ON MAPPINGS OF HANDLEBODIES
AND OF HEEGAARD SPLITTINGS

Friedhelm Waldhausen

It is quite common in mathematics to take a method which has been
successful somewhere and try to apply it somewhere else. The present work
flows from this principle. Its main result is preliminary to an attempt of
applying the cancellation arguments of [3] and [4] to the context of the
Poincaré conjecture. This result asserts that, at least in a suitable stable
Sénse, any proper degree 1 map between handlebodies is of the obvious

type.

1. Mappings of Handlebodies

Let Vand X be oriented n-manifolds with boundaries oV and dX, respec-
tively. A map f:V, 8V — X, 3X is of degree 1 if f, sends the fundamental
class of ¥, &V to the fundamental class of X, éX. A good reference for such
maps is [1]. In particular, we note the following properties : (a) f|¢V also has
degree 1, (b) f, i,V —» n, X is surjective, and (¢} given any n-ball B" in
Int(X), f can be deformed so that f| f~(B") is a homeomorphism.

We now specialize to (3-dimensional, orientable) handlebodies which by
definition are obtainable from the 3-ball by adding 1-handles ; the number of
these handles is called the genus. A degree | mapf:V,¢V - X,cX, where V
and X are handlebodies of genus m + n and n, respectively, is also called a
map of type (m + n, n). Maps of type (m + n, n) are sorted into equivalence
classes by allowing (a) proper homotopic deformation of /. {b) composition
with an orientation-preserving homeomorphism V — V, and (c) composition
with an orientation-preserving homeomorphism X — X.

Lemma 1.1. There is but one equivalence class of maps of type (n, n).

Proof. Since f|¢V has degree 1 and ¢V and #X have the same genus,
f1€V is homotopic to a homeomorphism. By Dehn’s lemma., aspherity of X,
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and the Alexander trick, it follows that f is properly homotopic to a homeo-
morphism, )

Givendegree 1 maps ofhandlebodies, f: V, oV — X, fX andg: W,cW-Y,
0Y, there is a unique equivalence class which is the sum of fand g, denoted
J #g. A representative of f # g is obtained by making f]f " l(('/) non-
singular, where U is a regular neighborhood of a point in ¢ X, and similarly
with g, and glueing in the obvious way.

A standard map of type (m + n, n) is, by definition, equivalent to a sum f)f
maps of type (n, n) and (m, 0), respectively. There is but one standard map in
each type (up 10 equivalence), and the sum, or composition, of standard
maps is again a standard map. _

I do not know if there are nonstandard maps. It can be seen by inspection
of the proof of Theorem 1.4 that maps of type (n + 1, 1) are standard. This
suggests that maybe all others are standard as well.

We now introduce an operation which will turn out not to be really nEw.
Let f:V,0V > X,0X bea degree 1 map of handlebodies. Let V' be obtan_lcd
from V by attaching the ball I x D (I = the interval, and D = the 2-disk)
along D x élat V,and f from f by an extension such that f'(] x D) < &X.
Then we say that f” is obtained from S by adding a handle.

Lemma 1.2, In the situation of the above definition, f is equivalent to the
sum of fand a map of type (1, 0).

Proof. Since (f 1oV)y: mdV - m,0X is surjective, there exists a map
g1 — dVsothat fogand f|I are homotopic in 30X rel dI. We may assume
that g is nonsingular, for, assuming g in general position, we can push off
the singularities one after the other across g(dl), starting near the ?ﬂds'
Let U denote a regular neighborhood of gilyvél x D in V. There is an
extension I x D> UndVofgand Uul x D— Uisa mapping of type
(1,0). Obviously, ' is equivalent to the sum of f and this mapping.

As a corollary, we obtain a criterion for a map to be standard.

Corollary 1.3. Let V, oV - X, 0X be a map of type (m + n, n). Suppose
there are m independent meridian disks D,,..., D, in V (ie, a system of m
properly embedded disks the union of which does not separate V) such that,
fori=1,.m, f1eD; is contractible in 3X. Then f is standard.

Proof. We may assume that S sends a neighborhood of uD, into ¢X.
Removing a small open regular neighborhood of uD, we obtain a map of
type (n, n). This is standard, and from i, fis obtained by adding handles. '

Next we introduce another operation on degree 1 maps of handlebodies.
This is somewhat mysterious, but it is extremely useful.

