Journal of Pure and Applied Algebra 79 (1992) 255-270 255
North-Holland

An un-delooped version of
algebraic K-theory

T. Gunnarsson

Muathematics Instinue, University of Lulea. § 931 87 Lulea. Sweden

R. Schwinzl and R.M. Vogt

Mathematics Institute. University of Osnabriick. P.O. Box 4469, W-4500 Osnabriick.
Germany

F. Waldhausen

Mathematics Institwte. University of Bieleveld. P.O. Box 8640, W-8640 Biclefeld. Germany

Communicated by A. Heller
Received 5 June 1990
Revised 22 March 1991

Abstract

Gunnarsson, T.. R. Schwinzl, R.M. Vogt and F. Waldhausen, An un-delooped version of
algebraic K-theory. Journal of Pure and Applied Algebra 79 (1992) 255-270.

Problems working with the Segal operations in algebraic K-theory of spaces—constructed by F.
Waldhausen (1982)—arose from the absence of a nice groupcompletion on the category level.
H. Grayson and D. Gillet (1987) introduced a combinatorial model G. for K-theory of exact
categorics. For dealing with K-theory of spaces we need an extension wG. of their result to the
context of categories with cofibrations and weak equivalences. Our main result is that in the
presence of a suspension functor—as in the case of retractive spaces—the wG. construction on
the category of prespectra is an un-delooped version of the K-theory of the original category. In
a sequel to this paper we show that Grayson's formula (1988) for Segal operations works as
intended.

1. Introduction

In this paper we start an analysis of the Segal operations in algebraic K-theory
of spaces A(X). We call the operations Segal operations since they can be
regarded as extending the power operations in stable homotopy [9]. These
operations, © =(0,): A(*)—]], A(BZ,). were constructed by Waldhausen in
[11] in his proof of the analogue of the Kahn-Pridy theorem for A(*). These
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operations have been difficult to work with since their construction appeals to
universal properties of the plus construction and since they are extended from
their behaviour on spherical models (cf. [11. remark on p. 395)).

There are many ways to obtain K-theory, each having its advantages. Problems
with defining operations arose from the absence of a nice group completion on the
category level. Grayson and Gillet introduced a combinatorial model G. for
K-theory of exact categories (in the sense of Quillen) in [2]. Their model is a
simplified model of the loop space of Waldhausen’s §.-construction. For dealing
with K-theory of spaces we need an extension, wG., of their result to the context
of categories, €, with cofibrations and weak equivalences.

In the presence of a suspension functor (as in the case of retractive spaces), we
apply the Grayson and Gillet construction to the category of prespectra. Our
main result is that this is an un-delooped version of the K-theory of the original
category (Remark 2.7). This is a consequence of the fact that the construction
gives the desired model for categories which we call pseudo-additive (Theorem
2.6). This situation includes the cases treated in [2].

In general we have to iterate their construction infinitely many times (Theorem
2.8). Our proof is more in the spirit of [12], the key point being the proof of the
additivity theorem for wG. . Technically the material is centered around a suitable
generalization of [12, Proposition 1.5.5] from which the result follows by com-
parison of fibration sequences. One of the motivations behind this model was that
it should be used for constructing operations more directly.

Grayson used this model in [3] to provide a framework for long exact sequences
in algebraic K-theory and in [4] to define formulas for A-operations in K-theory.
(These formulas also give formulas for the Segal operations.)

In a sequel to this paper [6] we will show that Grayson’s formula for Segal
operations, interpreted for categories with cofibrations and weak equivalences,

works as intended. The total Segal operation, its applications and structure will be
studied using these models.

2. Definitions and statements of theorems

Before we can state our theorem we need some definitions and some facts from
[12]. Notations not explicitly recalled are taken from [12].

An object ¢ €of can be considered as an object in w€of by letting w€ := i%,
the category of isomorphisms in €. '
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S.: w€of— A — wéof is the functor defined in [12, p. 328]. A™ is the index
category for simplicial objects.

