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SOME PROBLEMS ON 3-MANIFOLDS

FRIEDHELM WALDHAUSEN

Except for the first section, the problems discussed are all from the general area
of Heegaard diagrams and Heegaard splittings.

1. Nonsufficiently large 3-manifolds. Let M be a closed orientable 3-manifold
which is irreducible (every PL 2-sphere in M bounds a 3-ball in M) and has infinite
fundamental group; such an M is known to be an Eilenberg-Mac Lane space. M is
called sufficiently large if a large number of theorems applies to it; equivalently, if
there is an embedding of a closed 2-manifold whose fundamental group is non-
trivial and injects. Unfortunately this is not always the case.

The first such examples are Seifert fibre spaces whose decomposition surface is
the 2-sphere, with exactly three exceptional fibres, and with the added condition
that H; be finite (and =, infinite) [18]; there are infinitely many such. Though it is
quite inconceivable that these should be the only nonsufficiently large 3-manifolds,
no new ones have been exhibited so far.

One way to search for new examples, emphasized by R. P. Osborne in particular,
is to try surgery on a knot. Indeed, given a knot, in general, one may expect almost
any surgery on this knot to produce a manifold which is irreducible and has infinite
fundamental group. If on the other hand the surgery produces a sufficiently large
3-manifold, there must exist, in the knot space, an incompressible surface of a
particular kind; namely an incompressible surface which is either closed, or has
its boundary curves in the isotopy class of curves (on the boundary of the knot
space) used in the surgery. One would expect this to hold in fewer cases. The
construction of the known examples of nonsufficiently large 3-manifolds, can be
interpreted to fit this program (at least some of them can be obtained by surgery on
torus knots). In general, the main problem involved in this program is a classifica-
tion of incompressible surfaces in a knot space. (In the case of a torus knot, the
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knot space is a Seifert fibre space, so this classification is comparatively easy [17].)

Concerning properties of nonsufficiently large 3-manifolds in general, one may
try to extrapolate from the known examples. Specifically, there is the so-called
Fenchel conjecture, the theorem that any Fuchsian group has a torsionfree sub-
group of finite index, e.g., [26]. An immediate consequence of this is that any
Seifert fibre space has a finite covering space which is a fibre bundle. In particular
then any of the known nonsufficiently large 3-manifolds has a finite covering space
which is sufficiently large. One may ask if this continues to hold for the unknown
examples. The question naturally splits into two subquestions, of unequal likeli-
hood:

If M is as before, must it be true that z; M contains a nontrivial subgroup 7, F
where F'is a closed 2-manifold?

By results of Jaco [8] and Scott [12] the answer must be affirmative if z; M con-
tains any subgroup whatsoever which is finitely generated, of infinite index, and
not free. It is hard to believe that this could fail.

If 7z, M contains 7 F as before, must there exist a finite covering M’ — M so that
mF | mM' — m M’ isinduced by an embedding 7' — M'?

The question can be asked in just this form for sufficiently large 3-manifolds, and
it is striking to notice how little is known about it. The real problem seems to be if
1M contains a sufficient number of subgroups of finite index, or for that matter,
any such subgroup at all. No one has devised a method yet how to get 7, M to act
on finite sets (except in special cases, e.g., fibrations over S1 [9]). The relevance of
the latter problem is emphasized by a group theoretic result of Scott [13] which in
the case at hand implies that the answer is affirmative if 7z, F is the intersection of a
set of subgroups of finite index. Indeed this latter fact can easily be seen directly.
Namely if 7F — 7; M is induced by a map f: F — M, the hypothesis implies that
there is a finite covering space M’ — M and alifting f’: F — M’ so that, if U(f'(F))
denotes a regular neighborhood, the map 7, F — 7 U(f'(F)) s surjective and hence
bijective. Making the boundary of the regular neighborhood incompressible, one
then finds the required F’ as a component.