Let f:V,¢V — X, 0X be such a map. Let k be a proper arc in ¥ which is
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unknotted in the sense that there exists a disk D in V so that k oD, and
CéD ~ k) =D éV. Let U be a regular neighborhood of k. Then
V' = Cl(V — U)is again a handlebody. Now assume that f(U) is contained
inéX. Then f' = f|V'isalsoa degree | map of handlebodies. We say that f”
is obtained from f by drilling a hole.

Theorem 1.4. Let f: V, 3V — X, ¢X be any degree | map of handlebodies.
Then f can be made standard b y deformation and the operation of (repeatedly)
drilling a hole.

Proof. To have a good induction, we must first generalize the theorem to
the following more general situation. We augment our data by assuming
given in the boundary of each handlebody V a system v (possibly empty) of
(mutually disjoint) disks. A degree | map f: V, 8V — X, 8X must satisfy f|v
is a homeomorphism, and f~!(x) = v. In the definition of equivalence, the
homeomorphisms must respect the systems of disks, and the homotopies are
through degree 1 maps in the restricted sense (such homotopies will be called
allowable). A map is standard if it is equivalent to the sum of an identity
and a map W, oW — B, 0B with no disks in 6B°.

Lemma 1.5, Let Fbea system of proper disks in X so that any component
of F 0 x is an arc, and this intersection is in general position. Suppose further
that any component of F or x contains at most one component of F n x. Then,
by allowable deformations and the operation of drilling a hole, any component
of f “X(F) can be made a disk.

Proof. By an allowable deformation we put f in general position with
respect to F. Then, in particular, G = f ~!(F) is a properly embedded system
of orientable 2-manifolds in V, and for any component of G, the intersection
with v is at most one arc and is in general position. Since X is aspherical, it is
tasy to remove 2-spheres from G ; so we assume there are none. Now for any
such G in any handlebody V, the following is true by a standard argument.
If at least one component of G is not a disk, then there exists a disk D in V
which has one of the following two properties: (a) D < Int(V),and DN G =
0Dis not contractible in G,or(b)Dn¢éVisanarcindD,and DNnG=0DNnG=
CUD ~ aV)is an arc which in G cannot be pulled into 4G with its end points
kept fixed.

.We will use D to perform a surgery on f'in order to simplify G. In case (a)
this is easy. As X is aspherical, f| D can be pulled into F keeping f|éD fixed.
Hence there is an allowable deformation of f to the effect that a neighborhood
of 0D in STHF) will be replaced by two copies of D, thus simplifying
C=7"YF).

In case (b) we may assume that D n x = (¥, , since otherwise we could
push D off x. Similarly as before, our task is to replace a neighborhood of
Dnf-1r ) by two copies of D. We will do this in two steps. Denoting k

)
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the arc D n &V, we wish to perform first a surgery on G using k (to the effect
that a neighborhood of ¢k in G will be replaced by a sort of a half-tube around
k). After this we would be in a position to perform the surgery of case (a),
which as before presents no problem, and the total effect of the two steps
would be just what weareafter. In order that the first step (the surgery along k)
can be performed, it is necessary and sufficient that there exists a deformation
of flk: k — é¢X, fixed on @k, which pulls f(k)into ¢F and avoids x altogether
(and on Int(k) 1s disjoint to F except in the final stage). Let us call any singular
arc f*k* good if it has all these properties. There is no reason to suppose
that the given singular arc f|k is good in this sense. Note, however, that if we
were allowed to deform flk through Int(X) (keeping fick fixed), then we
could make it a good arc; i.e., we could make it very close to that arc in ¢F
which is bounded by f(dk) and avoids the disks x in #X. Let now k" be any
arc in D which is proper both in D and ¥, and let U be a small tube around it.
k" 1s unknotted, hence V' = CKV — U) is a handlebody. Let D’ denote that
one of the two components of Ci(D — U) which contains D n G, and let
k"= CiéD" — G). k' is contained in Int(V), except for two pieces near the
ends, and these are as small as we like. Nothing prevents us from deforming
f1U as we like, as long as we avoid F and keep (U ~ éV). In particular we
can achieve that f(U) < ¢X and that f|k’ assumes a position we would have
liked f1k to take. We now perform the operation of drilling a hole on f:V,
¢V — X, ¢X by passing from f: V to fICV — U). This leaves unchanged
G = f~(F), hence does not alter the complexity of the problem. k’ now
takes the role of k, and f'|k’ is good ; hence we can perform our surgery.

