w).

Proof. Let w = sxs2... sn with s.eZ/nZ. Also let q> = (<p(l), ..., q>(h)) be a
tower of periodic functions with cp(h)^Q such that w = co(q>). Let

and assume <p(h)a^ 0, for some z -l^a^z -n + 1. We want to show that the
first column of Jir(a) has length h.

Let e = e{q>). For 1 *s t ^ h, let a, = a + (t - l)(n - 1), and let u, = E,->fl, eh The
periodicity of q>(h) asserts that cp{h)ai^ 1; thus eO(3= 1. It follows that sUi+x = at.

Let h' be the length of the first column of jr(fl). By induction on t, we show that
h'zzt and we construct a column-increasing ^r-tableau Tt such that Tt(a, i, 1) =
M, + 1, for 1 =s i *s t, and co(Tt) = w.

First, consider the case t = 1. Let r " 1 ^ + 1) = (b, i, j), and assume that / > 1.
Since the square (b, i, j) is of type a, the square (b, i — 1, j) is of type a — I. Since
T is column-increasing, 1 *s T{b, i — 1, /) *s ut. Thus Sr^j-^^ is one of the letters
Si,s2,...,sUl, and all of them belong to {z - 1, z - 2, ..., a + 2, a + 1}, a con-
tradiction. Therefore, / = 1 and b = a. Replace I by a standard ^r-tableau
Tx = T°o, where a is a permutation of ||JT|| which fixes the rows. Then
TfahV^Ui + l.

Consider now the cases t s* 2. Let

be the squares of ||JF|| of type a + t — 1 such that Tt^{as, is,js)>ut, and
Tt_x{as, is — 1, /,) ss «,. We assume that we have ordered them in such a way that
I'I Ss /2 2*... ^ is 2*..., and such that for 4 = is+x, we have

Note that (*) is actually satisfied for all 5 2=1. Namely, if is>is+i, and
^iaj )<^fc.+l) ' t h e n t h e t w o squares (as,is-l,js) and (as+l, i3+l, js+1) form a
crossing for T,_x.

Next, let us show that ix^t. Let m = ix — l and u{= Tt_x(ax, i, jx), for
1 «s i ^ m. Then v : = sUlsU2... sUm is an indecomposable subword of 5^2 ... sUi. The
scooping height of sxs2 ... sUi is at most t, and thus m =£/. But if we assume that
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m = t, then sUx = a-\, but a - \ does not occur in sx,...,sUl. Thus v is an
indecomposable subword of sU}+xsUl+2... sUi and this is of scooping height at most
t- 1, and then ix-\ = m^t-\.

Consider now the first column of ;r(fl). By assumption, we know that
T(a,i,l) = Ui + l, for l ^ i ^ f - 1 ; thus T(d, t-1, 1 ) ^ u , . When the square
{a, t, 1) exists, it is of type a + t — 1, and also T,_x(a, t, 1) > u,, since otherwise we
get an indecomposable subword of sxs2 ••• sUi, which cannot exist.

Assume now that ix < t. Then the square (a, t, 1) does not exist, since otherwise
(a, t, 1) would be one of our squares (as, is,js); thus is = t for some s, and this
contradicts our ordering ix^i2^.... But then (a,t — l,l) and (fl i , / i , / i) is a
crossing for T,.x, again a contradiction. This shows that ix = t. Now, i, = t implies
that ax = d; thus the column through (ax,ix,jx) belongs to n{a), and therefore
h' ^ Jiff. In particular, the square {a, t, 1) exists, and thus it is one of the squares
(as, is,js), and we must have jz^^h'; thus jz(

x
a) = h'. Since we have /, = t and

^ i a ) — i\-h' — tf we see that we can assume (ax,jx) = (a, 1).
We consider now the squares (as, i, js) with i s= is and s^l, as the squares of a

partition / with first row

and A:th row

(fli, ix + k- 1, / , ) , (fl2, i2 + k - 1, j2),....

The restriction of Tt_x to ||/|| is a column-increasing /-tableau, and we use the
reordering lemma in order to change this /-tableau to a standard /-tableau. (Note
that here the value set is not the canonical one.) Now T, is obtained from Tt_x by
keeping the values on the squares which do not belong to ||/|| and using the values
of the standard /-tableau for the squares in ||/||. The square T^x(u, + 1) clearly is
of the form (as, is,js), and thus in the first row of ||/||, and u, + 1 is the lowest
value which occurs under Tt_x on ||/||. It follows that Tt{ax, i\,jx) = u, + 1, but
(a\> i\> j\) = (&> *> l)l t n u s Tt(a, t, 1) = u, + 1, as required.