Given that M has a finite covering space which is sufficiently large, it is natural
to try carrying over to it some of the results available for sufficiently large 3-mani-
folds, e.g., that homotopy equivalences can be deformed to homeomorphisms.
This has indeed been done in a few of the known cases, by what may be called
equivariant surgery in the covering space [2]. Though the manifolds considered
were extremely special, the effort required was considerable.

2. Heegaard diagrams and Heegaard splittings. Let M be a connected closed
orientable 3-manifold, it will be natural to assume that M is in fact oriented. We
think of M as smooth. Let f be a nice Morse function on M, that is, fis a smooth
real-valued function, the critical points are nondegenerate, and at each critical point
the value equals the index. The critical points of index 0 or 3 are of no interest
whatsoever, so we assume they are minimal in number (that is, there is just one of
either kind).

Define F = f71(13); it is a closed oriented 2-manifold. Let ¥V = f-1[14, o0)
and W = f~1(— o0, 14). Then V and W are ‘handlebodies’.

Let v = V denote the system of properly embedded 2-disks given by the cores of
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the 2-handles determined by f; it is referred to as a system of meridian disks. V may
also be considered as a regular neighborhood of F |J v, plus a single 3-ball attached.
Let similarly w = W denote the system of properly embedded 2-disks given by the
cocores of the 1-handles (equivalently, by the cores of the 2-handles of the dual
function /¥ = 3 — f).

Up to trivial alteration (i.e., deformation of nice Morse functions) fis determined
by the quadruple (M, F; v, w). This quadruple is referred to as a Heegaard diagram
of M. 1t is, in turn, determined up to isomorphism by the oriented 2-manifold F
and the ordered pair of systems of curves 9y and sw in F.

With easy modifications, the above carries over to manifolds with boundary oM
and functions f such that f(9M) < {~—1, 4}. The case of more general functions f
is not without interest (e.g., bridge presentations of a knot give rise to such func-
tions on the knot space) but it will not be considered here. The quadruple
(M, F; v, w) may again be referred to as a Heegaard diagram, not of M this time
but of the triple (M, f~1(—1), f71(4)).

By a Heegaard splitting of M (resp., of (M, f~1(—1), f~1(4)) if oM # @) we shall
mean any oriented F arising in the way described, the notation (M, F) will be used.
The genus of the Heegaard splitting (M, F) is by definition the number g(F), the
genus of F. If (M, F; v, w) is a Heegaard diagram, (M, F) will be called the under-
lying Heegaard splitting.

Heegaard diagrams have less ‘random structure’ than functions, or handle de-
compositions, or triangulations. Thus among the effective ways to present 3-mani-
folds (all of them, not just a special class) they appear to be the most efficient.! Still
if one wishes to put Heegaard diagrams to any use one must face the fact that there
are far too many of them. In particular, from any given Heegaard diagram one may
construct others, by the process of ‘handle sliding’. By definition, this process does
not alter the underlying Heegaard splitting, and it is generated by (i) isotopy of v,
resp. w, (ii) sliding one component of v, resp. w, over another. It is a pleasant fact,
not too hard to prove, that conversely any two Heegaard diagrams with the same
underlying Heegaard splitting can be transformed one into another by handle slid-
ing. Thus a Heegaard splitting may be identified with an equivalence class of
Heegaard diagrams, the equivalence relation being generated by handle sliding.

Concerning Heegaard splittings, it is an interesting fact, pointed out by Stallings
[15], that, up to isomorphism, these may be characterized algebraically. For sim-
plicity it will be assumed that M is a closed manifold. Let (M, F) be a Heegaard
splitting and let ¥, W be the pair of handlebodies (ordered by the orientations of
M and Fy with V' |J W = M, V (| W = F. The inclusions of F induce a pair of
surjective maps 1 F — m V, m F — 7, W, well defined up to conjugation. The as-
sertion is that

(M, F) > (m1F - m|V, m;iF > mW)

‘There are at least two more ways to effectively present closed orientable 3-manifolds:

(i) By surgery on a framed link in S°. Here the equivalence relation is known, that is, if two
surgeries give the same 3-manifold, one knows how to transform the two framed links one into
another (Craggs, Kirby). Analysis of the equivalence relation is practically untouched however, and
it does not seem easier than the classification problems discussed below.