Lemma 1.6. Same hypotheses as in Lemma 1.5, same operations. The
conclusion is that f| f = Y(F) can be made a homeomorphism.

Proof. We assume the conclusion of Lemma 1.5, and as before we let
G = f B 1(_F ). |G is a proper map, hence its degree is defined. As fis in general
position, it is essentially a product near G. Therefore, since the degree of f
can be calculated locally, it follows that f1G has degree | if the components of
F and G are suitably oriented.

Let F; be a component of F. If G; = f~!(F)) is connected, then f|Gj,
a degree 1 map between disks, is properly homotopic to a homeomorphism.
IfG; n vis nonempty, where v is that system of disks in 8V, then it is precisely
one arc, and f|f ~(f(G; n v)) already is 2 homeomorphism. Hence in any
case the homotopy from f|G; to a homeomorphism can be induced by an
allowable deformation of f.

Therefore, all we have to worry about is how to connect up the com-
ponents of f ~!(F)), for the various components F; of F. Let {7~ \(F;) contain
at least twq components, G, and G,. Let k be arjl arc in V which connects
GitoGy. Since f, :m, V — n, X is surjective, we may assume that f|k can be
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pulled into F;, with f|ék kept fixed. Hence there is a disk D, containing
k in its boundary, and a mapping g:D — X so that gk = flk, and
gD ~ k) = F;. Assuming g to be in as general position as compatible with
&(CD — k) = F;, we have that any component of g~ '(F,) — k is a simple
closed curve or proper arc in D. The former can easily be removed. The
same goes for one of the latter if the intersection points in k N G correspon-
ding to its ends are in the same component of G. So eventually an extreme
part of D gives us an arc k as above (possibly connecting some other pair
G\, G,), which, in addition, satisfies k N G = dk.

For any handlebody V*, n,éV* - n,V* is surjective. Hence any two
points in ¢V* can be connected by an arc k* in ¢V* so that k* is in a given
homotopy class in ¥* relative to these points. By the method of pushing
singularities off the ends, we can make k* nonsingular. The same goes if we
replace the points in ¢V'* by two disjoint disks and we desire k* to meet these
disksin ck* only. Furthermore, we can assume that k* is disjoint toany system
of disks in ¢V* as long as these disks are mutually disjoint and disjoint to the
two given ones.

Applying this remark to the handlebody V'* obtained by splitting V at
G (to avoid abuse of language, we should rather talk about the appropriate
Component of V*), and to the system of disks in 8V* which comes from
G U v, wefind a nonsingulararc k* in @V sothat k* N G = kn G, k* N p = (¥,
and k* is homotopic to k in V'* rel dk*.

Our task now is to do a surgery along k*, thus replacing a neighborhood of
ok* in G by a half-tube around k*, and connecting up G, and G,. We are
facing here the same obstruction as in the proof of Lemma 1.5, and we avoid
it in the same way, by drilling a hole.

Proof of Theorem 1.4. Let F be a system of proper disks in X as in Lemma
1.6; then we can make f1f ™ '(F) a homeomorphism. Let X' be obtained by
splitting X at F; ie., there is a mapping p : X' - X which is a homeomor-
Phism except for identifying in pairs the components of p~'(F), and let V'
be similarly obtained by splitting ¥ at £~ '(F), with projection g: V' — V.
We define v' = ¢~ '(ou f " !(F)), and x' = p~'(x U F). Then the induced
map f”: V' — X' is a degree 1 map of handlebodies in the broad sense, and
We are reduced to proving the theorem for f” restricted to any component
of V.