For X. € A°" — wéof we let PX. denote the corresponding path object PX, =
X, .,. The boundary map d, : X, ., — X, defines a morphism d,, : PX.— X. . This
path object is simplicially homotopic to the constant simplicial object X, by a
homotopy that is described in [12, Lemma 1.5.1, p. 341]. Note also the map
X, = PX,— PX. where PX,, is considered as a constant simplicial object.

Definition 2.2 [2]. G.: w€of— A°" — w0 is defined by the cartesian square

G.¢ —— PS.€

|-

PS. € —2 s 5.%

in A" ~ wéof.

The maps € =(PS.%),— PS.¢ and the zero map € — PS.% give an inclusion
€— G.%€ where € is considered as a constant simplicial object. This map can be
viewed as a map of multisimplicial categories and in this way it becomes the first

map of a sequence of maps

€= G.€— G.(G.€)> —(G.)'E
> G.(G.)€)=:(G.)' "6

The colimit will be denoted by G >, which is a multisimplicical object in wéd.

In [2] G. was only defined for exact categories in the sense of Quillen [7], but
the definition makes sense in the general case: The weak equivalences in G, € are
given by the pullback

wG.€¢ —> wPS. €

L

wPS. € —— wS. ¢

Similarly the cofibrations are given by

cof(PS,€) ﬂ>: ( )cof(PS,,Cg).
That this makes G.€ a simplicial object in w¥of follows from the fact that G, € is
equivalent to the fiber product [ (d,. d;), (cf. [12, Lemma 1.1.6, p. 325]). This in
turn follows from the fact that

i\PS,6—1,S,6—1,5,6 X Ob(PS,€)

h(S, ¢}

“n

e
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has a section. (Here i, denotes the set of isomorphisms. The pullback is taken
over (source, Ob(d,)) and the map is induced by (i,d,,. source).)

It will sometimes be convenient to use the fiber product [] (d,. d,)). instead of
G.%6. We denote the fiberproduct by G. . Since |wPS. €] is contractible to
|wS, €|, which is a point, it follows that diagram (1) defines a map

IWwG.€|— 0|wS. €]

We will show that this is a weak equivalence when ¢ has the following property

(P).

Definition 2.3. (i) A catcgory € € w'tofis said to be pseudo-additive (P if there is
a given a natural sequence P of exact weak equivalences between the functors

A C A CULC resp. ArsCU, (A v CIA)

in €, the category of cofibrant objects under A for each A in (. This
pseudo-additive structure is also required to be naturally exact in the cofibration
A—C.

(ii) A pseudo-additive functor is an exact functor which respects this extra
structure.

(iii) The category of pseudo-additive categories and functors is denoted by
wPadd. It comes with a forgetful functor to w¥of.

Remark 2.4. (1) Finite limits, fiberproducts and categories of filtered objects can
be formed in w2add, provided they exist in wtdf.

(2) There are natural extensions of the wG.- and wS.-constructions to the
wPadd situation.

A category € with cofibrations and weak equivalences is pseudo-additive (P) in
the following cases:

(3) Cofibration sequences in € are split.

(4) € has a product such that the maps

[
(, )€U CmCxclaaCyv A (= (Cu, (A cray

are exact weak equivalences.

(5) 37€ is the category of prespectra associated to a category ¢ € wéof with a
cylinder functor satisfying Cyll and Cyl2 in [12, p. 348] and the cylinder axiom
[12. p. 349]. Then € has a suspension functor 3 and ¥ “¢ is defined as

colim(¢—— ¢ -5 ¢—.. ).

One can also define 3 as the homotopy colimit, and hence use the familiar

description of prespectra. All what follows is truc for both definitions. 3 "¢ is
dgain a category in wéaf. X can be viewed as a functor with values in wPadt.
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For (5) the following lemma is needed:

Lemma 2.5 {12. Lemma 1.8.2. p. 368]. To X>>A in €y there is naturally
associated a chain of exact weak equivalences in ..

