Proceedings of Symposia in Pure Mathematics
Volume 32, 1978

RECENT RESULTS ON SUFFICIENTLY
LARGE 3-MANIFOLDS

FRIEDHELM WALDHAUSEN

This is an expository paper, an expanded version of the talk actually given
(which went only to what is §2 of this paper). The topics discussed are:

Johannson’s classification of exotic homotopy equivalences;

Hemion’s classification of homeomorphisms of a 2-manifold (compact, with
nonempty boundary).

It will be indicated that (and in what sense) some of the main problems on suof-
ficiently large irreducible 3-manifolds can now be considered solved: Classifica-
tion, classification up to homotopy type, classification of manifolds homotopy
equivalent to a given one, classification of knots, classification of knot groups.

The plan of the paper is as follows.

81 gives background material on exotic homotopy equivalences and in particular
some examples.

§2 introduces the characteristic submanifold; this notion is needed in the state-
ment of Johannson’s result. The result is then discussed.

§3 introduces manifolds with boundary pattern, a relativization of 3-manifolds
required for inductive proofs. A rough indication of proof of Johannson’s result
is included.

§4 discusses Haken’s approach to classification. The language of the preceding
sections is used (at least part of this was indeed implicitly used by Haken). It is
indicated how Hemion’s result provides the missing step in Haken’s theory. Some
related results are also discussed.

1. Prelude to homotopy equivalences. The question is: If /' : M — N is a homo-
topy equivalence of 3-manifolds, what conditions guarantee that f is homotopic
to a homeomorphism?

One sufficient set of conditions is the following [24] (everything PL, say).
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(1) M should be compact, orientable, and irreducible (that is, every 2-sphere in
M bounds a 3-ball in M).

(2) If M is closed it should be sufficiently large (that is, there should exist an
embedding of a closed orientable 2-manifold in M whose fundamental group is
nontrivial and injects).

(3) If the boundary oM # @ the map f should actually be given as a homotopy
equivalence of pairs M, oM — N, oN.

The status of these conditions is, roughly, the following: ‘compact’ and ‘orient-
able’ are mainly asked for convenience. That is, each can be replaced by a con-
siderably weaker but more technical condition, and everything goes through
without essential change. For example in the nonorientable case one may simply
define the projective planes away; and in the noncompact case one may insist on
maps being proper and manifolds being ‘sufficiently large at infinity’ (one way to
put the latter is to ask that the pro-object of fundamental groupoids at infinity
be isomorphic to one in which all maps of vertex groups are injective).

‘Irreducibility’ is justified by the Kneser-Haken-Milnor unique decomposition
theorem. It is of great importance, both technically and otherwise. Its purpose is
twofold. It serves to get around the unresolved Poincaré conjecture, and it serves
to avoid splitting problems at 2-spheres. The latter have actually been solved by
Laudenbach, Swarup, and, ultimately, Hendriks.

The condition ‘sufficiently large’ is being discussed elsewhere [27]. Notice it is
only asked for closed manifolds.

We are here interested in the problem of omitting the condition prescribing f on
the boundary.

ExampLE 1.1. Suppose there is a component G of 9M so that ker (7,G —» 7, M) #
0. By the loop theorem of Papakyriakopoulos, cf. {20], this means that we can
write M = M’ |J 1-handle attached at 9M’, and it is obvious that there are many
homotopy equivalences from M to itself which map this 1-handle through the
interior. The situation is messy but comparatively easy to analyse. For example
the homotopy equivalences fixing M’ are given by group theory.

To avoid this phenomenon we consider henceforth only 3-manifolds whose
boundary is (nonempty and) incompressible, that is, for any component G of o.M,
71 G — 7 M is injective. We also insist on condition (1) above. The class of mani-
folds still being considered includes some of the most interesting 3-manifolds, in
particular it includes the knot spaces of nontrivial knots.

For this class of manifolds one knows [24]: If f: M - Nis a homotopy
equivalence, and if there exists /' homotopic to f with f'(0M) < 9N, then f is
homotopic to a homeomorphism.

So we have focussed our attention, for the class of manifolds being considered,
on

Problem. Suppose f: M — N is a homotopy equivalence. Suppose there does
not exist f homotopic to f with f'(9M) < gN. What can one say?

We will call such homotopy equivalences exotic. Here are some examples of
exotic homotopy equivalences.

ExampLE 1.2. Let F; and F, be, respectively, the 2-torus with one open disk
removed and the 2-sphere with three open disks removed. There is a homotopy
equivalence F; — F,. Then F;, x S - F, x S1is exotic.
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ExamMPLE 1.3. Assume given M;, M, and embeddings of the annulus, f:
St x I — gM; with f;, injective on z,. Let A: S1 x I — S! x I be given by the
flip of the interval. Form M (resp., N) by gluing M, and M, at S x I by means
of f; and f,, (resp., f} o & and f;). Then M and N are homotopy equivalent but in
general not homeomorphic.

Note that in Example 1.2 the number of boundary components changes. In
Example 1.3 their type may change as well.

EXaMPLE 1.4, Let M have a Seifert fibre space structure with decomposition
surface B (and 9B # (& since oM # @), or to use current language, M has a
(stable) foliation by circles, and B is the space of leaves. Then M may admit exotic
(self-) homotopy equivalences of the type of Example 1.2, i.e., exotic homotopy
equivalences which are induced from 2-manifold phenomena. But there may also
be other ones. Specifically, the foliation is characterized by B and the nontrivial
monodromy; this occurs at isolated singular leaves, say r in number, and in each
case may be specified by a coprime pair (a;, 3;), 0 < 8; < ;. Then, except for the
cases (B = 2-disk and r < 1) and (B = Mébius strip and r = 0), the type of B
and the set of the (a;, ;) are an invariant of the oriented homeomorphism type
of M [22]. But the homotopy type is only given by the homotopy type of B and the
set of the «, (no 3;) [23].

