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ALGEBRAIC K-THEORY OF
TOPOLOGICAL SPACES. 1

FRIEDHELM WALDHAUSEN

This paper is concerned with a functor A(X), from spaces to spaces, which is in
some ways analogous to the algebraic K-theory functor K(R) which goes from rings
to spaces. The two are related by a natural transformation from 4(X) to a suitable
K-theory. The natural transformation itself is induced by a Hurewicz map.

The functor A(X) is of some interest in itself, for example there are about as
many definitions of A(X) as there are definitions of K(R). More significantly how-
ever it can be used to obtain information about the Whitehead spaces WhPL(X)
and WhP#(X) whose homotopy groups are the PL, resp. Diff, concordance
groups, stabilized with respect to dimension.

The plan of the exposition is as follows.

§1 discusses a K-theory of simplicial rings. This may be regarded as a model for
the study of one aspect of A(X).

§2 gives the quick definition of A(X), via the plus construction.

§3 describes the Whitehead spaces and their relation to A(X).

§4 introduces what by analogy may be called a nonadditive exact-sequence-K-
theory.

§5 indicates the proof of the main results.

1. K-theory of simplicial rings. Let R. be a simplicial ring (with unit); then 7z,R.
is a ring, and 7y: R. = moR. can be considered as a map of simplicial rings. Let
M, denote (n x n)-matrices, and GL, — M, the inclusion. Define C/}I,,(R.) to be the
pullback in the diagram

GL,(R.)—> M,(R.)

GLn(”OR' )'_) M,,(?Z'()R- )
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and C/}T,(R) = dir li/r{l éi,,(R) This is a simplicial monoid, and one can form its
classifying space BGL(R.) (to be 1nterpreted say, as the geometric realization of
a certain bisimplicial set). By definition of GL(R ), the map

7,BGL(R.) - mBGL(7,R.)

is an isomorphism, so nlBC/ii(R) has perfect commutator group, and one can
apply Qulllell\s plus constructlon to form B(/}T,(R )*, together with a natural trans-
formation BGL(R ) - BGL(R )+ which abelianizes 7 and induces an isomorphism
on homology. BGL(R )* is a simple space.

REMARK. If 7yR. = O then R. is contractnble (multiply by a path from 1 to 0);
hence BGL(R) is C contractible, and BGL(R )t is not a very interesting space. This
shows that our BGL(R )*is very much different, in general, from the K-theory of a
simplicial ring defined by Anderson [2] (one forms BGL(R.)* (no ™) by taking the
plus degreewise); for example, the Karoubi-Villamayor K-theory, which agrees
with Quillen’s for regular noetherian rings, is the K-theory, in Anderson’s sense,
of a connected simplicial ring [2]; as a more immediate example, consider the real
numbers. There appears to be only one case where the two definitions agree for
general reasons, that of a graded ring considered as a differential graded ring in
a trivial way and turned into a simplicial ring by means of the Dold-Kan functor.
A question in that context is if there is any relation, in general, between the K-
theory of a simplicial ring and that of the graded ring of its homotopy groups.

Henceforth we assume that 1 # 0 in zoR. .

DEFINITION. K(R) = Z x BGL(R)*.

It is a special case of the following proposition that the functor R. — K(R.) pre-
serves weak homotopy equivalences, that is, if R. - R’. induces an isomorphism
on all homotopy groups then so does the induced map K(R.) — K(R'.). Thus for
example if R. -~ zyR. then K(R.) gives the Quillen K-theory of (zoR.)-modules (in
this paper, K-theory of a ring will mean that of its free, rather than projective,
modules).

Following the usual convention, we will call a map X — X " k-connected if, for
any basepoint in X, the induced map 7z ;X — x;X’ is an isomorphism for j < k and
an epimorphism for j = k. Bookkeeping with this convention will be easier to fol-
low if one keeps in mind that a k-connected map has (k — 1)-connected homotopy
fibre(s).

PROPOSITION 1.1. If R. — R’ is k-connected, and k = 1, then K(R.) — K(R'.) is
(k + 1)-connected.