(XX YAU, SA) ~(3X—>3AU, YAI3X). O

Theorem 2.6. The map |wG.€|— Q|wS. €] is a weak equivalence if 6 is pseudo-
additive (P).

This will be shown below.

Remark 2.7. For exact catcgories [7] 2.4(4) is fulfilled, with isomorphisms as
weak cquivalences, giving the case originally treated by Grayson and Gillet.
Theorem 2.6 is a generalisation of Theorem 3.1 in [2]. which states that
lg. €| = Qs. €] is a weak cquivalence if € is an exact category [7]. Here
g, ¢ =0b(G, €)and s, { =0b(S,¢). That this is a special case of Theorem 2.6
follows from the fact that |g.€|—[iG.%€| is a weak equivalence. This will be
discussed later. That |s. (| —]iS.%| is a weak equivalence is proved in [12, part
(2) of the corollary to Lemma 1.4.1, p. 335]. By [12] the wS.-construction is
insensitive, up to weak cquivalence. for forming "€, Hence wG.2 *is a model
for £2|wS.|.

We will later define a map |wG:6]— 2|wS. €| and show the following:

Theorem 2.8. The map |wG €|~ Q|wS.€| is a weak equivalence for all ¢ e
wéof.

For C € w%of let E(€) denote the category of cofibration sequences
A C»Bin ¢

(f.g): E(€)=€x%. (A—>C>B)~(A.B).

It is shown in [12, p. 325] that E(€) € w0 and that (f. g) is an exact functor.
It will be convenient to collect the propertics of |wG. €] and |wG 6] that are
needed in the proof of the thcorem.

Definition 2.9. Let . be a class of objects in w¥y. We call a functor

F.: w6of— A*"-Sets,, .M-admissible if the following holds for all & and 2 in w%af

and for all € in 4.

(1) F.(pt)— pt is a weak equivalence.

(2) F.(od X B)—> F.(d) X F.(B) (given by the projections) is a weak
equivalence.
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(3) F.(E(€))— F.(6 x €) (given by (f, g)) is a weak equivalence. (We say
that the additivity theorem holds for F. )

(4) m,(F.()) is a group under the operation induced by the categorical sum in
.

(5) F. transforms naturally isomorphic exact functors to homotopic maps.

We will only use the cases when .# is w¥of or w2add. In [12] it is shown that wS.
is wéof-admissible. We will show that wG. is wPadf-admissible:
(2.9(1) and 2.9(2) hold trivially. (2.9(3) is covered by the following;

Theorem 2.10 (Additivity theorem). For any € € w?add the map
WG.(f, &)] 1 IWG.(E(€ )= |wG. €| x |wG. €|

is a weak equivalence,

This is the main ingredient in the proof of Theorem 2.6. Conversely it is a
consequence of that theorem and the additivity theorem for |wS.€|. 2.9(4) for
|wG. €| is Lemma 2.11. We will discuss 2.9(5) in Proposition 2.13.

Lemma 2.11. 7, (wG.%€) is a group under the operation induced by the categorical
sum.

Proof. This reduces to showing that the monoid m(g.€) is a group. For this,
using the notation of [2], put

B[]
B(’) B() ‘

To see that this gives an inverse, we have to provide a homotopy

Such a homotopy can be defined by a I-simplex in g.%€. This in turn, again using
the notation of [2], is described by the following diagram:

*—> B, v B|

||

BU v B()

]
B,v B,

| ]

*=— BV B, |
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For the next lemma we need some notation.

€'") denotes the category of functors from [n]:=(0—>1—"--—n) to € and
%(n. 1) is the subcategory of ¢!"} of those functors which take values in i€. The
category €(n. i) is in wof by [12]. iF.(6) is the diagonal of the bisimplicial set
ne— F.(€(n,1)).