The additional phenomena in Example 1.4 may be traced to the following

ExaMPLE 1.5. Let M = S! x D? be the solid torus, and f: S! x I - 9M an
embedding of the annulus, with winding number o > 1. Letting F = f(S! x I),
the oriented homeomorphism type of (M, F) is characterized (among such pairs)
by an integer §8, coprime with ¢, and 0 < § < a. But the homotopy type of the
pair (M, F) is characterized by « alone.

This last example does not really fit into the framework we have been consider-
ing so far. It just illustrates that ‘relative’ phenomena may manifest themselves in
a nonrelativized framework.

The reader may amuse himself in [ooking for more examples of exotic homotopy
equivalences. Leaving aside modifications of the examples given, he will probably
find the search rather difficult—with reason, as we shall see later.

All of the examples given have one thing in common. Underlying any of them is
a very simple, and very special, geometric phenomenon. It will turn out there is a
system. One may compare the situation to the ancient myth of the stable of one
Augias. In that tale, after a considerable effort to dispose of the obvious, what
remained was much cleaner.

2. Classification of homotopy equivalences. The results to be described are due to
Johannson [9], [10], [11] and partly myself [26]; partial results have been redis-
covered by Feustel, Jaco, Shalen, and others, in a large number of papers.

To begin with, one considers a special case. Suppose f: M — N is an exotic
homotopy equivalence, and each component of 9Af is a torus. Then by definition
of the terms involved there exists in N an essential singular torus which cannot be
deformed into the boundary, in the following sense.

DEFINITION. g: S x S1 — N is essential if g, is injective on z;.

This draws attention to essential singular tori. One would like to analyse them a
la loop theorem and sphere theorem. However the cut and paste technique turns
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out to be inadequate, mainly because the naive conjecture has easy counterex-
amples,

ExaMmpLE 2.1. In the knot space of a torus knot, any nonsingular essential torus
is parallel to the boundary [22].

ExAMPLE 2.2. In any of the Seifert fibre spaces which furnish the known examples
of nonsufficiently large 3-manifolds (closed, irreducible, with infinite fundamental
group) there is an essential singular torus, in fact there are infinitely many such, but
there is no incompressible surface whatsoever {23]. Also there is an infinite number
of manifolds M which are Seifert fibre spaces over S? with precisely three excep-
tional fibres, and which satisfy HY(M) # 0 and are hence sufficiently large. Any
such M contains a unique incompressible surface, up to isotopy (it is a fibre in
some fibration over S!), but for only finitely many M can this surface be a torus
[22].

Turning hindsight into foresight one decides to consider all essential tori, singular
or not, all at once, hoping to force them into a pattern. Having decided this far, it is
clearly unreasonable not to consider at the same time essential annuli, singular or not.

DEerFINITION. g: (S? x I, S x 9I) = (N, oN) is essential if

g*:ﬂ.']_(Sl X I)_)%lN’ g% 77:l(“sll X Is a)_'ﬂ«'](N, a)

are both injective.

One considers now submanifolds of a given manifold M which in a sense can be
manufactured out of essential tori and annuli. It is convenient to change here our
conventions about M. In addition to the manifolds considered up to this point we
also admit manifolds that are closed (orientable and irreducible) and sufficiently
large.

DErFINITION 2.3, A compact codimension zero submanifold V of M is an essential
F-manifold (' F’ for ‘fibering’) if and only if for each component W of V at least one
of the following holds: either

(a) (i) W admits a structure of Seifert fibre space, p: W — B, such that
p Y p(W N oM)) = W () oM, and

(i) each component of Cl(9 W — 9M) is an essential annulus or torus, or

(b) (i) W admits a structure of line bundle, p: W — Bsuch that W ) 8M is the

associated 0-sphere bundle, and
(ii) each component of ClI(@W — 9M) is an essential annulus.

DEFINITION 2.4. A characteristic submanifold of M is an essential F-manifold V
in M satisfying

(1) if X is any essential F-manifold in M then X can be properly isotoped into V,

(ii) if Y is any union of components of CI(M — V) then V' |J Yis not an essential
F-manifold.

A condition equivalent to (ii) is that one cannot throw away a component of V
and still have (i). Thus V is definable by a universal property.

THEOREM 1. The characteristic submanifold of M exists and is unique up to
ambient isotopy.

The status of the theorem is this. Once conceived of, the definition of char-
acteristic submanifold may easily be reformulated to involve some kind of ‘com-
plexity’. Existence is then provable by the method of the Kneser-Haken finiteness
theorem [5]. Given the existence, uniqueness is not hard to show.
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ExamPpLE 2.5. With the present (nonrelativized) definition of the characteristic
submanifold one has ¥ = M if and only if M is either a Seifert fibre space or a line
bundle over a closed 2-manifold.

EXAMPLE 2.6. Let M be a graph manifold in the sense of [22]. Then, in general,
the following is true: There exists a system 7 of incompressible tori, unique up to
isotopy, with the following properties: (i) if U(T) denotes a regular neighborhood
then each component of CI{(M — U(T)) admits the structure of a Seifert fibre
space, (it) no subsystem of T has property (i). In this case V = CI(M — U(T)).
It is disputable if one should not rather adjust the definition of characteristic
submanifold so that ¥ = M in this situation. However the smaller V the better
are the results one formulates using it. The thing to remember from this example
is the following. If one removes V from M, i.e., forms C1(M — V), then there may
be some ‘trivial components’ left over, such as U(T') in the example.