(i) As branched coverings of S%, or even 3-fold branched coverings, branched over a knot
(Hilden, Hirsch, Montesinos). Here even the equivalence relation is unknown.
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is a bijection of isomorphism classes. Details to this were provided by Jaco [7];
as these details are excessively complicated, here is a simpler way of verifying the
assertion.

LeEMMA (CF. [7]). Let X be a wedge of n 1-spheres, and ©\F — =X any map. Then
there are a handlebody V', an isomorphism F — 0V', and amap V' — X so that F —
V' = Xinduces m\F — m, X, up to conjugation.

In fact, let z,F = #; X be induced, up to conjugation, by a map fy: £ — X, say.
In the jth 1-sphere in X, let p; be a point different from the basepoint. Identify Fto
F x 0in F x [0,1] and extend f; to f so that f; = f|F x 1 is in general position
with respect to | Jp,. Form Y from F x Iby attaching a 2-handle at each component
of /;7'(Up;)- Then f may be extended to g: ¥ — X so that (i) the core of each 2-
handle is mapped into | Jp;, (ii) for any component G; of 3Y other than F x O,
g(G,) = X — (Up,. Since X — | Jp; is contractible one may now form ¥’ from Y by
attaching to each G; a handlebody V,, in any way whatsoever, and extend g by
mapping V;into X — { Jp;.

Thus the surjectivity part of the above assertion has been established. To see the
injectivity,let F = gV and F = 9V, and let 7,V — 7, ¥’ be an isomorphism so that
mF - mV — V' and n,F — =, V' are the same, up to conjugation. Then the loop
theorem (or better, its elementary version available for handlebodies [24]) and the
Alexander trick show that the identity on F extends to an isomorphism V' — V’
which itself is unique up to isotopy.

Stallings also showed [15], given (M, F), M is a homotopy 3-sphere if and only if
the map =, F — mV x 7; W is surjective. In view of the fact (which was not avail-
able yet when [15] was written) that for any genus there is only one isomorphism
class of Heegaard splittings of S3, cf. below, one has as a corollary that the Poincaré
conjecture is equivalent to the group theoretic conjecture that for any g there is only
one isomorphism class of surjections 7, F — @; x @, where ©, and @, denote free
groups of rank g = g(F). Interesting though this fact is, philosophically, it has not
been possible so far to use it in any way.

3. Classification problems for Heegaard splittings. From any Heegaard splitting
one may obtain a new one by ‘standard handle addition’. Since by definition
(M, F)isjusta particular kind of manifold pair, the result of a standard handle addi-
tion may simply be described as the connected sum of (M, F) with a (or ‘the’) genus
one Heegaard splitting of S3. Again it is a pleasant fact, the theorem of Reidemet-
ster [11] and Singer [14], that any two Heegaard splittings of M are ‘stably equiv-
alent’ i.e., equivalent under the equivalence relation generated by isomorphism
(in fact, isotopy) and standard handle addition.

One approach to the classification of 3-manifolds is thus to start from Heegaard
diagrams, which may be classified ‘upon inspection’. By imposing on these the
equivalence relation of handle sliding, one obtains Heegaard splittings; and by
further imposing stable equivalence one obtains the (isomorphism classes of ) mani-
folds themselves. One may thus try to classify Heegaard splittings first, and then
proceed from this. The former will be discussed in the next section; the latter leads
to various interesting problems, a sample of which is given below.,

It is convenient to call a Heegaard splitting minimal if it cannot be obtained, by a
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standard handle addition, from a Heegaard splitting of lower genus. Here is a list
of some known, respectively unknown, facts.