5.7. Let T be a column-increasing jr-tableau. Let co(T) = sxs2 ... si3T], with
Sj e Z/nZ. The restriction of T to any column yields an indecomposable subword
of (o(T), more precisely, the restriction to a column of type a[h] yields a subword
of the form a[h]: consider the yth column of 7r(a), with vertices
(a, i, j), {a, 2, j), ...,(a,h, j), where h = jiff. Then

ST(,a,ljyST(a,2J) ••• ST(a,h,j) = a | / * L

and since T is column-increasing, this is a subword of <o(T). Since T is bijective,
different columns yield disjoint subsets {T(a, i, j)\ 1 «s / ^ jtff) of {1, 2, ..., |JT|}.

Thus we see that co(T) is a merging of the various indecomposable words a[ir}fl)j.

5.8. THEOREM 2. Let w be a condensed word, let x — e{w). Then all column-
increasing K-tableaux T with <o(T) = w are equivalent.

REMARK. Let w = eo(<jp) for some tower of periodic functions <p, and K = e(w).
We have constructed in § 5.3 a standard jr-tableau Tv with (o(T<p) = w. Thus, the
theorem asserts that any jr-tableau T with co(T) = w is equivalent to T^. Note,
that in general, there may be other standard ^-tableaux T with (o(T) = w; for
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example, let w = 122 and n = ((1,1), (1)). Then both ^-tableaux T with a)(T) =
w are standard:

1 and 1

Of course, they are equivalent. On the other hand, for n' ¥= e(w), there may exist
a unique standard ^'-tableau T with a>(T) = w and a jr'-tableau T with
(o(T') = w which is not equivalent to T. For example, let w = 121 and
n = ((2), (1)), and consider the ^-tableaux

1 3 2 and 3 1 2

Proof oj Theorem 2. Let q> = (q>(l), ..., <p(h)) be a tower of periodic functions
cp(t): It->N0, for l^t^h, with <p{h)±0, so that w = (o((p). Let e = e((p). Let
n = e(<p) = e(w). Let T be a ^-tableau with <o(T) = w. We want to show that T is
equivalent to T^. Let Ih = {a — 1, ..., a — h(n — 1)}. Let i be minimal with

First, consider the case a — i $ Ih_x. We may assume i = 1, otherwise we shift Ih

accordingly. Since a — I €lh\Ih-i, we have ea_1 = q){h)a_x. Let_m = q){h)a_x. By
construction of n = £((p), there are m columns of length h in ^(fl~1), and these are
the only columns of Jt(^zri) of length greater than or equal to h\ thus they have
column-index 1, 2,.. . , m. We claim that T(a — 1, l,j)^m for 1 =£/ ̂  m. Assume
on the contrary, that T(a — 1, \,j)>m for some y, with l ^y ' ^m. Since
5(a - 1, 1, y) = a - 1, and

= (a - ... (a

it follows that T(a — 1, l,y')> E"=i eo_,. If we write w =
Z/nZ, the subword

, with S/e

is an indecomposable subword of v = (a - n - 1)*°-"-'... (a — h(n — \))e° *<"-'>.
However, u is of scooping height at most h — \, so it cannot have an indecom-
posable subword of length h. This contradiction shows that T(a — 1, l,y)=£m
for l^y=sm, and therefore T(a — 1, 1, - ) is a permutation of {1, 2, . . . ,m}.
It follows that T is equivalent to a jr-tableau f with T(a —1,1, j)=j for all
lss/ssu, and such that T and f coincide on the remaining squares. Let
(p' = (<p'(l), ..., <p'(h)) be the tower of periodic functions with y'{t)\ /,—»f̂ 0 and
e(qp'), =0, e((p'), = e,, for * =£ 1. Clearly, <jo' exists and is uniquely determined,
and we have (o(q)') =sl2... se£. Let JT' = e(<p') and w' = o>((p'). Note that n' is
obtained from n by deleting the v columns of type a — l[h] and adding v columns
of type d[h — 1]. Since JI has no column of type a[h], the same is true for n'\ thus
we may consider the new columns of n' of type d[h — 1] as the first v columns of
JT'(O). We may embed [n'\ into [JZ] by sending a square of the form (a, i, j) with
1 **y *s u to (a — 1, i + 1, j), and the remaining ones to their counterparts in [JI].
In this way, t (or T) gives rise to a column-increasing JT'-tableau denoted by T',
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with value set {v +1, v + 2 , . . . , \JZ\}, and co(T') = w'. By induction, T' is
equivalent to T^, and this obviously implies that T is equivalent to Tv.