THEOREM 2. Essential singular annuli and tori can be deformed into the characteris-
tic submanifold.

For example suppose there exists at least one essential singular torus in M. Then
the characteristic submanifold ¥ of M cannot be empty, by the theorem. In general
one will have ¥ # M, thus C1(@¥V — aM) # @&. But by definition of ¥, any com-
ponent of Cl(@V — 6M) is an essential torus or annulus. Therefore such must
exist in M. In the special case when M equals its characteristic submanifold, it is a
Seifert fibre space or a line bundle. In Seifert fibre spaces, in general, essential tori
do exist in large numbers. But in very special cases there may be none at all, cf.
Example 2.2.

The slogan is that it takes many nonsingular annuli or tori to manufacture one
singular one. Also one manufactures them in a very special way and still gets them
all. That is, essential singular annuli and tori in Seifert fibre spaces and line bundles
can be fairly explicitly classified, and in particular any such map can be deformed
into the composition of a covering map and an immersion without triple points.

Working in a suitable relative framework, and using the notion of essential map,
both of which will be discussed later, one may formulate a corollary giving a version
of the theorem for maps of Seifert fibre spaces and line bundies. One way to put the
corollary is to say that the universal property of the characteristic submanifold
continues to hold for ‘singular essential F-manifolds’. In a very special case this
amounts to the following: If M has a finite covering which is a Seifert fibre space
then M must be a Seifert fibre space itself.

To formulate the main theorem it is convenient to make the following definition.

DEFINITION. Let f: M — N be a homotopy equivalence, and M’ < M. One
says f has singular support in M’ if and only if there exist N <« Nand f'": M - N
homotopic to f with the following properties

0 /(M) = N',

Gi) f'(M — M"Y <= N — N,

(iii) f'|IM’': M’ - N’ is a homotopy equivalence,

@iv) f'ICI(M — M’): CI{(M — M') - CI(N — N’) is a homeomorphism.

Let M, N be as specified earlier.

THEOREM 3. Every homotopy equivalence f: M — N has singular support in the
characteristic submanifold of M.
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The theorem admits an immediate strengthening. Namely if W is a component
of ¥, the characteristic submanifold, and W is in the interior of M, then for the f*
above it is true that f'| W is a boundary preserving homotopy equivalence, hence
deformable into a homeomorphism. Hence

COROLLARY. Every homotopy equivalence has singular support in V', the union
of those components of V which meet the boundary of M.

Thus all exotic homotopy equivalences are just modifications of the Examples
1.2, 1.3, 1.4 described earlier.

A special case is when V' is ‘trivial’, that is, contained in a neighborhood of oM
(there could be boundary tori). Obviously this is the case if and only if there is
no essential annulus in A.

COROLLARY. No essential annulus, no exotic homotopy equivalence.

ExAMPLE. In the knot space of a nontrivial knot there exists an essential annulus
if and only if the knot is either a composite knot or a cable or torus knot, respec-
tively.

Conversely, in these special cases, it is in general easy to exhibit exotic homotopy
equivalences. One may expect to do better if one restricts attention to homotopy
equivalences between knot spaces. This is clear in the case of torus knots. In the
case of cable knots the matter depends on the unresolved status of the unique
embedding conjecture, that any embedding of a nontrivial knot space into S3, can
be extended to an automorphism of 53. In writing the announcement [26] I was
under the impression that one could get around the unique embedding conjecture
by a trick, but in fact one cannot as was shown to me years ago by an explicit con-
struction of hypothetical counterexamples, by John Hempel (the examples were
not published then, they have subsequently been rediscovered by J. Simon). At
any rate it is not difficult to prove the following; notice the unique embedding
conjecture is used twice.

COROLLARY. If it is true that nontrivial knot spaces have the unique embedding
property then noncomposite knots are characterized by their groups.

Here are some comments on the status of Theorem 3. Given Theorem 2, the
proof of Theorem 3 is fairly easy in the case of manifolds whose boundary consists
of tori only. The point is that in this case M is actually contained in the charac-
teristic submanifold, so special arguments apply. Unfortunately nothing like this
is true in the general case. Indeed the proof of Theorem 3 is quite complicated in
the general case.

The main trick by which one makes Theorem 3 provable at all is to formulate a
more general assertion. This involves the relative framework of ‘manifolds with
boundary pattern’. A bonus is that the proof of Theorem 2 becomes relatively easy,
in that framework.

3. Manifolds with boundary, revisited. Let M be a compact n-manifold, » < 3.
A boundary pattern for M consists of a set of compact connected (» — 1)-manifolds
in the boundary 8M which meet nicely, that is, the intersection of any two of them
is an (n — 2)-manifold, the intersection of any three is an (n — 3)-manifold, and
SO Oon.
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The boundary pattern {F,} of M is complete if | JF; = 9M. In general one may
define the completed boundary pattern to consist of {F;} plus the set of connected
components of CI@M — | JF)).

A map from (M, {F;}) to (N, {G;}) is a pair of maps f/: M — N, v: {F;} - {G;}
such that f(F;) = G,(, and such that

{F;} = U (set of connected components of /~1(G;) | oM).
J

A loose way to phrase this is to say that { F;} must be induced, by means of f, from
the boundary pattern {G;}. In particular it is never possible that nondisjoint mem-
bers of {F,} are mapped to the same G ;.

A homotopy is a continuous family of maps, in the sense just defined, satisfying
that the map of index sets does not change. Having defined ‘homotopy’ one also
has defined ‘isotopy’, “homotopy equivalence’, and so on.