Lemma 2.12. For a functor F.:w%of— A°"-Sets, the following are equivalent:
(1) A natural isomorphism m of exact functors f,.f,: €—> % in wof induces a
homotopy of the maps F.f, and F.f,.
(2) F(€)— iF.(€) is a weak equivalence.

Proof. (1)=>(2) by the argument in [12, p. 335].
(2)=>(1) follows, if we can show that iF. satisfies (1).
This is seen as follows. For ¢ : {n]— [1] define a functor ¢"l > g " by

(Cp—- = ()= ¢(0)(C0)—" ) '_’f¢(n)(Cn) )
where, if p(k)=0and @(k + 1) =1, we use the composition of
Ne, - fn(Ck)'“"fl(Ck) and fl(Ck)"')fl(CkH)-

The remaining maps are given by f, and f, respectively.
The construction is simplicial in the variable n and hence gives a simplicial

homotopy between iF.(f,) and iF.(f;). U

Proposition 2.13. A weak equivalence of exact functors f,.f, : €— @ induces a
homotopy between |wG.f,| and wG.f,|.

Proof. This is shown in the same way as the corresponding proposition for wS. in
[12, Proposition 1.3.1, p. 330]. U

Lemma 2.14. The map |g.€|— |iG. 6| is a weak equivalence.

Proof. The argument is similar to the S.-case [12, p. 335]. O

3. Reduction

Theorem 2.6 will be a consequence of a variant of Proposition 1.55 in [12]. One
main ingredient is a reformulation of the additivity theorem.

Proposition 3.1 [12, Proposition 1.3.2]. Each of the following assertions implies all
the three others for a functor F.: w¥of— A°"-Sets,:
(1) The following projection is a homotopy equivalence

FAE(d, €, B)— F(A) X F(B),  A»>C»B~(A.B).
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(2) The following projection is a homotopy equivalence
FAE(¢)— F.(€)XF(€). A—C->»B—(A.B).
(3) The following two maps are homotopic (resp. weakly homotopic)
F.E(€))— F.(€) . A-C»B-(, resp. Av B .

(4) If J'>>j»j" is a cofibration sequence of exact functors '~ (. then there
exists a homotopy

F(D=FEGY v E(Y(=FG vy, O

Recall the N. construction from |12, p. 367]. N :wof— A" — witofis defined
using the categorical sum. N, € is equivalent to €, but contains also compatible
sum diagrams which make N. simplicial. It even carries a I'-structure [8).

Consider a cartesian square

Gf.— PS.¢

e

ﬂ.*L» S.€

of simplical objects in w€of (resp. in w2adf). That %f. € wof follows by the same
argument we used to show that G.¢ & w€of. Let € — 4f. be induced by the zero
functor € — . and the inclusion €— PS,¢— PS.¢. The following is the
generalisation of 12, Proposition 1.55] we will use.

Proposition 1.55". If F, is an M-admissible functor and each 4f, is in M, then
F(€)— F.(%f)— F.(«4)

is a fibration sequence up to homotopy.

We will need Proposition 1.55' in the cases, where M is wéof or wZPad,

Proof. First we show that for each n

F(€)— F.(%f,)— F.(«4,) (2)

is weakly equivalent to a fibration sequence. Adapting the proof in [12, Proposi-
tion [1.55] we define an exact functor

"Qqn X <6—) (gfn by (a' C)H(a’ cv SU n(a)) .
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Here v is a sum in (PS€),. The map s, is the zeroth degeneracy §, € — S, € =
(PS¢), and c is interpreted as an element of (PS¥€), via %—za(PS(é’)oe
(PSY),.

We obtain maps of sequences.

Fi(€)— Fu(d,) X F(€)— F.(s,)

| I \\

) F.(od, % €) F.(,)

O |

P"( ( )——'——_—.‘)F’(!‘[j/;r)_‘——"—)F'(‘dn)

F.(

The top sequence is a product fibration, which by the assumptions on F. is
weakly cquivalent to the sequence in the middle.