The preceding remark gives us an inductive simplification of f : V, éV — X,
0X, as follows. If X has genus >0, we choose for F a meridian disk (disjoint
to x @ 39X, say), this will reduce the genus. If X is a ball, and x has at least
three components, we choose F to meet one of the components of x, and to
S€parate two others. By induction, the theorem will be reduced to the special
case, X is a ball, and the system x < dX has at most two comportents.
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Our way of proving fto be a standard will be to find indcpenfient merlq:ln
disks D;,..., D,,in V (where m is the genus of ¥)such that f|¢D, is contracti tt:
in éX ~ x, and then to apply the analogue of Corollary 1.3 in the presen

¢ general setting. o _
m(')I‘ro iegin with, le% D,.., D, be any system of indcpcpdenl meridian d}?k;
in V. For any one of these, D; say, there exists a noqsmgular path k w lg
starts from a prescribed side of Dy, 1s otherwise disjoint to thf: D;, and t:jn T_
at a prescribed component v, of v. Let U be a reguiar nelgl}borhoo_ lf
Djuk v, COU — &V) consists of two disks. One of qthf:s'e 1§ esscnltlz:(;;
D;; let D; be the other one. The homotopy class of f|éD] in ¢X —In e
is equal to that of f|aD; times [f(dv,)J". Moreover, [_f (Cv,)] genera
m{0X — Int(x)), and by starting instead from the other side of D;, we may

replace ¢ by —¢. Hence by this method of sliding, we can find the required
meridian disks.

2. Mappings of Heegaard Splittings

A Heegaard splitting of a (closed, orientable) 3-manifold M is a tr@‘;‘}
(M, V, W), with V, W handlebodies, and VO W =M, VA W = &V = v
A mapping of Heegaard splittings is a map of triads (M, V, W) - (N, X, Y).

Theorem 2.1, Let a Heegaard splitting (N, X, Y) and a degree 1 n:laP
S M > N be given. Then there exist q Heegaard splitting (M, V, W) an .a
mapping of Heegaard splittings g:(M,V,W)— (N, X, Y) such that glM.lS
homotopic to £, and both glV and g|W are standard mappings of handlebodies
in the sense of Section 1.

Proof. Considering X as a regular neighborhood of a 1-complex, we mai
assume that | = f~!(X) is a regular neighborhood of a 1-complex. L_eth
denote a system of properarcsin W, = CI(M — V,), and U a regular nelgU'
borhood of k. It is well known that there existssucha k that W, = CI(W, -, )
is a handlebody. Since m10Y - 7, Y is surjective, there exists a deformation
from f to f, such that L(V) = fo(Vi uU)c X, and fo(W;) < Y this
gives a mapping of Heegaard splittings. ) :

We now apply the process of drilling holes to f2|W,. The result 1s again 4
mapping of Heegaard splittings, f3:(M, V3, W) > (N, X, Y), and accor d'mg
to Theorem 1.4, we can achieve this way that f;|W, is a standarq mapping
Finally, we apply the process of drilling holes to f,|V,, obtaining thus ;
mapping g : (M, V, W) - (N, X, Y) with g|V standard. g|W is now standar ;
too, because it is obtained from the standard mapping f;| W, by the process 0
adding handles. This completes the proof.

Corollary (Haken). Gipen 4 Heegaard splitting of a homotopy 3-sphere;

(N, X, Y), there exists q degree L mapf:S3 - N so that f| f ~ '(X) is a homeo-
morphism.
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Proof. Let g: (S, V. W)— (N, X.Y) be a degree | map satisfying the
conclusion of Theorem 2.1.

Let us call a handlebody X' < Int(V) unknotted if ¥ can be built up from
X' by attaching 1-handles only, and let us call an unknotted handlebody
X' < Int(V} a survivor of the mapping g|V if g|V’ can be properly deformed
toamapg’suchthatg’|X’isa homeomorphismonto X,andg'(V — X') < ¢X.
By definition of a standard map, there exists a survivor of g| V. This completes
the proof of the corollary.

In the above corollary, f ~'(Y) can be almost anything, even if one starts
with N = 5% The homeomorphism type of £~ }(Y) here appears as the result
of a random choice : the choice of a survivor of g| V. It is by far not true that
such a survivor is well determined up to (setwise) isotopy in V. If, for example,
genus(X) = 1, then it is easily checked that a survivor X' can be replaced
by any unknotted X" in the same homotopy class. In the general case, the
classification of survivors seems to be a rather difficult, and significant,
problem.
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