The unit interval is canonically a 1-manifold with complete boundary pattern.
A singular arc in (M, {F;}) is, by definition, a map f: (, {0, 1}) - (M, {F}}). It is
called inessential if f can be deformed to a point map (note this may happen even if
f(0) and f(1) are in distinct, but adjacent, elements of {F;}), otherwise it is called
essential. An essential singular curve is a map f: S! - M that cannot be deformed
to a point map. Using these notions we may define a map (M, {F;}) = (N, {G};})
to be essential if it preserves essential curves and arcs.

DEFINITION 3.1. A boundary pattern {F;} of M is useful if and only if for any
Jj the embedding

(F i ;g {connected components of F; | F ,}) —s (M, {F;})
is an essential map.

This is the proper notion to work with, whence the name.

EXAMPLE. Let i-faced disk denote a 2-disk with complete boundary pattern of i
elements. This is a 2-manifold with useful boundary pattern only if i = 4. A 4-faced
disk will be referred to as a square; this is isomorphic to I x I as a manifold with
boundary pattern.

REMARK. Call an embedding of an i-faced disk, i < 3, in (M, {F;}) ‘uninterest-
ing’ if it is isotopic to an embedding into M so that D () ( JoF; is isomorphic to
the cone on 9D () UBE. There is a version of the loop theorem for 3-manifolds
with boundary pattern (it is more or less equivalent to the main technical result
of [25]). It says that (except for a few degenerate cases) usefulness is equivalent to
the nonexistence of interesting i-faced disks, i < 3.

ExaMPLE. Let M = S! x DZ, the solid torus. Let F = gM be an annulus, with
winding number w (that is, 1 F has index w in 7, M). Then the completed boundary
pattern of {F} is useful if and only if w = 2.

REeEMARK. Still following our earlier convention that the 3-manifolds under
consideration are compact, orientable, irreducible, and sufficiently large, let f:
(M.{F;}) - (N, {G,}) be a homotopy equivalence of 3-manifolds with boundary
patterns which are both complete and useful. Then f is homotopic to a
homeomorphism. This can be seen by an adaptation of the argument of [24].

Indeed the adaptation clarifies the argument.
We will now adapt the notion of essential F-manifold to 3-manifolds with
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boundary pattern. To avoid introducing even more language this will be done
only in the case of complete boundary patterns.

DEFINITION 3.2, Let M be a 3-manifold with boundary pattern {F;}, both com-
plete and useful. An essential F-manifold in (M, {F;}) is an embedded 3-manifold
with boundary pattern

(V, {J {connected components of ¥ F,})

whose completed boundary pattern is useful. Furthermore for each component
W of V, and its induced boundary pattern, at least one of the following must be
true; either

(a) W admits a structure of Seifert fibre space, with fibre projection p: W — B,
such that the boundary pattern of W is induced, by means of p, from some
boundary pattern of B; or

(b) W admits a structure of line bundle, p: W — B, such that the boundary
pattern of W consists of the components of the associated O-sphere bundle, plus
the boundary pattern induced, by means of p, from some boundary pattern of B.

One defines a characteristic submanifold of (M, {F;}) as an essential F-mani-
fold having a certain universal property, just as before.

THEOREM V. The characteristic submanifold exists and is unique up to isotopy
(in fact, an.bient isotopy of manifolds with boundary pattern).

ExaMmpLE. If {connected components of gM} is a useful boundary pattern for
M (that is, if M is incompressible) the characteristic submanifold in the present
sense coincides with the one defined previously, except that now the set of con-
nected components of its intersection with gM has been designated as boundary
pattern. Indeed the later fact is crucial in translating the notion of ‘essential’ from
one setting to the other.

DerNITION 3.3. Let (M, {F;}) be any manifold with boundary pattern. Let Nbe a
codimension zero submanifold of M such that N [} 9M is a codimension zero
submanifold of 9, in general position with respect to {F;}. Then N is naturally
endowed with what we refer to as its proper boundary pattern, given by

| J{connected components of ¥ 1 F;}
U {connected components of CI(aN N Int(M))}.

Note that the inclusion of N is not a map of manifolds with boundary patterns, in
general.

Notation 3.4. Let (M, {F;}) be a 3-manifold with boundary pattern, not neces-
sarily complete. Assume the completed boundary pattern is useful. Then the
characteristic submanifold ¥ may be constructed, with respect to this completed
boundary pattern. V may be endowed with its proper boundary pattern, with
respect to {F;}. It is this, ¥ together with its proper boundary pattern, which by an
abuse of language we will refer to as the characteristic submanifold of (M, {F;}).

3.5. Similarly, CM - V) may be endowed with its proper boundary pattern.
It will, in general, have certain ‘trivial components’ of the type considered in Ex-
ample 2.6; any such trivial component (with its completed boundary pattern) is
isomorphic to either S! x S x I, or 8! x I x I, or I x I x I, respectively.
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Throwing away the trivial components one obtains a manifold with boundary
pattern, (M*, {F}}), say, which is referred to as being obtained from (M, {F,}) by
splitting at its characteristic submanifold.

LEMMA. (M*, {F*}) is a manifold with useful boundary pattern. Furthermore it
is simple in the sense that any component of its characteristic submanifold is con-
tained in a neighborhood of one of the F¥, or of a component of Cl@M™* — UF}‘).

RemARk. If (M, {F,}) is simple then splitting at its characteristic submanifold
does not change it, up to isomorphism.

3.6. Let (M, {F;}) be a 3-manifold with useful boundary pattern. We consider
incompressible surfaces § in M. We insist on considering only surfaces S not
separating M (resp., 05 not separating 0M) provided there is at least one such
surface. The latter of these is the case if M has at least one component that is
neither closed nor a ball. We also insist that .S be in general position with respect
to {F;}. A numerical function ¢(S), the complexity, is defined by

¢(S) = (number of points S (1 | JoF)) + 5 - (first Betti number of .S).

