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Abstract
Pirashvili. T. and F. Waldhausen. MacLane homology and topological Hochschild homology,
Journal of Pure and Applied Algebra 82 (1992) 81-98.

The topological Hochschild homology of a discrete ring is shown to agree with the MacLane
homology of that ring.

Introduction

The aim of this paper is to show that the topological Hochschild homology of a
discrete ring R in the sense of [2] and the MacLane homology of R (see [10] or
[8]) are isomorphic. The method is to show that they are both isomorphic to a
certain kind of homology of the category of finitely generated projective R-
modules with coefficients in the bifunctor Hom. That the latter agrees with
MacLane homology, was shown in [8]; and that it agrees with topological
Hochschild homology, is the main result of this paper. In the (appended) last
section we describe a related spectral sequence.

1. On MacLane homology
[
In this section we recall the definition of MacLane homology and the main

result of [8].
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Definition 1.1 {10]. The MacLane homology of a ring R is defined by
HY' (R) = H,(B(R. Q,(R). R)B «R)

where Q. (R) is a suitable chain algebra whose homology is isomorphic to the
stable homology of Eilenberg-MacLane spaces [6] H (Q.(R)) = H, . (K(R.n)),
n>gq, and B(R, O ,(R), R) means the two-sided bar construction.

Since H,(Q,(R))= R, we have an augmentation map
Q.(R)—>R,

which is a map of chain algebras and therefore induces a natural map from
MacLane homology to Hochschild homology

a,: HY"(R)—Hoch,(R, R).

Since H,(Q,(R)) =0 it follows that a, and a, arc isomorphisms. If R is an algebra

over {), then H(Q.(R))=0, ¢>0. Hence, in this case a, is an isomorphism for
any g =0.

Let
h,: K.(R)->Hoch,(R, R)

be the natural transformation from stable K-theory to Hochschild homology
defined in [15] (see also [9]). By {9] the transformation h; is an isomorphism if
i=0,1. If R is an algebra over Q, Goodwillie proved that A, is an isomorphism for
any i =0 (see [7]).

It was shown in [12] that h, has a lifting to MacLane homology: there exists a
natural transformation

0, : Ky (R)—> H(R)

such that A, = a, @, and it was also conjectured that @,

will be shown elsewhere [13] that stable K-theory and topological Hochschild

homology are isomorphic. As a result therefore the map @, is an isomorphism.
The construction of @, is based on Theorem 1.4,
Let C be a small category and

is an isomorphism. It

D:C"xC— Ab

a bifunctor. Following [1] and [12], we wish to define H .(C, D), the homology of
C with coefficients in D. For any n-simplex
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An Ay A
/\:(An An-—l AO)

of the nerve of C. we denote D(A,, A,) by D(A). Let

F(C.D)=B D)),

where A runs through the n-simplices of NC and let in, be the inclusion
D(MN)— F (C. D). We define

d":F(C.D)—F, (C.D), 0=i=n,

in, ,eD(id, . A). ifi=0,
"oin =141 f0<i<n,
d: oln/\ - fndl)\ 1 . lf .
in, ,oD(A,.id, ). ifi=n,

where d A is the ith face in NC. Let

8, = 2 (-1)d".

i=0

Then (F,(C, D), 8,) becomes a chain complex.

Definition 1.2. The homology of a category C with coefficients in a bifunctor D is
defined by

H,(C.D)=H(F.(C.D).3,).
Let P(R) be the category of finitely generated projective (left) R-modules and
F(R) = (R-mod)™"’

be the category of all functors from P(R) to R-mod. Let P, : P(R)— R-mod be
the functor defined by

P (X)=R[X"], m=0,
where R[S] means the free R-module with base S and X" means the m-fold
product of X with itself. The family P,,. m =0, is a family of projective generators
in the category F(R) (see for example 8. 2.5]). therefore the following proposi-
tion is a standard fact in homological algebra (see [4]).
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Proposition 1.3. There exists a unique (up to isomorphism) family of functors
H(R,-): #R)—>Ab, n=0,

satisfying the following properties.
(i) For any short exact sequence of functors