The map F.(, x €)= F.(%4f,) is a weak equivalence by an argument which
uses the additivity theorem for F. and parallels exactly the discussion in [12,
Proposition 1.55].

We have now proved that (2) is a fibration sequence. It remains to show that
the diagonal of (2) is a fibration sequence up to homotopy. For this we choose the

following argument.

First we observe that the spaces have natural ['-structures n— F.(N,€). We
use this structure to form a classifying space (cf. [8] or [12]). Call this BF.. which
is still an .ff-admissible functor and hence gives a fibration sequence up to
homotopy

BF.(t)— BF.(%f,)— BF.(%,)

by the above argument.
Since the base spaces now are connected, we can apply [11, Lemma 5.2] and

conclude that

BF.(€)—> BF.($f)— BF.(sd.)

is a fibration sequence up to homotopy. We note that, since the I'-structure is
natural, B commutes with taking diagonals. We now usc the fact [8] that
2BF.(€) is a natural group completion and obtain a map of sequences

F.(€)———— F.(4f)———F.(d.)

l | l

(BF.(¢)—— QBF.(4f.)— QBF.(s/.)

Since it follows from the assumptions on F. that the spaces in the top sequence
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are grouplike we can deduce from [8] that the vertical maps arc weak
equivalences. [

Proof of Theorem 2.6 from Propesition 1.55". (a) Let f=d,: &.= PS. €6 — S.¢.
This gives for a w?add-admissible functor F. a fibration sequence

F.€¢—>F.G.€—>F.PS.¢.

Since PS.%€ is simplicially contractible we obtain that

F.€—> F.G.¢

is a weak equivalence. With F.=|wS.|. this gives a weak equivalence

|wS.€|—|wS.G.€|. With F.=|wG.|. this gives a weak equivalence
IwG.6|— |wG.G.€|.

(b) Let f=1;, : S.€— S.€. This gives a fibration sequence
F.(€)> F.(PS.6¢)— F.(5.%)

with contractible total space. The contraction of PS.¢ and a contraction of F.(pt)
to a point gives a map F.(¢)— QF.(S.€) which is a weak equivalence.
(c) Now consider the diagram

F.(€)———F.(%)

| l

F(G.(€))—— E.(PS.%)

| |

F.(PS.€) —— F.(5.%)

Since the columns are fibration sequences up to homotopy, it follows that the
square is homotopy cartesian. We will use the case F.=wG..
Consider the map of squares

IWG.6| — |wPS. €| |wG.G.%| —— |wG.PS. €|
| | — l

[WPS.€|—— |wS.%| |WG.PS. 6| —— |wG.S.%|

where the component maps are

e given by inclusions % — G. 9, for the appropriate
s.
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Consider first the commutative diagram

wS. ¢ —— |wS.G. €]
Sk
lwG.S. €|

Here a is a weak equivalence by (a). B is an isomorphism. Hence y is a weak
equivalence.

Two of the components of the map of squares are maps of contractible spaces.
The remaining map is a weak equivalence by (a).

The right-hand square is homotopy cartesian by (c). Since the map of squares is
a weak equivalence, it follows that the left square is homotopy cartesian. The
simplicial contraction of |[wPS.%| to a point then gives a weak equivalence
wG.€|— 2|ws.€|. O

Observation 3.2. The map |wG.%|— Q|wS.¥€] is natural in €. This means that
we can replace ¢ by N.%6 and hence we observe that the map is an infinite loop
map with respect to the structure given by categorical sum. But this structure can
be used to define the infinite loop space structure on |wS.€|. (Actually. by the
additivity theorem the map |wS.N.6|—|wS.5.6| is a weak equivalence. This
follows by concatenation of [12, Proposition 1.55] and [12, Lemma 1.8.6]).