Let U(S), a regular neighborhood, and ClI(M — U(S)) both be endowed with their
proper boundary patterns. To the latter we refer as the manifold obtained by

splitting (M, {F;}) at S.

LEMMA. Let S be such that ¢(S) is minimal. Then the proper boundary patterns of
U(S) and CI(M — U(S)), respectively, are useful.

From now on, the surfaces involved in a 3-manifold with boundary pattern
will be dropped from the notation.

Let M, be a 3-manifold with boundary pattern, satisfying that the completed
boundary pattern is useful. One forms M, by splitting M, at its characteristic
submanifold, as in 3.5. In M, one picks some incompressible surface, nonseparat-
ing (etc.) if possible, of minimal complexity, and forms M by splitting M, at S,
as in 3.6. In general one forms My, by splitting M, at the characteristic sub-
manifold, and M5, ., by splitting M5, at some S of minimal complexity. The process
must stop after a finite number of steps (in the sense that any component of the
manifold left over is some ball with boundary pattern); in fact, the argument of
Haken {4] gives an explicit upper bound for this number. All the M in the sequence
satisfy that the completed boundary pattern is useful; all the M, are simple.

DEFINITION 3.7. Any sequence M,, M,, M,, --- obtained in this way is called a
great hierarchy for M.

It is by induction on a great hierarchy that one proves Theorems 2 and 3. In the
inductive step one uses the following notion about 2-manifolds.

DEFINITION AND LEMMA. Let F be a 2-manifold with complete boundary pattern,
and let Fy and F, be essential 2-submanifolds of F. Then there exists an essential
2-submanifold F, of F, unique up to isotopy, with the following properties:

(i) Fy can be isotoped into both of Fy and Fy;

(i) any essential curve or arc in F, possibly singular, that can be deformed into
both F; and F,, respectively, can also be deformed into Fy;

(iii) no proper subcollection of components of Fy has property (ii).

Fy is called the virtual intersection of F, and F,.
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One uses it in the following way.

3.8. Let My, M,, M, --- be a great hierarchy. Let M be the component of My,
that contains the surface S, let M’ = CI(M — U(S)) and V' the characteristic
submanifold of M’. One desires to construct a submanifold P of M that consists
of ‘nice’ pieces of components of ¥, fitting properly together across U(S), and so
that P is as large as possible. Here is a rough sketch of the construction. The com-
ponents of ¥’ that are Seifert fibre spaces can meet U(S) in a very special way only
(in a neighborhood of a system of curves); for simplicity we assume there are none.
For simplicity we assume further that any component of ¥’ is a trivial line bundle
rather than a nontrivial one (since .S has minimal complexity this is in fact auto-
matically true if S'is nonseparating). Identify U(S) with § x I. Then by inductive
application of the preceding lemma one finds that there is a largest sub-line-bundle
V" of V' satisfying that the virtual intersection, in S, of ¥” | (S x 0) and
V" (1 (S x 1), is represented by these two surfaces themselves. Thus the compo-
nents of V7 can now be fitted together, across U(S), to form P. It is immediate
from the construction that any component of P fibres over a 1-manifold, with
fibre a 2-manifold. But M was assumed simple. So looking at 9P one sees that
in fact only two outcomes of the construction are possible: Either P is ‘trivial’
(that is, contained in a neighborhood of some surfaces of the completed bound-
ary pattern), or P is essentially all of M, and M fibres over St. The preceding
process will be referred to as combing of V'. In general, without the special assump-
tions we made, the process is more complicated. But one can still conclude that
either P is trivial, in the above sense, or that P is essentially all of M; and in the
latter case M either fibres over S, or is a union of two twisted line bundles glued
at S (and in particular, some 2-sheeted covering of M fibres over S1).

THEOREM 2’, Let M, be a 3-manifold with boundary pattern, both complete and
useful. Then any essential singular torus, annulus, or square in M, can be deformed
into the characteristic submanifold.

REMARK. This includes Theorem 2 as the special case where the boundary pattern
equals the set of connected components of 9f;.

INDICATION OF PROOF. One uses induction on a great hierarchy M, M,, M3, --- .
The induction beginning is with a ball with boundary pattern. But here any essential
square (the only case that can occur!) can be deformed into a nonsingular essential
square, and hence into the characteristic submanifold, in view of the universal
property defining the latter. The inductive step from My; to My, ; is of similar
calibre. Where one really has to prove something is the step from My;,; to My,
Recall that M, is obtained from M,, by splitting at some incompressible surface
S, of minimal complexity, and nonseparating if possible. One assumes, contrary to
the assertion, that there is an essential singular torus, say, call it £, that can neither
be deformed off S, nor into a nonsingular torus in My, this being necessarily some
surface of the boundary pattern since My; is simple. In view of the induction
hypothesis one may assume that the image of f is contained in the union of the
regular neighborhood U(S) and the characteristic submanifold of My, ;. In fact,
one can apply the process of ‘combing’ of 3.8, and finds Im(f) can be contained in
the manifold P constructed by combing. Thus P is nontrivial. Thus the component
of M,, that contains Im(f) fibres over S! (or at least some 2-sheeted covering does).
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In this special case one produces a special proof, mainly by reading Nielsen [14].
Thus M, is not simple, a contradiction.

THEOREM 3'. Let fi: M| — N, be a homotopy equivalence of manifolds with
boundary patterns. One assumes the completed boundary patterns are useful. Then
JS1 has singular support in the characteristic submanifold.