0->T,»T->T,-0
there exists a natural long exact sequence of abelian groups
= H LR T)->H(RT)>H R T)>H(R. T,)— .
(it) If n=1, then
H(QR,P,)=0, m=0.
(iii) One has a natural isomorphism
H\(R, T)=Hochy(R, L} T(R)) .
where L, T means the Dold—-Puppe stable derived functors [5]. O

By definition, L T(P) = x, T(K(P, n)) foranyn>0and P P(R). The functor
L{/T is additive (see [5, 8.3]). Moreover, the rule T LT defines a functor from
F(R) to the category of the additive functors from P(R) to R-mod, which is a left
adjoint to the inclusion (see [11]). The latter category of additive functors is
equivalent to the category of R-bimodules by T+ T(R). Similar properties hold
for stable right derived functors. In particular,

Hom ; (1. T) = Hom, (R, Rg{ T(R))
= Hoch"(R, R’ T(R)),

where 1:P(R)— R-mod is the inclusion. Therefore the following theorem is the
dual of the main result of 8]

Theorem 1.4, Let R be ¢ ring and let
I:P(R)— R-mod
be the inclusion. Then there exist natural isomorphisms

HY"(R)=H,(R,1)= H,(P(R),Hom). [
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Now we define the transformation @,. Let F(R) be the homotopy fibre of
BGL(R)— (BGL(R))" .

The group  F(R) =St(R) acts on the group of matrices M(R) by conjugation.
We denote this local system on F(R) by M(R)". By definition (or by [9]),

K (R)=H,(F(R), M(R)"").
The inclusion F(R) < BGL(R) induces a map

u,: KJ(R)— H (GL(R). M(R)™).
By a well-known theorem in homological algebra the last groups are isomorphic
to the Hochschild homology of GL(R) with coefficients in the bimodule M(R).
Let us consider GL(n, R) as a subcategory in P(R), whose morphisms are the
isomorphisms R"— R". Then the restriction of the bifunctor Hom to GL(n. R) is
M_(R). Therefore the inclusion of GL(n, R) in P(R} induces a homomorphism

H,(GL(n. R), M,(R))— H,(P(R), Hom) .

The transformation @, is defined by composition,
K3 (R)—= H(GL(R). M(R)™)
=lim H,(GL(n. R), M,(R)) — H(P(R), Hom) .
Remark. We have used here that the maps
H,(GL(R, n), M,(R))— H (P(R), Hom)

are compatible. This follows from the fact that the endofunctor -® R : P(R)—
P(R) induces the identity in homology. Namely let & be the bifunctor on P(R)
defined by

G(X,Y)=Homy(XOR, YOR).

Then o> a B0 defines a transformation Hom— & and therefore a chain map
¢, : F.(P(R),Hom)— F (P(R). %) .

The endofunctor - R yields a chain map

¥, : F.(P(R), 2)— F,(P(R), Hom).
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Then ¢, ¢, is homotopic to identity, a homotopy is given by s, = 37 (-1 YR
where

h.: F,(P(R), Hom)— F,_,(P(R).Hom). 0=i<n
M
is dciﬁned as follows. Let a: A, — A, be a homomorphism, A=(A,—
---—> A ) an n-simplex in the nerve of P(R). and

t -
A A, ((I) Al'l':‘l

A, A DR

{ i

A”';‘] ~
hA=(A, > A, 4 R).
Then &, is given by

l;ioinA(a) = i“/,,A(a’ 0) .

2. Topological Hochschild homology with coefficients

In this section we define some coefficient systems for topological Hochschild
homology and establish some elementary facts. The following definitions are in
[2], at least implicitly.

Definition 2.1. A functor with stabilization is a functor F from the category of
pointed simplicial sets to itself together with a natural transformation

Ay : XAFKY)=>FXAY)

such that:
(i) Ayy.zo(idy A Ay2)=Ay,y, and

Pxry.z®(Axy nid,) = Axynz(idy A py ),
where py  F(X) A Y= F(X A Y) is defined as the composite
F(Tyx)oAy xoTrxyy (T =twist of two factors) .