The 3-sphere has, up to isomorphism, precisely one Heegaard splitting of any
genus g = 0 [19]. The only minimal one is that of genus 0.

It is not known if a minimal Heegaard splitting of a lens space must have genus
1. In fact this is unknown even for projective 3-space. although the argument of
[20] seems close to establishing it.

Some lens spaces have two isomorphism classes of Heegaard splittings of genus
1, obtainable from each other by re-orienting F. By taking connected sums one
should expect to mess up the nonuniqueness so that it is no more due to just
orientation phenomena. Renate Engmann [3] has shown that such ‘essential’ non-
uniqueness does in fact occur.

Indeed, nonuniqueness does not depend on connected sum phenomena either:
There is a prime manifold (in fact, there are infinitely many such) with two minimal
Heegaard splittings (of genus 2) that are not isomorphic as unoriented manifold
pairs [1]. :

Here are some problems.

Show that M has only finitely many isomorphism classes (or even isotopy
classes) of minimal Heegaard splittings.

Given any of these, give a procedure to obtain the others.

Is it true that any two minimal Heegaard splittings of M have the same genus?
An example of P. Schupp shows that the corresponding question for group pre-
sentations has the answer ‘no’.

“Let (M, F) and (M, F’) be two Heegaard splittings of M, both of genus g. Do
they become isomorphic when the genus is raised, by standard handle additions,
to 2g, say? Is there only one isomorphism class of Heegaard splittings of genus 2g?

4. Decision problems for Heegaard splittings. In reality these are problems about
Heegaard diagrams. For example, given a Heegaard diagram (M, F; v, w), how can
one find out if the underlying Heegaard splitting (M, F) is minimal? I's there a way
to alter (M, F; v, w) to a canonical Heegaard diagram, or one of a finite set of such,
from which the answer may be read off by inspection? Similarly, given (M, F; v, w)
and (M’, F’; v/, w') one may want to know if their underlying Heegaard splittings
are isomorphic, and in particular, say, if (M, F) is isomorphic to a Heegaard
splitting of S3.

There is a notion of complexity for a Heegaard diagram. It is best to discuss first
the analogous notion of complexity for curves on the boundary of a handlebody.

Let ¥ be a handlebody, and v a system of meridian disks in V. Let the com-
ponents of v be numbered vy, -+, v,, and let a normal direction to each v; be chosen.
If ¥ has a basepoint, off v, any based loop k in V gives rise to a word v(k) in the
alphabet {v;, vi', v, ---, v;!} to record its encounters with v. In this way v deter-
mines a basis of 7, ¥, and the element of 7,V represented by k is given, in this basis,
by the reduced word #(k) associated to v(k). We define the geometric, resp. alge-
braic, length of k& to be the number of letters in the word v(k), resp. #(k); it is
denoted /(k, v), resp. I(k, v). If k is not a single loop but a finite set of such, we
define its geometric (resp., algebraic) length by adding those of the individual
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loops. The minimal geometric length I(k) is defined to be the minimum of the
numbers I(k, v) as v varies; similarly the minimal algebraic length /(k) is defined. If
¥ has no basepoint, these considerations still apply when elements of 7;¥ are
replaced by conjugacy classes of such elements.

Suppose v is changed to another system of meridian disks, v, in the following
special way. Namely a single component v; of v may be replaced by a disk v} in the
complement of v; furthermore the components of v' may be re-indexed, and some
of the normal directions altered. If ¥ has a basepoint, the result of the replacement
v — v may be interpreted in two ways. Firstly we may say that the basis of z;V is
replaced by another one, taken from a particular finite list. The other interpre-
tation is that z; V" has been subjected to a particular kind of automorphism, called
a T-transformation by Whitehead [23). The second interpretation still makes sense
when V is unbased and when elements of ;¥ are replaced by conjugacy classes.
The substitution v — ' will be referred to as a geometric T-transformation.