ReMARK. This includes Theorem 3 as the special case of an empty boundary
pattern,

INDICATION OF PROOF. One uses induction on a great hierarchy M,;, M, Ms,,
--- . Actually additional conditions of a technical nature have to be asked of the
surfaces S involved in the great hierarchy; these will here be tacitly assumed. One
first has to go down the hierarchy. This uses, inductively,

LEMMA. f; can be deformed to be a homotopy equivalence both on the characteristic
submanifold and its complement, either being endowed with the proper boundary
pattern.

LEMMA. fo: My — Ny can be deformed to be a homotopy equivalence both on
U(S) and CI(M, — U(S)), either being endowed with the proper boundary pattern.

Next one has to establish the induction beginning, i.e., prove the theorem in the
case when the manifolds are balls with boundary patterns, and simple. This is not
entirely trivial (the argument is a pleasant exercise on the Jordan curve theorem).
And finally one has to work up the hierarchy again, i.e., assuming the theorem is
true for f5,1» (and hence also for f,;,;), one must show that f;;: M,; > N, can be
deformed into a homeomorphism. Again one invokes the notion of virtual inter-
section, on §, the surface such that M, ; = Cl(M,, — U(S)). This uses

LEMMA. Let f© F — G be a homotopy equivalence of 2-manifolds with boundary
patterns. Let F' denote F with its completed boundary pattern, and let F,, F, be
essential 2-submanifolds of F'. If F, and F, are singular supports for [ then so is their
virtual intersection.

By the lemma, the homotopy equivalence f5,|.S has a unique minimal singular
support. The problem is to show this is empty.

One now applies the process of ‘combing’ of 3.8. The submanifold P produced
must contain the minimal singular support of f5;|S, by the lemma. As pointed out
in 3.8, only two cases are possible for P since My, is simple. If P is trivial we are
done. If not, P is essentially all of the component of M,; that contains S, and this
component is of a very special kind. So a special argument applies.

The burden of the proofis in establishing the above lemmas.

4. Classifications. We must insist here that 3-manifolds shall be given in some
particular, and effective, way. Thus a ‘compact 3-manifold’ shall mean a finite
simplicial complex of a particular kind [19]. These form a recursive set, i.e., they
‘can be listed’, M, M,, ---; furthermore, given two, it is trivial to decide, by
inspection, if these two are isomorphic.

The homeomorphism problem is to give a recipe which, given M, M’, decides if
M and M’ are PL isomorphic, i.e., if M and M’ have isomorphic subdivisions.

The classification problem is to give a list of representatives, one from each PL
isomorphism class.
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The two problems are equivalent, by what Haken calls the cheapological trick.
Indeed, given a solution to the former, one constructs the list M, M,, ---, above,
but at each step one inquires if a PL isomorphic manifold has been listed before,
and if so, drops the new one. Conversely, given a solution of the latter in terms of
representatives M,;, M, ---, one from each PL isomorphism class, then, given
M’, one generates the list of manifolds PL isomorphic to M’ (by subdivision and
its converse) until one finds the place of M’ in the list M, M,, ---; similarly one
finds the place of M and thus sees if it is PL isomorphic to M’ or not.

To clarify the meaning of this kind of classification one best considers an ex-
ample pointed out by H. Schubert. Namely a finite group may be specified by a
particular kind of multiplication table. It can be decided by inspection if two such
multiplication tables define isomorphic groups. Hence one can make a list of finite
groups Gy, Gy, -+, one from each isomorphism class. Similarly one can make a
sublist giving the simple groups, or sporadic simple groups, respectively. But
neither is this procedure very practical for groups of order exceeding 108, say, nor
is it surprising that, in this case, the procedure just fails to answer any interesting
question whatsoever. For example, from the recipe how to make the list of sporadic
simple groups one cannot infer, even theoretically, if this list is finite.

In contradistinction to this example there are, in the case of 3-manifolds, at
least two reasons for attempting just this kind of classification. Firstly there is no
classification whatsoever of finitely presented groups and hence (Markov [13], cf.
also [1]) of compact manifolds of dimension exceeding 3. Secondly, any kind of
classification of a sufficiently large class of 3-manifolds must invariably be tied up
with some interesting structure theory.

The idea of Haken’s approach to the homeomorphism problem [4] may be put
as follows. Let M be given and suppose it is actually ‘known’ that M has certain
desirable properties, in particular that it is irreducible and sufficiently large (as
there is no algorithm yet to decide if these properties hold, they must be ‘known’
in advance so that one may use them in constructions involved in algorithms).

Step 1. Consider the hierarchies of M which are as simple as possible, show there
are only finitely many, up to isomorphism, and produce a list. (Note that one does
not classify here up to isotopy as the number of hierarchies would then be infinite,
in general. To have this stronger finiteness one needs to work with something like
great hierarchies, cf. below.)

Step 2. Given N similarly, consider any pair of hierarchies of M and N, respec-
tively, and decide, by inspection, if they match.

Haken has shown [4], [6] that this idea can be made to work ‘in general’. The
exceptional phenomenon is very special indeed, but unfortunately one does not
have much control on its occurrence. It concerns embedded submanifolds which
fibre over S1, have incompressible boundary, and do not contain any incompres-
sible surfaces apart from those isotopic to a fibre or a component of the boundary.

To illustrate the phenomenon suppose that M itself fibres over S!, that 9M is
incompressible (possibly empty), and that the only incompressible surfaces are
those isotopic to the fibres or the boundary components, respectively. If M’ is
similar then any homeomorphism M — M’ must be isotopic to a fibre preserving
one. So, presenting M as the mapping torus of a homeomorphism f: F— F



LARGE 3-MANIFOLDS 33

(where F is the fibre of M), and M’ similarly, the problem to decide if M and M’
are homeomorphic is equivalent to deciding the following problem.

Problem. Given (F, f) and (F', /"), does there exist a homeomorphism 4: F — F'
so that Af is isotopic to f'A?