(i) If X is n-connected, then F(X) is also n-connected.
(iii) Let oy : F(X)— QF(3X) be the adjoint to A . Then the limit system

(ory). Tyvy)a
m,(FX) 2, m, QF(3 X)—=22, 7, Q*F(3X)— -

stabilizes for each n.

Definition 2.2. A functor with smash product (FSP) is a functor F with stabiliza-
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tion. together with two natural transformations
1,: X—=F(X). By F(X)AF(Y)=>FXAY)
such that

plp Aid)=plidap),  pllenly)=lg .y,

Ayy=yyollgnideg,) o pyy = pyye(idey A1y
Example 2.3 [2]. Let R be a ring. Then the functor R defined by
R(X)= R|X]/R[#]
is an FSP.

Definition 2.4. Let F be an FSP and T a functor with stabilization. A structure of
left F-module on T is a natural transformation

by FIX)AT(Y)> T(X A Y)
such that

f(paid)=€(d A £), Ay y = {yy(ly Aidyyy).
The notion of right F-module is defined similarly.

Definition 2.5. A bimodule over F is a functor T with stabilization together with a
structure of left and right module over F such that

€y ynr(idpy) A Ty )= Teay.z(xy A idg 7))

where r is the structure of right module over T.
The category of F-bimodules is denoted by F-mod-F.

Example 2.6. Let R be a ring and R be the FSP of Example 2.3. Let
T : P(R)— R-mod

be a functor; by direct limit we may assume T to be extended to the category of
projective R-modules which are not necessarily finitely generated. We denote by
T' the composition

forgetful

s.Sets-—L s.free R-mod—T—>s.R-m0d s.Sets .



88 T. Pirashvili. F. Waldhausen
From the adjoint of the composition
R(Y)— Hom,(R(X), R(X A Y))—>Hom (TR(X). TR(X A Y)).

where the first map is adjoint to the isomorphism 15(X)® ﬁ(Y)—) R(X A Y). one
obtains a pairing

T'(X)AR(Y)>T(XAY). (1)
The structure map R® M — M on any left R-module M determines a pairing
R(X)A M—> M®7(X)
as the composition

R(X) A M— R(X)® M = ROMOLX)—»MRQI(X).
Therefore we have a map

R(X) A T(R(Y))— T(R(Y)®Z(X).
Composition of this map with the natural embedding

T(R(Y))®Z(X)= X@} T(R(Y))— T(X@} é(y)) = T(R(X A Y))
yields the pairing
RX)AT(Y)>TX A Y). (2)

By 6.9 and 6.12 of [5] the functor T satisfies the properties (ii) and (iii) of

Definition 2.1. The transformations (1) and (2) above determine the structure of
R-bimodule on T'. Therefore we obtain the functor

't F(R)— R-mod-R .

Definition 2.7. A bifunctor with F-action is a (covariant) bifunctor B

which is a
functor with stabilization for each variable together with natural trans

formations
tyyz: F(X)A B(Y,Z)—- B(XAY, Z),
xv.z B(X,Y)A F(Z)"’B(X, YAZ),

such that B(-, Y) and B(X, -) are left and right F-

modules respectively for every
X.Y and
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Cxyzawlidpy ATy 20) = e ay 2wl y 2 Aidgy)

The category of bifunctors with F-action is denoted by F-bif.

Examples 2.8. (i) Let T be an F-bimodule and T” the bifunctor defined by
THX.Y)=T(XAY).

Then we obtain a functor
* : F-mod-F— F-bif .

(ii)) Let M be a left F-module and M A F the bimodule defined by

MAF)X,Y)=M(X) A FY).