Proor. There is a commutative diagram of simplicial sets,

M,(R. ))—> M,(R )

GL,(R.)(»—GL(R)

where the subscript (0), resp. (e), denotes the zero-, resp. identity-, component, and
where the vertical maps are the isomorphisms given by : addition of 1. The top map
is k-connected by hypothesis, and k = 1; hence BGL(R) - BGL(R )is (k+1)-
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connected. Hence B(/}i(R.)+ - B@(R:)*, being a map of simple spaces, is also
(k + 1)-connected [6].
The proposition admits the following quantitative refinement.

PRrOPOSITION 1.2. Let R. — R. be k-connected, where k = 1. Then
Tps1 fibre(K(R.) = K(R))) = Hy(moR,, mfibre(R. — R)))  (Hochschild homology)
~ 7, fibre(R. - R)) [ (ar — ra)
where a € 1, fibre(R. — R)), and r € myR,,
Proor. By the Hurewicz theorem, an equivalent assertion is that
H,,, fibre(K(R.) - K(R))) = Hy(noR,, m;fibre(R. — R))).

In order to prove this, we will compare the Serre spectral sequences of the vertical
maps in the diagram:
AN N
BGL(R.)—BGL(R.)*

o~ Py
BGL(R))—> BGL(R))*
Let A be an abelian group. We are interested in the cases 4 = Z, and 4 = Q, the

rationals, in view of a later application. Then the spectral sequence of the left
vertical map is

E}, = H,(BGL(R.), 4)
where EZ , is given by
dir lim,, H,(BGL,(R), H,(fibre(BGL,(R.) - BGL,(R), 4)).
We have
7, fibre(BGL,(R.) —» BGL,(R)) > r; ; fibre(GL,(R.) » GL,(R)
= 1y fibre( M, (R.) - M,(R)) = M,(z,—fibre(R. - R)))

for all i, this being trivially true for small i because of the connectivity assumption.
Furthermore the action of mBGL,,(R) on the former group corresponds, under
the isomorphism, to the conjugation action of z GL,,(R ) =~ GL,(7oR)) on the lat-
ter. Let j be the smallest number so that z; ,fibre(R. — R)) is nonzero. Then by
the Hurewicz theorem and universal coefficient theorem,

H{(fibre(BGL,(R.) - BGL,(R)), 4) ~ M,(x,sfibre(R. > R)) ® 4;
hence E} ; is given by
dir lim,) H,(BGL,(R), M,(r, fibre(R. —» R) @ A))

where the action is the conjugation action.
Let the spectral sequence of the right-hand vertical map be denoted

E?, = H,(BGL(R)", B,) = H,, (BGL(R.)", 4)
g — 0P /0 P ptq

where B, = H,(fibre(BGL(R.)* » BGL(R)"), 4). The action in H,(BGL(R)*, B,)

is trivial. By the fundamental property of the plus construction, the map of

spectral sequences is an isomorphism on the abutment, H*(BC/}T.,(R) A) -
(BGL(R )*, A) and on the base, H,,(BGL(R) B) -~ H,(B GL(R )*, B,). Since
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the fibres are connected, we have 4 ~ E2, ~ Eg’y ~ By; hence E} , >~ E,},. Further-
more Ef, —~ El',fq for 0 < g < k since these terms are zero. It follows that we must
have

Ege — Egin
and from this that £§,,, —»= Eg}.,, i.e., that
dir lim,, Hy(GL,(%oR)), M,(, fibre(R. »R)) ® A)) = Hy(GL(%oR)), By+1) < Byt1-

But clearly the trace map of the coefficients induces an isomorphism of the former
term to Hy(zoR,, z,fibre(R. - R)) ® A). This completes the proof.

Proposition 1.1 admits a relativization which will be given in the following
proposition. To state it properly we need the following notions. Let an (m, n)-
connected square denote a commutative square in which the horizontal maps are
m-connected, and the vertical maps n-connected. Call it k-homotopy cartesian if
the map of the homotopy fibres of the vertical maps is (k + 1)-connected. For
example, there is a result in algebraic topology, homotopy excision, which says that
an (m, n)-connected pushout diagram of cofibrations is k-homotopy cartesian with
k=(m—1)+(n—1).

ProposITION 1.3. A (k — 1)-homotopy cartesian, (m — 1, n — 1)-connected
square of simplical rings, withm,n = 2andk < m + n — 2, is taken by the functor
K to a k-homotopy cartesian, (m, n)-connected square.