Second, consider the case a-ieIh-V Then a-i-(h- l)(n - 1 ) cannot
belong to Ih_x, and q>(h)a-i^h^i^n^i^0. Let i' be maximal with (p(h)a_r=t0.
Since a — i' $ //,_,, we have ea_r = q>(h)a_r, and we set v = q>(h)a_r. There are u
columns of length h with socle of type a — V, and T takes on these socle squares
the values \JZ\ — v +1,..., \JZ\. An argument similar to the one used in the first
case shows that, up to equivalence, we can assume that the value on the y'th
column of length h with socle of type a — i' is precisely \JZ\ — v+j. And again we
use induction in order to show that T is equivalent to Tv. Here, JZ' is obtained
from JZ by deleting the squares T~l{u) with \JZ\ — v + 1 *£ u «£ |;r|. This completes
the proof.

6. The cardinality of IId

Recall that we have denoted by n d the set of separated n-tuples JZ such that
dim JZ = d. Similarly, let 112 be the set of n-tuples JZ of partitions with dim JZ = d
such that no part of JT(") has length divisible by n.

6.1. PROPOSITION. The sets n d , 113 have the same cardinality, for every d.

Proof. Recall that for any partition p, the number of columns of length h is
Ph ~Ph+\- Given JZ e IT, let mh{jz) be the minimum of the numbers jrj,o) — JZ^+X,

for l ^ f l ^ n . Thus JZ e IT if and only if mh(jz) = 0 for all h. Also, JZ e TV if and
only if jtff = nfclu for all i s» 1.

For t e No, we define H(t) as the set of all JZ € IT such that mh{jz) = 0 for
all h =£ t, and JZ\^ = JZ%+I, for all i > t. Of course, we have n(0) = IT". Also, for JZ

of height at most h, we see that JZ e n(/i) if and only if JZ e II5. Let Tl(t)d =
II(/) D ITd; since IId is a finite set, there is some bound h on the height of the
elements of ITd, and therefore II(/i)d = nd .

It is sufficient to show that the sets II(f - l)d and II(/)d have the same
cardinality, for all t e Nx and all d e NQ. We define a bijection £,: II(f - l)-> Il(t)
as follows. Given JZ e II, let m = mt(jz); let £,t{jz) be obtained from JZ by deleting
m columns of type a[t], for l^a^n, and adding m columns of type n[tn]. The
columns of length at most / — 1 coincide for JZ and £,,{JZ), and by construction
m,{t,,{jz)) = Q. Also, the columns of length at least tn +1 coincide for JZ and
t,,(jz). This shows that for JZ e Tl(t — 1), we obtain £t(jz) e Tl(t). Conversely, given
Aell(f), let m' = k\^ — X\n\\> the number of columns of type n[tn] in A. If we
delete the columns of type n[tn] from A and add for l=sas£n precisely m'
columns of type a[t], we obtain some JZ e TJ(t — 1) with £,(JT) = A. This shows that
£, yields a bijection Tl(t — 1)—>H(t). It is easy to see that dim t,,(jz) = dim JZ;
therefore £, yields a bijection II(f — l)d-»II(/)d.

7. The Lie algebra n(n)

7.1. DEFINITION. The graph An-X defines a Lie algebra n(n) over <Q>, as follows:
its generators xx, x2, ••-, xn are indexed by the residue classes of integers modulo
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n (or by integers themselves, again with the convention that x, = x} for
i =j (mod n)), and the defining relations are, for n s= 3,

(ad xi)Xj = 0 for j'& i ± 1 (mod n),

(ad Xi)2Xj = 0 for j = i ± 1 (mod n),

whereas for n = 2, they are

(ad Jt,)3*, = 0 for ; * i (mod 2).

If g is the (complex) Kac-Moody Lie algebra of type An_x, with the triangular
decomposition g = n_0f )©n+, then n+ is the complexification of n(n). Note
that n(n) is a Z"-graded Lie algebra: denote by s1}...,sw the canonical base
elements of Z", and define the degree of xt to be s,. Let U(n(n)) be the universal
enveloping algebra of n(n). In addition to n(n), U(n(n)) is also Z"-graded.