Then M A Fis a bifunctor with F-action and for any bifunctor B with F-action we
have

Hom, (M A F, B) =Hom__, (M, B(-, "))
Below for any functor
E : C—s.Sets
we denote by L.E the homotopy colimit of E (see [2]).
Let I be the category whose objects are the natural numbers considered as
ordered sets and whose morphisms are injective maps. For any X € I we denote
by |X| the cardinality of X and for any X =(X,, .. LX)ED we let LIX

denote X, LJ X, - --L1X,, where LI means concatenation.
We are going to define a spectrum THH(F, T) for each F-bimodule T. To this

end, let THH(F, T)(m) be the simplicial space defined by
[n]= L, (G,(T)),
where G, (T), or more simply G,. G, : I"""—5.Sets, is the functor
G.(X)= 098" A T(S™) A F(S™ ) A -+ A F(S™)).
The face operators are induced by the natural transformations

", " - <
d:.G,—G, 9, O=si=n,
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where 9" : I""' > [" is the functor

n _ (X(l*""XJL"’Xi+I"'"Xn)' {)Si<n,
X\ UX. X X ). i=n.

and

QUXS™ A r A FS¥) A A F(S™)), i=0,
A" (X)={ QXS ATS " A Ap A A FS™), 0<i<n,
QU5 S™ A CAFS YA AF(S* Y)op, i=n,
here p is the map induced by cyclic permutation on I" ', i is the multiplication on
F, and ¢ and r are the left and right multiplications on 7. The degeneracy

operators are similar. _
Let B be a bifunctor with F-action. Let THH(F, B)(m) be the simplicial space

[n] g L[”*z(én) ’

where G, : I"" — s Sets is the functor

~

G"(Y)ZQUY(S'"/\ B(SY.l’SYn)A F(SYl)/\ - F(SY")),

here Y=(Y_,Y,....,Y)EI"" The face operations are induced by the
natural transformations

" G,—G, 3",

n—1

where 87 : """ — """ is the functor

- (Yo,,...,Y, Uy, ,,...,Y), O0<i=sn
a{l Y — i i+ L AR >
/() {(YnUY“l,Y”,...,Y,,,l), i=n,
and
[ OYYB(S™ A F(ST) A A F(S™Y.
i=0,
. L
inry=1 1 YBS" LS AFS YA A A A F(SY)
0<i<n,
O "B(ES" ) A F(S Y A A F(ST 1Yo p
\ i=n,

here p is the map induced by cyclic permutation on [""'. The degeneracy
operators are similar,
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The rule m+— THH(F, T)(m) (resp. T’]TH(F,B)(m)) gives a spectrum with
structure maps like those | in [2]. The corresponding infinite loopspace is denoted
by THH(F, T) (resp. THH(F, B)).
By definition THH(F. F) coincides with THH(F) from [2].

Proposition 2.9. Ler p=0. Then there exists k €N such that, for every
X . Xyo.ooo. X, with

(resp.

is a p-equivalence.

Proof. In view of property (iii) of Definition 2.1, the proposition follows from [2.
Section 1]. U

Proposition 2.10. Let T be an F-bimodule. Then there exists a natural weak
equivalence

THH(F, T*)— THH(F. T) .

Proof. Let f,: [""*— I""" be the functor
FX | XKoo X)) = (X U X, X, X,)-

Then é,, =G, °f,. Therefore, by Proposition 2.9, f, yields the weak equivalence
Ly-:G,= LG, .

The sequence of maps (f,), n=0.1s compatible with the simplicial structure and

therefore
f.: THH(F, T*)— THH(F, T)

is a weak equivalence. U

s
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Definition 2.11. Let f: T—T' (resp. f: B— B') be a morphism in F-F-mod
(resp. F-bif). We call f a stable weak equivalence if for any n =0 there exists
m € N such that for every & > m the map

f8*): T(S") - T'(S%)
(resp.
f(S*, %) : B(S*, $*)— B'(§*. 5% )

is an (n + k)-equivalence (resp. (n + 2k)-equivalence).

By Proposition 2.9 any stable equivalence f:T— T’ (resp. f:B—B')
induces a weak equivalence THH(F, T)— THH(F, T') (resp. THH(F, B)—
THH(F, T")).