Remaining proofs

It remains to show the additivity theorem (Theorem 2.10).
Proof. For cach A consider the following diagram of bisimplicial sets:

£71(m, 0, (id, v,)*(A) — = f ' (m. n, A)————>w.G.E(¥)

l(B) 1(4) 1(5)

A" X .G — s AT X AL X w.G.E—— w.G(€ X €)
l | fo
A o) A x A A WG

w.G.9 denotes the dimensionwise nerve of the simplicial category wG. 9. The
diagonal of (5) is the map of the theorem. The map (6) is induced by projection
to the first factor (i.e. the composition of (6) with (5) picks up the subobject of a
cofibration sequence). The subscripts 1 and 2 on the standard simplices denote the
corresponding simplicial directions, ‘1" is the ‘w-direction’. v, is the ‘last vertex’-
map. All squares in the diagram are pullback squares.

By a weak equivalence of bisimplicial sets we will mean a map whose diagonal
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is a weak equivalence. Recall that the diagonal of a map f..: X..— Y., of
bisimplicial sets is a weak equivalence if cach f.. (or cach f..) is a weak
equivalence of simplicial sets. This will give us freedom to freeze different
simplicial directions when considering different maps. To see that (5) is a weak
equivalence we will compare the fibres of the map (6) with the fibres of the
composition of (6) with (5).

(1) is a weak equivalence. (2) is a weak equivalence by [12. p. 33Y]. (For that
argument we fix the second dircction.) To prove that (5) is a weak equivalence it
suffices by the argument in [5. Proposition 15.4] (shown in the Appendix) to see
that (4) is a weak equivalence for all A and hence by the above that (3) is a weak
equivalence for all A. This is a consequence of the pscudo-additivity. For this step
we can, to begin with, fix the second direction.

Actually let

jif 'm0, (id, v,)*(A)—f '(m.0.(id, v,)*(A))

be the functor given by
(A C»ClAy~> (A A v C/A»C/A).

We will show that j is homotopic to the identity, from which it follows that (3)1sa
weak equivalence.

By the pseudo-additivity structure there is a natural sequence of weak equiva-
lences pictured as follows

Ar—— CU, (AU CIA)— CIA v CIA

| ol

Ar———CU, C———>»C/Av C/A

where (6) is the sequence given by the pscudo-additive structure and (7) is given
by computing the cofibers using the base category. This means that there is a
sequence of weak equivalences

dU, j=idU,id.
By Proposition 2.13 the functors |id U, j| and [id U, id| are homotopic. Since by
Lemma 3.3 below the space |f~(m, 0, (id, v,)*(A))| is a grouplike infinite loop
space, we can subtract id and obtain that j is homotopic to the identity. [J

Lemma 3.3. | f~'(m, 0, (id, v,)*(A))| is grouplike.

Proof. Just as in the case of wG. € we will show that m,(f '(m, 0, (id, v, )*(A)))
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is a group by exhibiting an inverse for the operation given by sum along ATt
suffices to do this when the w-dimension is fixed.
The inverse is given by

Actually the zerosimplex

f_ (vB' Bv B’
A CvB "B VvEHB

2

is connected to the zerosimplex

*
-y ==
%

= >

>

=] =

via the 1-simplex

l

=A\»—~» Ay—CvB\ —> [x—>BvVE
*

> C/IAv B’ = Bv B’
* ——s C'/A'v B = B'vB

A=A r— A’*———’C'VB/——“—»\*F-—)B'VB/

Remark 3.4. Let ¥ be the category of finite pointed mmphcal sets, € the
corresponding category of finite suspension prespectra and €. the category of
finite pointed sets. The natural functors

Elogi-¢
give the following commutative diagram with weak equivalences an indicated:

WG.(€1) —— wG.(F ) ——wG.(6)

S

OwS.(¢1)—— OwS. (F1)—— QwS.(€)

| |

QSO———‘——-"—')A(*)
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The upper-left vertical map is a weak equivalence since the assertion in the
additivity theorem is induced by an equivalence of categories. On the other hand
the upper-right vertical map is a weak cquivalence by the pseudo-additive
structure exhibited in Lemma 2.5.