PrOOF. The functor BGL produces a k-homotopy cartesian (m, n)-connected

square. Let
A B

C—D

—

be such a square in general. After replacing of 4 - B and C — D by cofibrations,
if necessary, their pushout diagram is (m + n — 2)-homotopy cartesian, by homo-
topy excision. From this one sees that k-homotopy cartesianness of the square is
equivalent, fork < m + n — 2,tothemap B |J , C — D being (k + 2)-connected.
In the case at hand we can have (B |J , C)* = B* |J 4+ C*. This shows firstly that
the resulting spaces are nilpotent, so [6] the connectivity survives under the plus
construction. Secondly it shows that the above argument can be traced backward,
and the assertion follows.

From Propositions 1.1 and 1.3 one has a spectral sequence relating K(R.) to the
K(Sk’/R.) where Sk’ denotes the j-coskeleton, EZ, = 7,4, K(R.), p = 0, ¢ = 1, with
E}, = 7y, fibre(K(Ske~1R.) —» K(Ske2R.)) if ¢ > 1,
E}, = mpi1 K(moR.)
and
Ef, ~ Hy(moR., m,R.) if g > 1

by Propsition 1.2
Kiyoshi Igusa has discussed a related spectral sequence in a context of what he
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calls higher Whitehead groups [11]. In this context Igusa points out that by (an
analogue of) Proposition 1.3, there is a ‘stable range’, p < ¢ — 2, in which EZ,
can be identified to a certain ‘stable’ group. We will not enter this discussion here.
Rather we will discuss a somewhat different kind of stabilization which will be
needed later on.

Let G(X) denote the loop group in the sense of Kan [12]. X — G(X) is a functor
from pointed connected simplicial sets to free simplicial groups, and G(X) is a loop
group for X in the sense that there exists a principal simplicial G(X)-bundle over X,
natural in X, with (weakly) contractible total space X, x G(X) (a ‘twisted cartesian
product’).

If R is any ring, one may form the simplicial group algebra R[G(X)], hence
K(R[G(X))) is defined. For example, Proposition 1.1 says, if X — X’ is k-connected
then so is K(R[G(X)]) — K(R[G(X")]) provided that k = 2.

The functor K(R[G(X)]) is related to the usual K-theory of a group ring. Indeed,
the map G(X) — zyG(X) = =X induces a natural transformation

K(RIG(X)]) > K(RlmX]).
This is by no means an equivalence in general. For example,
G(X) - 1-G(X) = R[G(X)]
may be considered as a Hurewicz map; and Proposition 1.2 yields
7 fibre(K(R[G(X)]) —» K(R[7,X])) ~ (72X ® Rz X))/, X.

Using a suitable pointed simplicial set as a model, we can decompose the
(n+1)-sphere, n = 2, into its upper and lower hemispheres D%+! and D”+!; this
gives for any pointed simplicial set X a pushout diagram

S*A (X U #)—Ditt A (X U *)

DRI A (X U #)——8" A (XU %)
in which all maps are n-connected. By Proposition 1.3, the (n, n)-connected square

K(R[G(S" A (X U *)])—K(R[G(DL™ A (X U *))])

K(RIG(D™' A(X U #))))—K(R[G(S*1 A (X U #))])
is therefore (2n — 2)-homotopy cartesian, consequently the map
O~ fibre(K(R[G(S™ A (X U #))]) —» K(R))
— Q#fibre(K(R) — K(R[G(S™1 A (X U *)D)
~ O#Hifibre(K(R[G(S™! A (X U *)]) » K(R))
is (n — 1)-connected.
DEFINITION. KS(R[G(X)]) = dir lim Q7 fibre(K(R[G(S" A (X U ))]) —» K(R)).

REMARK. Having to use basepoints and connectivity is somewhat artificial but

unfortunately necessary since we are using G(X). For example one may expect that
there is a natural transformation
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K(R[G(X)]) —» KS(RIG(X))).
This does indeed exist, but it cannot (or at least not obviously) be obtained with
the present definition.
Notice that KS(R[G(X)]) is really a functor of two variables, R and X. For ex-

ample if R = R'[G(Y)] there does not appear to be any reason why KS(R) =
KS(R[G(%)]) and KS(R'[G(Y))]) should be the same.