Proposition 2.12. Let M be a left F-module. Then there exists a homotopy
equivalence THH(F, M A F)~sp(M), where M A F is the bifunctor with F-action

defined in Example 2.8(ii) and sp(M) is the infinite loopspace corresponding to the
spectrum

sp(M)(m) = L,(X+—> Q%(S" A M(SY)).

Proof. Product with the unit map S'~» 2"F(S") induces a contraction in the
augmented simplicial space:

THH(F, M A F)(m)—>sp(M)(m). O
Proposition 2.13, Let
I'-T-T,

be a sequence in the category of F-bimodules such that Jor every k >0 the values of
this sequences on S* is a fibration. Then the natural map of THH(F, T,) 1o the
homotopy fiber of THH(F, T)—THH(F, T,) is a weak equivalence.

Proof. By well-known properties of bisimplicial sets it is sufficient to show that
the map from L,...G,(T,) to the homotopy fiber of L,...G,(T)— LG (T,)is
a weak equivalence. But this follows from Proposition 2.9 and Lemma 2.14,
which follows easily from the Blakers—Massey theorem. O

Lemma 2.14. Let

F—-E->B



MucLane homology and topological Hochschild homology 93

be a fibration such that F and B are n-connected and let X be an m-connected
space. Then

7(EAX.FAX)>m(BAX)

is an isomorphism if i<2n+m. U

3. The main theorem
In this section we prove the following result.
Theorem 3.1. Let R be a ring. Then there exists a natural isomorphism
HY(R)= 7, THH(R) .
By Theorem 1.4, Theorem 3.1 is a particular case of the following theorem.

Theorem 3.2. Let R be a ring and T € F(R). Then there exists a natural
isomorphism

H.(R, T)= = ,THH(R.T').
Proof. Let H/(R, -) be the composition
%(R)—!> ﬁ-ﬁ-modwinﬁnite loop spaces—ﬂ» Ab.
By Proposition 1.3 it is sufficient to show that the groups H (R, -), n= 0, satisfy
the properties 1.3(i)-1.3(iii).
Let

0 T,— T— T,—0

be an exact sequence in F(R). Then for every X €5.Sets we obtain an exact
sequence of simplicial R-modules

0— T,(R(X))~ T(R(X))— T,(R(X)—0.

Hence T.(X)— T'(X)—> Ty(X) is a fibration and by Proposition 2.13 the

sequence of functors H (R, -) satisfies 1.3(i). .
It is clear that L ,MGH(T’)(m) is (m — 1)-connected, therefore THH(R, T')(m)

is also (m — 1)-connected and from the spectral sequence of bisimplicial sets (see
[16]) it follows that
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,,THH(R, T')(m) = Coker(m, L,:G,(T'Ym)=Z 7, L,G, (T )(m)) .
By Proposition 2.9 for any sufficiently large number x we have

7., L,G(T)(m)
=, (8" A T(R(S")))
=H,, (5" A T(R(S)))
= H (T(R(S")))

=7, T(R(S')) = L) T(R).

since R(S*) = K(R,x), T(R(S")) is (x = 1)-connected and S™ A T(R(S')) is
(m + x — 1)-connected. Similarly we obtain

T’mLFGu(T!)(’")
= Teryem(S" A T(R(S")) A R(S))
= H,. (T(R(S") A R(S*))
=LyT(R)®R,

and

7, THH(R, T")
=lim 7, THH(R, T")(m)
= Coker(Ly T(R)® R=2 L' T(R))
= Hoch, (R, Lff T(R)).

For the proof of 1.3(i1) we consider the morphism of left R-modules

R (X) = ROR" (X))~ RIR"(x)]
where E = R™(X). This map yields the morphism in R-bif,

R"(X) A R(Y)— RIR™(X A Y)] = (P,)' (X, V).