It is well-known how to construct a Q-basis for n(n). As before, let
Q = Q(Z/nZ). Recall that words of the form a[l] = a(a + 1)... (a +1 - 1) e Q
with l=sa«sn, leNx, are said to be indecomposable. Any indecomposable word
w yields an element x(w) e n(n), as follows: let x(a[l])=xa, and define
inductively

the outer square brackets being the Lie multiplication (for example, for n = 3, we
have JC(2312) = [x2, [x3, [xlt x2]]]). Clearly, the degree of x(a[/]) is just dim a[l].

There is the following relation:

\ / Z-j V L J/
a = \

for all ZeNi. Therefore the elements Jt(a[/]), with l^a^n, such that either
a^n or / is not divisible by n, form a generating set of n(n). But it is well-
known that this set is also a Q-basis; therefore we have the following result:

7.2. PROPOSITION. We have dimQ U(n(n))d = |I13|, for every d e NQ.

Proof. Let / be the set of all indecomposable words a[l] with a =£« or / not
divisible by n. Note that given JTell, we have neII" if and only if the type of
any column of n belongs to /. Consider J as a totally ordered set using the
lexicographical ordering with respect to the natural ordering of 1 *s a ^ n, and the
opposite of the natural ordering of N^ For JZ e II", let w,, ..., wm be the types of
the columns, first those of ;r(1), ordered as they occur, then those of JT(2), and so
on; in particular, m = E"=i ̂ ia). Since n e Ft", we have w, eJ, and thus X(WJ) is
defined. Let x(n) = x(wx)x(w2)... x(wm) in U(n(n)).

Clearly, the set {X(JI)\ n e II"} is the Poincare-Birkhoff-Witt basis with
respect to the ordered basis / of n(n). Of course, the degree of X(JT) is dim n, and
therefore the set {*(;r)| K e 113} is a Q-basis of U(n(n))a.

REMARK. Our investigations will only use the inequality

which relies on the fact that the set {JC(^:)| nelT} is a generating set for
U(n(n)), and thus on the fact that we have the relations (*) for all i e Î J,. On the
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other hand, our investigations will imply the equality stated in the proposition;
thus we present a new proof that the set {X(JZ)\ n e 11"} is linearly independent.

8. The composition algebra

8.1. Let T be a tube of rank n, with EndS(i) finite, say |EndS(/)| = qj', note
that |EndS(i)| does not depend on i. We denote by Z[q] the polynomial ring in
one indeterminate q.

LEMMA. Given w e Q, n e II, there exists a polynomial (w \JZ) e Z[q] such that
the number of composition series of M(ri) of type w is given by (w \ Ji)(qT).

Proof. We follow closely the proof of Theorem 1 of [6]. (A corresponding
statement is always true for representation-finite algebras, and we may replace T
by the full subcategory of direct sums of indecomposable objects of length
bounded by some fixed number, thus dealing with a category equivalent to the
module category for a representation-finite algebra.) First of all, given n, A e n ,
there is h(n, A)eN0 such that |Hom(M(^), M(A))| = qj("'*\ Also, it is easy to
see that there is a monic polynomial acn such that |Aut M(JZ)\ = <xn{qj). Next, for
n, A e l l , there are polynomials ok

n, rjieZ[T] such that ox
n{qj) is the number of

submodules of Af(A) isomorphic to M{n), and r}^(qj) is the number of
submodules U of A/(A) with M(k)/U isomorphic to A/(jr). The ,proof of this
assertion is similar to part (4) in the reference mentioned above. Let w =
sxs2...sm, with Si eZ/nZ. Let w' =s2 ... sm. Then

(we count the number of submodules of M(JZ) isomorphic to M{n'), and the
number of composition series of M(JC') of type w'). By induction, (w \ JZ) is a
polynomial, and it has the desired properties.

EXAMPLE. Let w = se for some 1 =£s =sn and some e^l. Clearly, (w \ JT) =0
except in the case where ^(/) = 0 for i=£s, and JI^S) = (1, ..., 1) with s entries of 1;
thus (w\jt)=0 except for JZ = e(w). In the exceptional case, (w, e(w))(p) is
equal to the number of complete flags in an e-dimensional vector space over the
field with p elements; thus

(for the definition of the polynomial tyeiq), see the introduction).