THEOREM (WHITEHEAD [23]). (1) Let k be a finite collection of (based, resp., un-
based) loops in V. Suppose the algebraic length I(k, v) can be made smaller by some
automorphism of V. Then it can be made smaller by a T-transformation.

(2) Suppose k and k' are such that their algebraic lengths are minimal, i.e., l(k, v) =
I(k) and I(K', v) = I(k’). Suppose there is an automorphism which takes the set of
elements of m\V (resp., conjugacy classes) represented by k into that represented by
k'. Then this automorphism may be written as a sequence of T-transformations none
of which increases the algebraic length.

(Incidentally, Whitehead’s theorem can be extended to cover the case of a finite
set of finitely generated subgroups, cf. [23, p. 97]; the theorem is just the case of a
set of cyclic subgroups. The proof uses 3-dimensional topology and is an extension
of Whitehead’s method: Instead of mapping curves into #,(S! x $2), as Whitehead
does, one maps #,(S? x S2), or a finite number of such. In the context of Heegaard
diagrams this extension is of no interest however.)

Suppose now that k is a system of mutually disjoint simple closed curves in the
boundary V. In this case one is interested in having the geometric length of k as
small as possible. This can indeed be achieved.

THEOREM (ZIE_SCHANG [25]). Suppose that I(k, v) is strictly bigger than the minimal
algebraic length I(k). Then l(k, v) can be made smaller by a geometric T-transforma-
tion. In particular the minimal geometric length equals the minimal algebraic length.

Similarly the second part of Whitehead’s theorem has a (weak) geometric an-
alogue.

Zieschang’s proof is a delicate analysis of the situation. It seems to be of some
importance that there is an alternative, somewhat crude, proof which is based on a
trick of Whitehead [22]. In the present situation the trick amounts to temporarily
admitting ‘meridian surfaces’ other than disks. The argument will be described
below, after another notion has been introduced.

Suppose there is an embedded 2-disk D in ¥ with the properties (i) D ) 9V is a
single arc ¢, and either c N k = @, or c < k, (ii) D ] v is a single arc, equal to
Cl(@D — c). Let v; be the component of v that contains D () v; let U(v, | D)
be a regular neighborhood. Then CI(U(y; U D) — aV) consists of three disks, one
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of which is parallel to v;. We are interested in the other two. For precisely one of
these, callit v, itis true that v/ = (v — ;) U v;is again a system of meridian disks.
The substitution v — v’ will be called a geometric T-transformation that is special
with respect to k. Whether or not there exists a special 7-transformation to de-
crease the geometric length of k£ can be found out by searching for the arc ¢ (a ‘wave’
in the terminology of [16]).

As to the theorem, suppose first that /(k, v) > I(k, v). Then a special T-transfor-
mation can be found (with ¢ = k) to decrease I(k, v). So suppose Ik, v) equals
I(k, v), but the latter is not minimal. By Whitehead’s theorem there exists a geo-
metric T-transfmoration v — w to decrease the algebraic length. If I(k, w) > I(k, w)
one could try now to perform a special 7-transformation to decrease /(k, w); while
this is certainly possible, it might happen however that the algebraic length in-
creases again, so nothing is in fact gained. Here is where Whitehead’s trick comes
in. Namely instead of using the arc ¢ for a special 7-transformation, one uses it to
‘add a handle’ to w, i.e., one replaces the component w; of w containing oc, by the
annulus component of Cl(aU(w,; U ¢) — aV). Then I(k, w) goes down by 2, but
[(k, w)is unaltered because the set of reduced words from which it is computed is
unaltered. Furthermore the new w is still disjoint to v because of the initial hypo-
thesis I(k, v) = I(k, v). Proceeding in this way, w will eventually have been replaced
by w' with I(k, w') = I(k, w') = I(k, w), but the component w; of w’ is some com-
plicated 2-manifold rather than a disk. On the other hand, w’ is still a system
of 2-sided 2-manifolds, not separating ¥V, and » in number. So we can construct a
map from z; ¥ onto a free group of rank #, and the kernel of this map contains
m1w;. But any surjective endomorphism of a finitely generated free group is an
isomorphism. So Im(z,w}) is the trivial subgroup of z;¥. So the loop theorem
applies, and w; can be dismantled to a system of disks. Keeping a suitable one of
these, the theorem is proved.