That is, one wants a solution to the conjugacy problem in the group of isotopy
classes of automorphisms of a compact 2-manifold. Actually, one needs the solu-
tion only in a special case, but the special assumption seems hard to use, in general.

This problem eluded solution for a long time until very recently G. Hemion
solved it at least in the case of nonempty boundary [7]. The solution is as follows.

Let F — F be a universal covering for F, and 4 ¢ F a fundamental domain,
that is, an embedding of the 2-disk so that 4 — F is surjective. It is convenient to
assume that 4 — F is particularly nice, but this is not really relevant. For any f :
F — F, and any lifting f: F —» F, there exist elements g, ---, g, of the covering
translation group so that f(4) < (J;8/4). The minimal number of such group
elements is denoted d,(f), the diameter of f with respect to 4. It depends on 4 — F,
but not on any other choices. '

If f fixes a point x, and # c F is the pre-image of x, then fis determined, up to
isotopy, by the permutation of % induced by some lifting /. This makes it clear
that for any given n’ there exist only finitely many £, up to isotopy, with d,(f) < »’,
and furthermore that there is an effective procedure (by trial and error, say) to con-
struct them all (or at least, to construct a slightly larger set).

THEOREM 4 (HEMION). Suppose oF # @. Let f, f': F — F be given. Suppose f
has neither periodic arcs, up to homotopy, nor periodic curves not deformable into
OF. Suppose h: F — F satisfies that hf is isotopic to f'h. Then for some integer m,
and some h' isotopic to hf ™, it is true that

dy(h)y < $(dS), A7)
where § is some explicitly given function of two variables.

In view of known results (implicitly used below) the general solution of the
above problem follows from this theorem if 0F # @&.

The solution of the homeomorphism problem will now be described in a way
that explicitly uses great hierarchies. As a bonus, additional results can be obtained
on the classification of homeomorphisms. Let M be as before: It is (known to be)
irreducible, and if it is closed it is also (known to be) sufficiently large. If oM # @&
we assume M equipped with some boundary pattern {F;} which is both complete
and useful (an algorithm of Haken can be used to check the latter). As before, S
denotes an incompressible surface in M (nonseparating, etc., if such exist at all)
with complexity ¢(S) defined by

(number of points S () UBF;) + 5 - (first Betti number of ).

THeOREM 5 ([2], [3], [4)). () There is an algorithm to construct the characteristic

submanifold of M.
(ii) If M is simple, cf. 3.5, then there is only a finite number, up to ambient isotopy,
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of surfaces S of minimal complexity. There is an algorithm which produces one such
surface from each isotopy class.

REMARK. An algorithm of Haken can be used to decide if two incompressible
surfaces are isotopic. Thus the final assertion of the theorem may be strengthened
to say that precisely one S is produced from each isotopy class.

Let (M, M,, M, ---) and (M}, M3, M3, ---) be great hierarchies, in the sense of
3.10. An isomorphism from one to the other is a sequence of PL isomorphisms
Jfi: M; - M such that

(i) for j = 2i, and the surfaces S and S’ used in passage from 2i to 2i+ 1, the
surfaces f,(S) and S’ in M are ambient isotopic;

(ii) for any j, f;4; is induced, up to isotopy, from f}.

If M, = M and f; is the identity, the isomorphism will be called an isotopy. In
view of the fact that the lengths of great hierarchies of M are uniformly bounded
above [4], Theorem 5 thus gives

COROLLARY. There is only a finite number, up to isotopy, of great hierarchies of M.
There is an algorithm which produces precisely one from each class.

Let s#(M, N) denote the set of isotopy classes of homeomorphisms from M to
N, and #(M) the group £ (M, M). If h: M - M is a homeomorphism, we will
say & has support in M’ = M if there exists 4’ isotopic to A so that A'|M — M’ is
the identity; these form the subgroup s, M) of #(M). For example, a Dehn
twist is an automorphism of a 2-manifold with support in the neighborhood of an
embedded circle. Similarly, an automorphism of a 3-manifold may be called a
Dehn twist if it has support in the neighborhood of an essential annulus or torus.

We denote by bp(M) the set of surfaces involved in the boundary pattern of A,
and by hier(M) the set of isotopy classes of ‘oriented” great hierarchies (that is, M,
and each of the surfaces S involved, is endowed with some orientation).

THEOREM 6. Let M, be connected and simple. Suppose M, does not fibre over S,
nor, if it is closed, that it is the union of two twisted line bundles. Then

H(M;) - Aut(bp(My)) x Aut(hier(M,))
is injective. If N, is similar then the image of (M, N,) in
Hom(bp(My), bp(N3)) x Hom(hier(Ms), hier(N,))

is a computable set; in particular it can be decided whether or not 3#(M,, N,) is
empty.

INDICATION OF PROOF. Let f,: My — M, be such that bp(f;)is the identity, and
hier(f>) has a fixed point. By induction on the length of the great hierarchy, f, must
then be isotopic to the identity, as follows. Let M,, Ms, .- represent this fixed
point, where M; = CI1(M, — U(S)), etc. It may be assumed that f,(S) = S,
So(M3) = M, fo(M,) = M,, and, by the inductive hypothesis, that f,| M, is the
identity. It is clear, more or less, that it suffices to prove f;|S is isotopic to the
identity. One uses

LEMMA. Let f: S — S be an automorphism of a 2-manifold with complete bound-
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ary pattern. Let Fy, F, be essential 2-submanifolds of S. If F; and F, are supports
JSor f then so is their virtual intersection.

One may thus apply the process of combing the characteristic submanifold of
M3, cf. 3.8, and the submanifold P produced will contain the minimal support of
f2IS, by the lemma. But P must be trivial, in view of the hypothesis that M, does
not fibre, etc.