8.2. PROPOSITION. Let w be condensed, say w = s\{se
2
x... se,', with s, e Ao,

S/^Sj+i, and et 2
s 1 for all i. Then

Proof. By Theorem 2, there is precisely one equivalence class of column-
increasing £(w)-tableaux T with co(T) = w. Therefore, by Proposition 2.3, the
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module M(e(w)) has a unique reduced filtration of type w, and therefore

(w, e(w)) = fl (s?, £(*?)> = 11 V ^ T ) ,

by the example above.

8.3. PROPOSITION. If w is a condensed word, and n an n-tuple of partitions with
(w, x) =£0, then n<e(w).

This is the consequence of Theorem 1 and Proposition 2.2 which we will need
in our further considerations.

Proof. If (w, JI) =£0, then there is some prime p such that (w, n)(p) =£0. Let
us consider representations of the cyclic quiver with n vertices over the field with
p elements. Since (w, jz)(p)=£Q, the module M{JZ) has a composition series of
type w; thus, by Proposition 2.2, there is a ^-tableau T with a)(T) = w. Theorem
1 implies that n < e(w).

8.4. Let si be the localization of the polynomial ring Q[q] at the maximal ideal
generated by q — 1. Thus, si is a local ring, its maximal ideal is generated by
q — 1, and the residue ring modulo the maximal ideal is isomorphic to Q. Note
that all the polynomials ipe(q) with e 2= 1 are invertible elements of si.

Recall that siQ is the semigroup algebra of Q = Q(Z/nZ); it is the free
^-algebra generated by the set Z/nZ. Also, sill is the free ^-module with basis
II, and there is the bilinear form

We have denoted by 9t the set of r e siQ such that <r, - ) = 0. It is easy to see
that <& is an ideal of siQ (see [7]), and ^(n) = <£:= siQI®. is called the
composition algebra for tubes of rank n. Note that ^ encodes the knowledge
concerning the interrelation between the possible composition series of modules
in tubes of rank n.

8.5. LEMMA. For every n e IT, choose some condensed word wn such that
e(wO = x. The set {wn\ JZ e IT} is the basis of a free si-submodule of siQ which
intersects 9t in zero.

Proof. Consider a finite sum x = EAen̂ Â̂ A. in «^^» with an e si, and assume
x e 9t. We claim that all an = 0. Suppose this is not the case, choose n maximal
with respect to the ordering < such that an =£ 0, and consider

(x, n) = ̂ ax(wK, n).
A

On the one hand, (x, Jt) = 0, since x e 91. On the right-hand side, for A =£ n, we
cannot have ^<e(w^) = A, by the maximality of JT. Therefore (W>A, JZ) =0 by
Proposition 8.3. But {wn, JI) =£0, according to Proposition 8.2, and therefore the
right-hand side is non-zero, a contradiction.

8.6. Our aim is a description of ^ by generators and relations. We again
denote the residue class of JC, e A o c Q modulo 9t by x(.
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PROPOSITION. For n ^ 3, the elements x( in % satisfy the relations

+p2(xh xi+l) = 0, p2(xi+l, x) = 0,

for all l^i^n, and p\{xh Xj) = 0 for all j&i±l (mod n).
For n = 2, the elements X\, x2 in <# satisfy the relations

P?,{x\,x2) = 0, p3(x2) *,) = 0.

Proof Since n =* 2, we have Ext!(5(i), S(i)) = 0 for all i. First, consider n ^ 3;
thus Ext^S^" + 1), S(i)) = 0 for all /, and therefore the fundamental relations as
established in [7] are valid.

Let n = 2. The following table exhibits the polynomial (w \ n) for all w, x with
dim w = (1, 3) = dim JZ:

xxx\

X2X\X2

((0), (2,

0

9 +

9 +
0

1,

1

1

1))

(

((0),

9

(9

(3, 1))

0

+ 1

+ 1)2

f + q + 1

((1,

(9 + 1)

(«
t

)

1)

1 +

7 +
0

.(2))

+ q + l

I)2

1

) fan
(9^

{q-

(9^

((1),

^1)(9:

I" 1)(9:

I" 1)(9:

I" 1)(9:

(3))

+ 9H

+ 9 -
! + 9 -
+ ^H

H )

H )

1-1)

and it follows that qp^{x2, x^) — 0. Of course, q is invertible in si, and thus
p2{x2>

 x\) = 0. By symmetry, we also have the other equality.