RemMARK. There does not seem any reason to suppose that in general the geo-
metric length of k£ can be made minimal by special 7-transformations only. There
is one special case however where this can be done. This special case is when no
component of k is contractible in ¥, and the minimal algebraic length of k equals
the number of components. This was pointed out by Whitehead in the final para-
graph of [22]; it depends on a certain technical result of that paper.

Let now (M, F; v, w) be a Heegaard diagram, and for simplicity assume M is
closed. One may replace these data by the equivalent data (F; v, ow). Supposing
that gv and 9w are in general position, one defines the complexity c(F; dv, ow) to be
the number of intersection points of 9v and gw. Given F, and given any upper
bound, there is only a finite number, up to isomorphism, of Heegaard diagrams
whose complexity is below this upper bound.

By definition, the complexity ¢(F; ov, aw) coincides with the geometric length
l(@w, v) considered before. It may happen that /(ow, v) can be made smaller by a
geometric T-transformation applied to v. Whether or not this happens can be
found out by inspection of (F; 9v, 9w); the test is especially simple if one looks for
special T-transformations (the search for a ‘wave’ in the terminology of [16]). We
say (F; gv, ow) is minimal if neither I(Gw, v) nor /(9v, w) can be made smaller by a
geometric 7-transformation; and we say (F; 9v, ow) is a weak minimum if neither
can be made smaller by a special T-transformation.
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With this terminology we can now give sharper versions of the problems stated
in the beginning of this section. These are:

Show that any Heegaard splitting is underlying to only finitely many minimal
Heegaard diagrams. Given any of these, describe a procedure to obtain the others.

Let (M, F) be the underlying Heegaard splitting of (A, F; v, w). Suppose
(F; 9v, ow) is minimal (or even a weak minimum only). Suppose (M, F) is not mini-
mal, Show that (M, F; v, w) has a cancelling pair of handles.

Let (F; 9v, w) be a Heegaard diagram of S3 which is minimal (or even a weak
minimum only). Show that the complexity of (F; 8v, aw) equals the genus of F.
(Note this amounts to the assertion that the method to produce a minimal Hee-
gaard diagram from a given one is in fact an algorithm to recognize $3.)

Concerning the status of these problems, nothing is known about the first two,
and very little is known about the third one: Whitehead has shown the assertion
is true in the very special case where one assumes that one of v and w is ‘standard’
already, this is the remark above; the argument has been reproduced in [16]. It is
interesting to note that a computer check has been run on the third problem [16].
One million Heegaard diagrams of S® were examined; no exotic weak minimum
was found.?

5. The Heegaard genus. It is convenient here to consider 3-manifolds with
boundary (possibly empty) but only Heegaard splittings of the triple (M, 9M, &),
in the notation of §2. With this qualification, the Heegaard genus g(M) of M is
defined to be the smallest integer g so that M has some Heegaard splitting of genus
g.

For example, of the manifolds M without boundary spheres, g(M) = 0 char-
acterizes S3, and g(M) = 1 characterizes lens spaces, S! x 8%, and S1 x D2

So far only one nontrivial fact is known about the Heegaard genus, a beautiful
argument of Haken [4], that g(M) is additive for connected sum.

Let #(M) denote the minimum number of generators for z;M. One has the
inequality g(M) = r(M). For want of better knowledge one may ask the question

Is it true that g(M) = r(M)?