The second part of the theorem follows since the combing process is really a
constructive method, and one can thus compare, by inspection, the data in M,
and N,, respectively.

THEOREM 7. Let M, be connected and simple. Suppose that oM, # @ and that M,
fibres over S1. Let Ny be similar. Then 52°(M,, Ny) is a finite computable set.

ProoF. By Haken, there are, up to isotopy, only finitely many fibrations of M,
whose fibre is of minimal complexity, and all of these can be constructed. It thus
suffices to consider only fibre preserving homeomorphisms. Let M, be the mapping
torus of a homeomorphism f: F — F. Then f does not have periodic arcs or curves,
up to homotopy, which cannot be deformed into 8F because otherwise M, would
not be simple (by Theorem 2, or really Nielsen [14]). The assertion is thus immedi-
ate from Theorem 4.

In the following we let M be a connected 3-manifold as specified earlier, but we
exclude these two cases:

(i) M is closed and simple and fibres over S!;

(ii) M is closed and simple and is the union of two line bundles.

Note that it can be checked by Haken’s algorithm if M is one of these. #, (M)
denotes the normal subgroup of #(M) of homeomorphism classes with support
in V, the characteristic submanifold of M.

THEOREMVS. If M is as just specified, and N similarly, then 3y (M\A# (M, N) is a
finite computable set.

INDICATION OF PROOF. Let M’ be obtained from M by splitting at the characteris-
tic submanifold, and N’ similarly. The hypothesis about M implies that each com-
ponent of M’ satisfies the hypothesis of either Theorem 6 or 7. Thus #(M’, N’)
is a finite computable set. By definition, M’ was obtained from C1(M — V) by
discarding certain trivial components. Thus we must now add ¥ to M’, and those
trivial components. For example, one component of CI(M — M’) could be a
graph manifold in the sense of [22], cf. Example 2.6 above. To proceed one can,
e.g., use explicit knowledge about such special manifolds and their homeomor-

phisms.

COROLLARY. Let M denote a compact orientable irreducible 3-manifold with non-
empty incompressible boundary.
These M can be classified (by Theorem 8).
The M' homotopy equivalent to M can be classified (by Theorem 3).
These m,M can be classified (by 1 and 2).
Knot groups can be classified (by 3). :
Knots can be classified (by 1, and inclusion of a meridian in the data).

NPk =
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COROLLARY. If M is as in Theorem 8, #(M)/#v(M) is a finite computable group.
In particular if M is simple, # (M) is a finite computable group and hence so is the
group of automorphism classes of m\M, by Theorem 3.

The following remarks show that s, (M) is also computable though in general
not finite. Let NV be a Seifert fibre space with decomposition surface B. Let G de-
note the group of fibre preserving homeomorphisms modulo fibre preserving
isotopy. It was indicated in [24] that, in general, the map G - #(N) is an isomor-
phism (the exceptions are (i) those of Example 1.4, (ii) the Seifert fibre spaces of
2.2, plus alternative Seifert fiberings of these, (iii) finitely many others, e.g., the
3-torus). Let the chain of subgroups G5 ¢ G, < G; = G be defined by

(G,) h is orientation preserving,

(G;) h maps each exceptional fibre to itself, by an orientation preserving map,

(Gs) h maps each fibre to itself, by an orientation preserving map.

Then G,/G, is always finite. In the case where B is orientable, it is a product of
permutation groups (namely those exceptional fibres may be permuted that can be
permuted) and possibly a Z,. In the other case, the structure is slightly more com-
plicated in that each exceptional fibre may be flipped individually.

G»/Gy = #(B) where Bis to be considered as a pointed 2-manifold, pointed by
the exceptional fibres. Generators for this group have long been known, in partic-
ular s#(B) has a subgroup of finite index which is generated by Dehn twists. A
system of relators has recently been obtained by Hatcher and Thurston (not yet
published), in particular it is now known that ;#(B) is finitely presented.

G3> Hy(B, 0B) (with two exceptions; cf. below). A cocycle in the dual group
H\(B; Z) is represented by a section in a certain S-bundle over B; the section can
be interpreted to measure how the associated element of G rotates the nonexcep-
tional fibres. If k is a nonsingular arc in B not containing an exceptional point then
the element of H1(B, 9B) represented by k corresponds to a primitive Dehn twist
along the annulus over k; similarly, if X is a closed curve, it corresponds to a prim-
itive Dehn twist at a torus, in fibre direction.—The exceptions are given by the
Sl-bundles over the torus and the Klein bottle, respectively. The exceptional
phenomenon is that in these cases there exist nontrivial isotopies which slide the
fibres around (such exceptional isotopies exist in three more cases, but here they
do not do anything). The effect is that H,(B, 2B) has to be replaced by the quotient
group

H(B, 0B) ® Z/nZ

where 7 is the Euler number in the case where B is the torus, and twice the Euler
number in the case of the Klein bottle.

Similar but simpler considerations apply to line bundles. Putting together these
considerations involving the work of Haken, Hemion, Johannson, Hatcher-
Thurston, one has

COROLLARY. Let M be as in Theorem 8, but in addition exclude the case where M
is a Seifert fibre space over S? with precisely three exceptional fibres (that is, one
must explicitly exclude now only those which are sufficiently large). Then (M) is
a finitely presented computable group.
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REMARK. In the case additionally excluded in the corollary, it is true that s#(M)
is isomorphic to the group of automorphism classes of 7;M. Therefore results of
Zieschang [29] show that the corollary extends to this case.

COROLLARY. Let M be as in the preceding corollary. Then the normal subgroup
of # (M) generated by Dehn twists at essential annuli and tori is of finite index.
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