8.7. THEOREM 3. For n^3, the composition algebra ^(n) is generated over si
by xx, ",xn with relations

+p2(Xi, * / + i ) = 0 = p2(xi+l) Xi)

for l^i^n, and Pi(x,, x}) — 0 for j&i±l (mod n).
The composition algebra ^(2) is generated over slby xx,x2, with relations

Proof. Let ^'(n) = s#Q/9lf; for the definition of 91' see the introduction. As
we have seen, S?'cSi; thus there is a canonical surjective algebra homomorph-
ism rj: ^'(n)—* <#(«). We consider s£Q. as a Z"-graded algebra, the degree of x,
being s,, where s1? ...,§„ is the canonical basis of I". Note that for w eQ, the
degree of w is just dim w. It is easy to see that 9t is a homogeneous ideal, since
for w e Q and n e n , we have (w | JT) =£ 0 only in the case where dim w = dim JZ.
Also, the defining relations for 9o'(n) are homogeneous; thus both <#'(«) and
<#(«) are Z"-graded, and rj preserves the grading. We may identify ^ ' ( n ) / ( ^ ~ 1)
with U(n(n)), since <#'(")/(<? ~ 1) *s t h e free Q-algebra with generators x,, . . . , xn

and the corresponding relations (obtained from pu
 +p2, p2 and p3 by replacing ^

byl) .
For deN(J, we want to see that the canonical map r/d: ^'(n)d~* ^(«)d is

bijective. Now, ^'(n)^ is a finitely generated ^-module, its radical is

(q -

and
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has Q-dimension |nd|, according to §7. By Lemma 8.5, ^(n)d contains a free
^-submodule of rank |n^|. Since |IPd| = |nd| by § 5, it follows that r]a is bijective.

8.8. Recall that Sf is the set of y e siU such that <-, y) = 0. Two elements
y , y ' of sill will be called composition equivalent provided ( - , y) = {-, v ' ) ,
thus, if and only if y — y' e Sf.

THEOREM 4. For every TZ e IF, choose some condensed word wn such that
e{wn) = TZ. The set {w^ TZ e FI5} is the basis of a free si-submodule of siQ and
this submodule is a direct complement for 9t. Also, s£T\ = s&TV © Sf.

The last assertion implies that every TZ e H is composition equivalent to an
^-linear combination of separated n-tuples of partitions.

Proof. First, we show that silT C\ Sf = 0. Consider a finite sum y = E;u=rF a\k in
silF with ax e si, and assume y e Sf. We claim that all ax = 0. Suppose this is not
so, choose TZ minimal with respect to the ordering < such that an =fc 0, and
consider

(wn,y)= 2 ak(wn> A).
Aenj

On the one hand, {wn, y) = 0, since y e Sf. On the right-hand side, for A =£ n, we
cannot have A<e(wjr) = K, by the minimality of TZ. Therefore (wn, A)=0 by
Proposition 8.3. But (H^, TZ) = 0̂ according to Proposition 8.2, and therefore the
right-hand side is non-zero, a contradiction.

The proof of Theorem 3 has shown that ^(n)d is a free ^-module of rank |ITd|.
Assume y e s4Tl and dim_y = d. We claim that y e Sf if and only if (wn, y) = 0 for
all TZ e nd. For the proof, assume (wn, TZ) = 0 for TZ e IId. The set {wj TZ e nd}
goes under the canonical map (^Q)d-» (<o(n)d to the basis of a free j^-submodule
of rank |Ild|. Thus, given x e (^Q)d, there is some 0=£a e si and some x' e9l
such that ax— x' is an ^-linear combination of the elements wn with TZ € ITd.
Therefore a(x, y) = {ax, y) = {ax —x'+x',y)=0. But si has no zero divisors,
and thus {x, y) = 0. This shows that y e 5̂ .

In order to show that s4TLs + Sf = siU, let y e (jtfll)d. Let IT(y) be the set of
all TZ e l l d such that {wn,y) =£0 for some JT'<JT. By induction on |IT(y)|, we
show that y € ,s#IT + Sf. If IF(y) = 0 , then we have seen above that y € Sf.
Assume, ir(y)=£0, and choose TZ e IT(y) minimal with respect to <. Let

Note that {wn, TZ) is invertible in si. Then rT(y ')crP(y) , and TZ(tI¥(y'). By
induction, y' e silV + Sf, and thus also y € siUs + Sf.