It is amusing to contemplate this question on the background of the unre-
solved status of the Poincaré conjecture (the case (M) = 0 of the question). Put
in a fancy way, the content of the Poincaré conjecture is that all the dificulties
inherent in attacking it are due to the internal structure of the 3-sphere. Therefore
if one assumes the Poincaré conjecture is wrong, it seems reasonable to expect the
above question to become easier if one restricts attention to submanifolds M <
S3, e.g., knot spaces. If on the other hand one assumes the Poincaré conjecture
is true, there does not seem to be any reason why the question should be easier to
decide for submanifolds M < S3.

6. A space of Heegaard splittings. From current problems of 3-dimensional
topology there is no justification to consider such a notion, except maybe a vague
feeling that it could be useful in work on the Smale conjecture on Diff(S3). The
following definition was concocted by analogy with a notion that is useful in

*The reviewer of reference [16] reports that an exotic weak minimum has been found [Math.

Rev. 53, Abstr. 9219 (1977)]. It thus appears that the consideration of weak minima is of little
interest.
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studying higher concordances (the ‘expansion space’ of [21]). To understand the
definition one should note that there are really two ways in which one wants to
alter Heegaard splittings: by isotopy and by handle addition. As these are hetero-
geneous notions, they should be kept apart. Thus the space envisaged should be
a bisimplicial set (or a simplicial category, for that matter). From this one may
then obtain a simplicial set, and hence a homotopy type, in any of various ways,
all ultimately equivalent.

The Heegaard splittings of a given (say, closed orientable) 3-manifold M are the
objects of a category A(M) in an obvious way: a morphism in A(M) is a standard
handle addition, or composition of such, performed on one Heegaard splitting to
yield another. Still the definition of morphism needs interpretation. Firstly, the
notion of handle additon is supposed to be very rigid. One way to have this rigidity
is always to refer to the standard D3 in which the standard punctured torus is em-
bedded in the standard way, and then for a handle addition use a specific embed-
ding of D3 in M. Secondly, the order of handle additions must be discussed: It
may happen that one handle is attached on top of another. In this case the two
can be attached only in that particular order. On the other hand one can envisage
two handle additions being performed simultaneously, far away from each other.
In this case we insist that either one of the two could be attached first, and it does
not matter which one; thus we have a commutative square in A(M).

More generally, for any nonnegative integer k one can define a category A(M),:
an object is a k-parameter family of Heegaard splittings of M (with parameter
domain the k-simplex 4%) and a morphism is a k-parameter family of standard -
handle additions, or a composition of such. The same remarks as above apply:
a k-parameter family of handle additions involves a k-parameter family of embed-
dings of D3 (with its additional structure), and two k-parameter families of handle
additions are considered to be in a particular order only if such order is forced,
in the sense above, at one point at least of the parameter domain.

DEFINITION. A(M). is the simplicial category which in degree k is h(M),.

The known results on the classification of Heegaard splittings can be rephrased
to say that such or such a space is connected, or not connected, as the case may
be. For example the Reidemeister-Singer theorem says that #(M). is connected for
any M, and the classification of Heegaard splittings of S3 is equivalent to the state-
ment that 42(S3). is connected for any g, where #2(M). denotes the simplicial subcate-
gory of h(M). given by the Heegaard splittings of genus at most g.

The problem is of course if one can say anything about the higher homotopy
groups. For example, is #(M). contractible?

To conclude, one way of forming the ‘nerve’ and then forcing the extension
condition gives the following Kan simplicial set representing the homotopy type of
h(M).. An n-simplex consists of:

(i) a simplicial subdivision of the geometric n-simplex,

(ii) for each 4* in this subdivision, a continuous family of Heegaard splittings
over the interior of 44,

(iii) for each face d;4*, as one approaches this face from the interior of 4%, the
data of a (k — 1)-parameter family of standard handle cancellations (or composi-
tion of such) and finally, at the last moment, the actual cancellation,

(iv) for each face of a face, a compatibility condition.
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