Note that the diagram gives a description of the natural map from QS" to A(*)
using G.-models.

4. Iteration of the G.-construction
Theorem 2.8 is a consequence of the following:
Theorem 4.1. For any € € wof there are weak equivalences:
WG —— QWG S.¢ — OwS.¢. 0O

Aside from first explaining the maps this amounts to showing that wG . is a
wof-admissible functor. As usual g7 will be the version of wG * suppressing the
w-direction,

We enter again the discussion following Proposition 3.1:

The first map is given by the composition of the maps in (a) and (b) of the proof
of Theorem 2.6 from Proposition 1.55 for F. = wG .

The second map is by taking loops in the iteration of the cited map (a)
composed with the switch of simplical coordinates wS.G “¢ —s wG*S. €. The
second map of the theorem is a weak equivalence by (a) of the cited proof since
wS. is a w¥€of-admissible functor.

The first map of Theorem 4.1 will be a weak equivalence also by (b) of the
cited proof once we have shown, that wG~ too is a wof-admissible functor.

Properties (1), (2), (4), (5) follow from the corresponding properties for wG.
by taking colimits. So it remains to show the following:

Lemma 4.2. wG? satisfies the additivity theorem.
Proof. By the usual reduction it suffices to show, that g satisfies the additivity
theorem on categories with cofibrations. By the argument in [12, p. 332] with
Q7wS? replaced by g< it suffices to show, that the two maps

t:0b[E(€)])— g.%¢ , [A>>C»B]~C

and

sV q:0blE(6)]—>g.%, [A—>C»B]—»AvB



An un-delooped version of algebraic K-theory 269

are connected by a sequence of simplicial homotopies. (Whenever € stands for
g'. then s v g is always computed making choices in .)
The required homotopies are given by the three one-simplices

t——tv(sVvgq)

l

svqg (3)

*——— 5V (g

sv{svg)r——tvi(svq)

i

q 4)

|

S)——————-*——)S\/q

svgr——sv(svyq)

l

s (5)

|

* 3§ 0

Appendix

Here we give the argument from [5] used in the proof of the additivity theorem.
Let f : E—> B be a map of bisimplicial sets. The pullback square

fx)——E

|

AT X A':'——L—»B

defines a functor f ' : A x A/B— Bis, where is is the category of bisimplicial
sets and f~'(x) is the fibre over x. We will show that if a map of bisimplicial sets
over B induces weak equivalences of fibres over all x € Ob(A x A/B) then it is a
weak equivalence.

The maps f~'(x)— E combine to a map p;: hocolim,, ,,,f ' — E. Here
hocolim,, ,,,f " stands for the trisimplicial set
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(ka l’ m) —_ U f_l(x)(l.m)

n m n
X-\w”‘*"'—’-\] AX"‘E‘

]

B

m,

4

The diagonal of this space is the ho-colim of [1]. The squares in the diagram

. -1 Vg
hocolim,, ,,,g —F,

l |

. -1 Py
hocolim,, , ,f ——F,

f
. . _1 Pidg
hocolim,, ,,,(id;) —— B

where g = fe h are cartesian. The map P, hocolim,, , 4(id,) "' — B is a map of
trisimplicial sets, when considering the bisimplicial set B as a trisimplicial set in a
trivial way. Then, freezing the two original simplicial directions, we have a
dimensionwise weak equivalence. To see this we note that the inverse image of
be B,, is the nerve of the category of bisimplices in B under b, which is
contractible since this category has an initial object. Observing that
p; +hocolim ,, ,,, f ' — E has the same fibres as Pigp- 1t follows that p, is a weak
equivalence. Hence h is a weak equivalence iff hocolim,, . ,(h) is a weak
equivalence, and this is the case if each of the maps between the fibres

g '(x)—=f '(x) are weak equivalences for all x € Ob(4 x A/B), since ho-colim
preserves weak equivalences [1].
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