. LemMA 1.4. The functor X — KS(R[G(X)]) is an (unreduced) homology theory,
that is, X — 7w KS(R[G(X))]) satisfies the Eilenberg-Steenrod axioms except for the
dimension axiom.

Proor. The thing to verify is excision. Suppose X,, X;, X, are simplicial subsets
of X'so that X; |J x, X2 = X. Then the square

Q"K(RIG(S" A (Xo U a)D)——Q"K(RIG(S" A (X, U #)])

QK(R[G(S" A (X, U s)])——Q"R(RIG(S* A (X U #))])

where K(R[G(Y)]) = fibre(K(R[G(Y)]) —» K(R)), is (n — 2)-homotopy cartesian, by
Proposition 1.3. So in the limit the square becomes homotopy cartesian, which is
the assertion of excision.

The only use so far of the curious functor R — KS(R) is the following result
which will be needed later.

PROPOSITION 1.5.
Q’ l.fl = Oa
0, ifi>0.

The proof depends on a result of F. T. Farrell and W. C. Hsiang, adapting a tech-
nique of Borel [3]. Let GL,(Z) act by conjugation on M,(Q), the rational (n x n)-
matrices. The trace M ,(Q) — Q induces a surjective map

dir lim H,(GL(Z), M,(Q)) - dir lim H,(GL,(Z), Q).

LeMMA (FARRELL AND HSIANG [7]). This map is an isomorphism.

7KS(Z)® 0 ~ {

ProOF oF ProPOsITION. It suffices to show that, for large n,

B, = H(fibre(BGL(Z[G(S"))* - BGL(Z)"), @ )
- {Q if g=0, n,
T ifg=g2n—2,9%#0,n.

This is proved by the method of Proposition 1.2, the comparison of the Serre
spectral sequences for rational homology of the vertical maps in the diagram:

BGL(Z[G(S")])— BGL(Z[G(S")])*

BGL(Z) —  BGL(Z)*

In the notation set up in the proof of Proposition 1.2, suppose r is the smallest
number so that EZ, — E,’, si not an isomorphism, for some p. Suppose r < 2n — 2
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and r # n. The assumption now means that E,’, # 0. It follows that Ej’, # 0 since
this is the coefficient group. Since EZ, -~ E,, for ¢ < r, and E§, = 0, it follows
that Eg,, Eg,, ---, cannot be hit by a nonzero differential. Hence Ej, —~ E;; must
contribute to the abutment, a contradiction.

So suppose the first deviation occurs for r = n. The above argument still shows
that E¢,, —»~ E’,, i.e., that

dir lim Hy(GL,(Z), M,(Q)) > H(GL(Z), B,) < B,.
But
dir lim M,(Q) — dir lim Hy(GLy(Z), M(Q)) = Q

is given by the trace, and it is also the coefficient map, i.e., H,( , Q) applied to the
map of fibres. Hence by the lemma of Farrell and Hsiang, EZ, —~ E;’, for all p, and
there is no deviation after all. This completes the proof.

2. The functor A(X). By way of introduction, a definition will be given which is
very close to that of the K-theory of a simplicial ring. It presupposes the notion of
‘ring up to homotopy’.

A ring up to homotopy consists of an underlying space, R, plus a lot of additional
structure. This is (i) the additive-group-law-up-to-homotopy, i.e., a homotopy
everything H-space (E,, space) with underlying space R satisfying that 7R with the
induced monoid structure is in fact a group; (ii) the multiplication-law-up-to-
homotopy, i.e., a homotopy associative H-space with unit and higher coherence
conditions (4., space) with underlying space R; (iii) homotopy distributivity relat-
ing the additive and multiplicative structure, with higher coherence conditions.

The notion of a commutative ring up to homotopy has been successfully codified
by May [14]. By dropping some of the structure one may expect to obtain from this
one workable notion of a ring up to homotopy.

If R is (the underlying space of) a ring up to homotopy, one can form a new ring
up to homotopy, the ring of (n x n)-matrices. The underlying space M, (R) is
simply the product of n2 copies of R; similarly the additive structure is formed
componentwise. However it is the multiplicative structure of M, (R) in which we
are interested.

By restricting to a certain union of components one obtains an A, space with
underlying space GL,(R), the pullback in the diagram:

A
GL,(R) — M,(R)
70
GL,(%oR) — M, (mR)
We let GL(R) = dir lim GL(R). This is of interest only if 1 # 0 in 7,R which we
now assume.
DErINITION. K(R) = Z x Béi(R)Jf.