By Lemma 3.3 this map is a stable weak

equivalence. Therefore it follows from
Proposition 2.10 that

THH(R, P;,) = THH(R, (P' )*) = THH(R, R” A R) .
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The homotopy groups of the last space are trivial in positive dimensions by
Proposition 2.12. 0

Lemma 3.3. Let i <3n—1. Then
m(K(m, n) A K(r, n))= H(K(m,2n), 7).
Proof. We have the following isomorphisms

m(K(mr, n) A K(r, n))
= mo (K@) A SK(rm) (@)
= lim 7, (K(m, ) A K(r,n + N)) (b)

:h;’n 7T,-_,,+M(K(’n" n) A K(T’ M)) (C)

=H,_ (K(m, n),7) (d)
= H,(3"K(m, n),7) (e)
= H(K(m,2n),7) . (f)

The isomorphism (a) follows from the Freudental theorem, (c) and (e) are easy,
(d) is the definition of homology in terms of spectra. The validity of (b) and (f)
follow from the stable equivalence between 3VK(m, n) and K(m,n+ N). O

4. Relation with Hochschild homology

The main result of this section is Theorem 4.1, which provides an analog of the
Atiyah—Hirzebruch spectral sequence for MacLane homology. The role of the
one-point space and of ordinary homology are played by the ring of integers and
by Hochschild homology, respectively.

Theorem 4.1. Let R be a ring which is torsion free as abelian group, and
T € #(R). Let T € F(Z) be the functor defined by

T(X)=T(X®R),

where X € P(Z). Then there is a natural structure of R-bimodule on H (Z, T) and
there exists a spectral sequence

Ef,q = Hoch (R, H,(Z, T))=> H, . (RT).
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Remarks 4.2. (2) When R is an arbitrary ring, there exists a similar spectral
sequence

E?, = Shukla, (R, H,(Z. T))> H,. (R T) (3)

Pq
where Shukla, means Shukla homology (see [14] for the definition of Shukla
(co-Yhomology). Of course, Shukla,(R, -) = Hoch,(R, -) if R is torsion free as
abelian group. The spectral sequence (3) is obtained from Theorem 4.1 by
simplicial approximation of the ring R by using free rings.

(b) When T=M®, -, where M is an R-bimodule, the spectral sequence has
the form

E:, = Shukla,(R, H)"(Z, M))> H} (R, M). (4)

pPtq
By Theorem 3.1 and Bokstedt’s calculation (see [3]) we have

B (Z,M)=M®1Ii,

5
HYZ,M)=Tor(M, 21i), i>0. ®)

The differentials of this spectral sequence are in general nontrivial. For example,
when

R=M=12/p,

then Bokstedt’s calculation [3] shows that EZ, = EY, d* is nontrivial and
E2p+l — E**

Proof of Theorem 4.1. For arbitrary T € #(R) we denote L T(R) by AdS T, and

the functor P, of Definition 1.2 is now denoted by PX. By Proposition 1.3(iii),
the diagram

o AdR
F(R)———— R-R-mod
Hy(R.-) Hochy (R, -) (6)
Ab

is commutative and H,(R, -) is the left derived functor of Hy(R, -). Since R is
torsion free, the left derived functor of Hoch o(R, ) 1s Hoch, (R, -). We denote
by AdY the left derived functor of the functor Ad Since

Ady(Py)=m,(PE(K(R, n)) = (R®R)", n>0.

the functor AdY sends projective objects to projective objects, and the spectral
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sequence for derived functors of the composition of functors for (6) has the form
E’, =Hoch,(R.Ad;T)>H,. (R T). (7)
When R = Z, the spectral sequence (7) is degenerate and we obtain
AdIT=H (Z.T). (8)
On the other hand we have
(PX)(X)=R[X"®R]= R®Z[X"®R].

Therefore, when R as an abelian group is finitely generated and free, the functor
ﬁﬁ € %(Z) is a sum of functors of the form Pi and therefore is a projective
object in #(Z). In general, when R is only torsion free as an abelian group, the
functor P¥ is a filtered colimit of such objects and therefore still Adg-acyclic.

Since T~ T may be regarded as an exact functor from F(R) to %(Z), the
commutative diagram

FR—L > %(2)

Adf Add
forgetful
R-mod-R—— Ab

shows that
forgetful e Ad®T = AdZT .
Combining (7) and (8) with this equality we get

E, =Hoch, (R, H(Z. TS H, ., (R, T). O
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