Altogether, we see that ^ n = .stflT © Sf. In particular, given x e ^ Q , we see
that x € 91 if and only if {x, TZ)=0 for all TZ e IT*. Consider an element
x e (siQ)d. We want to show that x is the sum of an element from 91 and an
jtf-linear combination of elements wn with TZ e II*. Let IF(x) be the set of TZ e n d

such that {x \ TZ') =£0, for some TZ' with TZ < TZ'. By induction on |IF(jt)|, we show
that x is the sum of an element from 91 and an .^-linear combination of elements
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w^ with ^ e l F . If U.s(x) = 0, then x e 91. Assume rF(jt)=£0, and choose
n e Tis(x) maximal with respect to <. Let

note that (wn, n) is invertible in si. Then Us(x') c Us(x), and Jt$ns(x'). By
induction, x' is the sum of an element from 91 and an ^-linear combination of
elements w^ with \i e IF. Therefore the same is true for x. This completes the
proof.

REMARK. For n e IT*, we have chosen a condensed word wK such that
e{wn) = JT. The ^-submodule of s&Q, generated by {wn\ ; re IF} , as well as the
set of images {M^ + 9l\ JZ e IF} in <£(«), will depend on our choice. For example,
let n = 2, and d = (1, 3). Then WA = {((0), (2,1,1)), ((0), (3,1)), ((1,1), 2)}. All
four words xxx\, x2xxx\, x\xxx2 and x\xx are condensed, and e(xxx2) = ((1> 1), 2),
e ^ ! ^ i ) = e(A:|̂ 1A:2) = ((0), (2, 1, 1)), e{x\xx) = ((0), (3, 1)). For w((o)>(2iU)) we
may choose either x2xxx\ or x\xxx2. We see that the corresponding s£-
submodules of s&Q generated by {wn\ JZ e IT} will be different; also x2xxx\ —
x\xxx2 does not belong to 91 as the table in § 8.6 shows.

9. Remarks

9.1. For A a symmetrizable generalized Cartan matrix of affine type, and
Q = n_ © f) © n+ a triangular decomposition of the corresponding Kac-Moody
algebra, the quantum group °ll(i) © n+) may always be constructed in terms of
composition algebras, as announced in [8]. Consider the case of a symmetric
generalized Cartan matrix A. Let A be a quiver with underlying graph A; thus A
is obtained from A by choosing some orientation. We have to distinguish two
cases. First of all, consider the case when A has no sink (and no source); then A
is a cycle, and we deal with the cyclic orientation. This is the situation
investigated in the present paper. Second, in the remaining cases, the path
algebra &A is finite-dimensional; thus we deal with a finite-dimensional hereditary
algebra of tame type. The main tool for determining the structure of the Hall
algebra of kA is our knowledge of the Auslander-Reiten quiver of kA. The
modules lying in the preprojective, or the preinjective component of kA will be
handled in the same way as the modules in the cases where A is Dynkin. The
main difficulty rests in the modules which belong to tubes, but we may use the
results of this paper in order to overcome these difficulties; this will be shown in a
forthcoming paper.

9.2. A general investigation of the Hall algebra of a cyclic quiver will be
published by Guo [1].

Added in proof, December 1992. Given any graded ring R = ®gerRg with
grading group T (written additively), a bilinear form /? in T with values in Z, and
an invertible central element v e Ro, one may introduce a new multiplication on
the additive group of R by defining



THE COMPOSITION ALGEBRA OF A CYCLIC QUIVER 537

for reRg, r' eRg'. The algebra (R)o obtained in this way is again associative.
In particular, the composition algebra ^(n) studied above is graded with

grading group Zn = K0(T), the Grothendieck group of T modulo all exact
sequences, and there is the Euler characteristic e on K0(J). Let

R = ^(n)^zl9]l[ql2, q~\], /? = e, and v=q^.

It turns out that (*#(«) ® Z1<7|Z[^^, q~^])o satisfies precisely the Jimbo-Drinfeld
relations. Note that the twist of the composition algebra multiplication using the
Euler characteristic removes the dependence on the orientation. See the author's
paper 'Hall algebras revisited' which will appear in the proceedings of the Israel
Conference on Quantum Deformations of Algebras and their Representations,
1991/92.
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