There is a ‘universal’ ring up to homotopy (in the same sense in which the ring
of integers is the universal ring with unit). The underlying space of this universal
ring up to homotopy is the space

Q = dir lim Q=S
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If G is any simplicial group one can form the ‘group algebra’ Q[G]. It has underlying
space dir lim 2#S#(|G| | x), the space whose homotopy groups are the stable homo-
topy groups of (|G| U *) (or, what is the same, the framed bordism groups of |G|).

If X is a pointed connected simplicial set, let as before .G(X) denote the loop
group of X.

DEFINITION. A(X) = K(Q[G(X)]) = Z x B(/}T_,(Q[G(X DT

The notion of ‘ring up to homotopy’, and the technical problems it entails, enter
in th/i\s construction of A(X) in the following way: We need that the multiplication
on GL(Q[G(X))) is sufficiently associative for the classifying space to exist, and we
want a canonical choice for the latter. N

On the other hand it turns out that what is BGL(Q[G(X)]) for all practical
purposes, can also be constructed very directly. This will be described below. It
follows that A(X) can also be constructed very directly; and that practically all of
the results of the preceding section carry over to A(X), quite independently of a
worked out theory of rings up to homotopy, s/ix\lce the proofs do not involve the
actual construction of a classifying space of a GL.

In order to obtain a more direct definition of A(X), let G be any simplicial group
which is a loop group for X in the sense that there exists a principal simplicial
G-bundle over X with (weakly) contractible total space X, x G, the latter being a
free right simplicial G-set. For example, G = G(X), the loop group of Kan.

Define a category &(G) as follows. The objects are pointed simplicial left G-sets
Y which are free in the sense that for all k, g€ G,, y € Y, one has g(y) = y if and
only if either g = 1 or y = *. The morphisms in #(G) are G-maps.

Let h%(G) be the subcategory of £(G) of those G-maps which are weak homo-
topy equivalences of the underlying simplicial sets.

Let #(G)? be the full subcategory of those objects for which

(X,x G) x€ Yl > el x| ‘Xl V V1,087

(homotopy equivalence, relative to the subspace |X|, to |X| wedge k spheres of
dimension #n), and let

rF (G = L(GY: N hF(G).
The latter categories are interrelated by a composition law
hP(G)g x hF (G = hA (G
and a suspension map
hF(G): —» hP (Gt

There is a particular object (G U %) in &(G). By adding the identity on its n-fold
suspension, one obtains a stabilization map h%} — hF (G},

LeEMMA 2.1. There is a homotopy equivalence
Q |dir lim,, h#(G)] ~ GLAQLG(X)])

under which composition of loops in the former space corresponds to matrix multi-
plication in the latter.

COROLLARY AND/OR DEFINITION. A(X) =~ Z x |dir lim, s AL(G(X))il .
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There is a natural transformation
A(X) —» K(Z[G(X)])

which may be described in two ways. Firstly one may ‘linearize’ the category
h#(G)%, i.e., one applies the functor which sends a free pointed simplicial G-set
to the free simplicial Z[G]-module generated by the nonbasepoint elements; a
natural transformation is then given by the Hurewicz map which takes an element
to the generator it represents. Secondly, one has the map BGL(Q[G(X DT -
BGL(Z[G(X )+ induced from the ring map zy: Q — Z. In view of the linear
analogue of Lemma 2.1, the two maps are the same, up to homotopy. As Q[G(X)] —
Z[G(X)] is a rational homotopy equivalence, and 1-connected, the proof of 1.1 (or
1.2) shows:

PROPOSITION 2.2. The natural transformation A(X) — K(Z[G(X))]) is a rational
homotopy equivalence.

In particular, A(x) —» K(Z) is a rational homotopy equivalence.

Let Qf*(X) (framed bordism) denote the space dir lim Q»S*(|X| |J *). The Barratt-

Priddy-Quillen-Segal theorem may be stated to say that

Q(X) ~ Z x | dir lim h.9”'(G(X))2|+;
hence one has a natural transformation Q*(X) — A(X), and, clearly, the composite
Qf(x) —» A(x) > K(Z) is the usual map. In particular, all the elements of K,(Z)
that come from 7, Q" (x) = z5 also come from 7, A(*).

The source of the natural transformation Qf*(X) — 4(X) may be enlarged. For
simplicity this will be described only in the case where X = . Notice that in this
case, h#(G(*)); = h& ()} is simply the category of pointed simplicial sets, of the
weak homotopy type of a certain wedge of spheres, and the maps are pointed maps
which are weak homotopy equivalences.

Let these spheres be endowed with orientations. Define A% (%)} to be the sub-
category of orientation preserving weak homotopy equivalences. Then

QrF(x)1| ~ SG,
the space of pointed maps of S of degree +1, and
|dir lim h&(x);| ~ BSG.
More generally, let A% ()} consist of those maps in A% ()} which are given as a
wedge of k maps in AhZ(x)?, followed by some permutation. Then by the Barratt-
Priddy-Quillen-Segal theorem,
|dir limy, ., hP(E|T ~ Q(BSG)

and thus one has a natural transformation Q" (BSG) — A(x). If one thinks of A(x)
as the K-theory of the ring up to homotopy Q, this natural transformation may
be pictured as given by the inclusion of the (positive) monomial matrices in Q.

Let Qf'(BSG) be the homotopy fibre of the (naturally split) map Q(BSG) —
Qf(x). Then we have a diagram of fibrations:

Q(BSG) —— Q(BSG) — Qfr(x)

fibre(A(x) » K(Z)) — A(x*) — K(Z)
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Now 7,Q%(BSG) = 0if i = 0 or 1, and &~ Z, if i = 2, and the same is true for
7; fibre(A(x) - K(Z)), cf. Corollary 2.7 below. By chasing a representative element
through the latter computation, it is not difficult to see that
7.0f(BSG) = =, fibre(4(x) — K(Z)).

Somewhat surprisingly, it appears that 7, fibre(A(x) - K(Z)) - 7, A(*) is the zero
map, or equivalently, that 734(x) — K3(Z) is not surjective. This comes from an
indirect (and involved) argument of Igusa which says that a particular kind of
2-parameter family of cell complexes must exist (cf. the remark after Theorem 3. 3
in the next section). An explicit description of this 2-parameter famlly has not been
found so far. It is certain to be complicated, though, since it is closely related to an
explicit description of the exotic element of K3(Z) [13].

Here are the analogues of Propositions 1.1 and 1.3.

PROPOSITION 2.3. If X = X' is n-connected, n 2 2, then so is A(X) — A(X").

PROPOSITION 2.4. The functor A preserves k-homotopy cartesian (m, n)-connected
squares, provided thatm,n 2 2,k < m + n — 2.

The analogue of Proposition 1.2 is not quite a quantitative statement since it
involves computing framed bordism in a fibration. One can do better in special
cases. Specifically, one can get spectral sequences from Postnikov towers. The
case of the Postnikov tower of X itself seems to be of least interest here, so we will
not deal with it.

A ring up to homotopy, with underlying space R, has a Postnikov tower. The
jth term has underlying space SkiR, the j-coskeleton of R. We define Ki(R) =
K(Sk’R). In the case of R = Q[G(X)], the functor

K(Q[G(X)]) = Z x BGL(SK(Q[G(X)]))*

can again be defined directly, in a way that avoids the general notion of ring up to
homotopy. We have, in this case,

KYQLG(X)]) = K(Z[z\ XD
The analogue of Proposition 1.2 is
PROPOSITION 2.5. Let j = 1. Then Ki(R) — Ki~)(R) is (j + 1)-connected, and
7 1 fibre(Ki(R) — Ki~Y(R)) ~ Hy(mR, = ;R).

In particular if R = Q[G(X)), this is % Hy(m X, 7 QFG(X)) which, for j =1, is
Hy(m X, (Z; @ 72 X) @ Z[z X]).

The tower of maps K(R) --- — Ki(R) — ---, gives rise to a spectral sequence
E2, =y K(R),p 20,92 1, with

E%, = my fibre (K }(R) — 7-2(R)) if g = 2,
where the term EZ, is given by the proposition, and
E}, = myniKAR) = mp1 K(zoR).

Similarly, we may consider the Postnikov tower on the ‘coefficient ring’ Q, and
define
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45(X) = K(Sk'QIG(X)).
Then A° (X) = K(Z[G(X))), and the analogue of Proposition 1.2 is
PROPOSITION 2.6. Let j = 1. Then Ai(X) » Ai~(X) is (j + 1)-connected, and

7 mfibre(4i(X) » 4i7Y(X)) ~ Hy(m X, 7§ ® Z[m X])
~ 75 @ Hy(m1X, Z[z,X]) (conjugation action).

Again the tower of maps 4(X) --- — A/(X) — ---, gives rise to a spectral sequence
EZ, = mwy AX),p 20,921, with

EZ, = 7y fibre( 47 1(X) — AYX)) ifg=2,
ﬂerlK(Z[G(X)])

In the special case X = , either of the two towers of maps above specializes to

Sy
I

COROLLARY 2.7. There is a tower of maps A(%) --- — Ai(x) — --- approximating
A(*), with
(i) 4%) = K(Z),
(i) Ai(x) = A7~Y(x) is (j + 1)-connected,
(iii) 7,41 fibre(4/(x) — Ai7Y(x)) ~ 5.

Lastly we have to consider the stabilization of the functor 4(X). Arguing as in
the preceding section we may define it as

AS(X) = dir lim Q~ fibre(A(S™ A (X U #)) = A(%))-
In detail, the nth map in the system is the map
On fibre(A(S" A (X U %)) - A(x)) - Q» fibre(A(x) — A(S*1 A (X U *)))
which is the map of fibres in the diagram:

AS" A (XU %)) — ADT A (XU )

A(D™ A (XUw) — A(S"E A (XU %)

Anticipating from §5 that A is really a functor on simplicial sets, not necessarily
pointed nor connected, we see that 4(S° A (X U *)) makes sense, and, clearly,

A(X) > fibre(A(SO A (X U *)) —» A(»)).
Therefore there is a natural transformation
A(X) - AS5(X).
The analogue of Lemma 1.4 is
LemMa 2.8. The functor X — AS(X) is a homology theory.

The ‘coefficients’ of this homology theory is the space A45(x). In view of Proposi-
tion 2.2, the natural transformation

A5(x) - KS(Z)

is a rational homotopy equivalence. Hence Proposition 1.5 gives
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PRrROPOSITION 2.9.

Q0 ifi=0,
AN © @ ~ {0 ifi > 0.

3. The Whitehead spaces and their relation to A(X). If X is a PL manifold, denote
€73(X) the groupoid in which an object is a PL s-cobordism whose lower face is a
compact codimension zero submanifold of X x I» (where 7 is the n-cube); a
morphism in €%(X) is a PL isomorphism which is the identity on X x I~ the iso-
morphism need not preserve the upper face. More generally, let ¥%(X) be the
groupoid of PL k-parameter families of such A4-cobordisms, the parameter domain
being the k-simplex. Define 7(X) to be the simplicial groupoid which in degree k
is € X).

Multiplication with the interval gives a map ¥*(X) — €»1(X), and one defines
CPL(X) = dir lim [¢7(X)|. The functor X — CPL(X) extends, canonically up to
homotopy, to a functor from spaces to spaces; this kind of argument is well known,
it is described in [9] in one case.

In view of the composition law ‘gluing atX”, CPX(X) is the underlying space of
a ['-space in the sense of Segal [17]; hence it is canonically an infinite loop space.
In particular there is a canonical (connected) deloop WhPL(X), the PL Whitehead
space.

More or less by definition of this space, 7; WhPL(X) gives a stable classification of
h-cobordisms, and 7, WhPL(X) classifies stable concordances. In view of Hatcher’s
stability theorem [8], z,;,WhPL(X) is actually isomorphic to the ith concordance
group of X if X is a compact PL manifold whose dimension is sufficiently large
(depending on /). Cf. Hatcher’s article [9] for a summary of known results.

Note that WhPL(x) >~ % in view of the (stable) #-cobordism theorem and the
Alexander trick.

THEOREM 3.1. There is a map A(X) — WhPL(X), well defined up to homotopy.
1ts homotopy fibre, denoted h(X, A(%)), is a homology theory.

COROLLARY. The ‘coefficients’ of this homology theory is A(x).

PROOF. WhPL(x) ~ x, so by definition of 4(X, A(*)) there is a homotopy fibration
h(x, A(%)) > A(x) - *.

Theorem 3.1 is entirely a nonmanifold theorem; the proof starts from Hatcher’s
‘parametrized h-cobordism theorem’ [8], a nonmanifold reformulation of WhPL(X),
and from that point on, manifolds just are not used anywhere in the argument—
except maybe an occasional simplex. The proof will be indicated in §5.

REMARK. As will be apparent later, 4A(x) is the underlying space of a [-space,
hence the coefficients of a homology theory by the recipe of [1]. This homology
theory coincides with 4(X, A(x)). For general reasons again, there is a natural
transformation

(X, A(x)) - A(X)

which turns out to coincide with the map of Theorem 3.1. By naturality therefore
there is a diagram whose rows are homotopy fibrations:
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KX, A(¥)) — AX) —> WhPLX)
h(X, K(Z)) —K(Z[G(X)]) —> Wh(G(X))

h(Br\X, K(Z))—K(Z[z,X]) —Wh(r,X)

Here the upper row is the fibration of Theorem 3.1, and the lower row is a fibration
studied in [18]. Concerning the middle row, K(Z[G(X)]) is as defined in §1, and the
map

h(B(G(X)), K(Z)) - K(Z[G(X)])

is defined similarly as the map A(Bz,X, K(Z)) - K(Z[z,X]) in [18]. The term
Wh(G(X)) in the middle row can be (and is) defined so that the row is a homotopy
fibration. This ends the remark.

While there appears to be no direct way to obtain an analogous result for
WhPi(X), the smooth analogue of WhPL(X), it turns out that one may proceed
indirectly, using known results about WhPif(X) and about its relation to WhPL(X),
to obtain a result which is just as good. The argument is as follows.

The stabilization procedure to construct 45(X) from A(X), and the fact that
AS(X) is a homology theory, presuppose only certain formal properties of 4(X) and
so carry over to other functors sharing these properties. In particular, we may
stabilize the whole fibration of Theorem 3.1, and obtain a diagram of homo-
topy fibrations

(X, A(¥) — A(X) — Wh(X)

hS(X, A(x)) — A5(X) — (WhPL)S(X)

and the left-hand vertical map is a homotopy equivalence since A(X, A(x)) is a
homology theory already, and therefore unchanged by stabilization. Hence the
right-hand square is homotopy cartesian.

It follows from smoothing theory (Burghelea, Lashof and Rothenberg [5]) that
F(X), the homotopy fibre of WhPi#(X) — WhPL(X), is a homology theory. Hence
as before, stabilization gives a diagram of fibrations

FX) —> WhDif(X) —— WhPL(X)

FS(X) — (WhP)S(X) ——(WhPH)S(X)

in which the left-hand vertical map is a homotopy equivalence. Hence the right-
hand square is homotopy cartesian.
Putting these two squares together, we obtain the diagram

A(X) —— WhPL(X) «—— WHhDif(X)

AS(X) — (WhP)S(X) «— (WhPH)S(X)

in which both squares are homotopy cartesian. Hence the homotopy fibres of the
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vertical maps are all homotopy equivalent, and are mapped to each other by homo-
topy equivalence. But WhDif((S#) — WhPifi(x) is a (2n — 2)-connected map [5]
(cf. Hatcher [9] for a more direct argument, using only Morlet’s lemma of disjunc-
tion). Hence

(WhP#)(x) = «

and (since (WhPif)S js a homology theory) (WhPif)S(X) ~ %. Hence the homo-
topy fibre of the right-hand vertical map is WhPifi(X), and it follows therefore that
there is a homotopy fibration WhPif(X) — A(X) — AS(X).

This leads to a numerical result. Namely by Proposition 2.2, and thanks to
Borel [3],

Q0 ifi=0,
7E,-A(*) ® Q ~ EtK(Z) ® Q ~ {Q lfl = 59 93 133 Tty
0 - otherwise.
And by Propositions 1.5 and 2.9, and thanks to Farrell and Hsiang [7],

£1 =
nAW 0~ sk @ee~(f 170

Hence
THEOREM 3.2.

. l l=5’ 9, 13, ttty
7, WhoiH(x) ® Q ~ {(? o

COROLLARY. The smooth Alexander trick fails rationally.

One way to visualize the map A(X) - WhPL(X) of Theorem 3.1 is to replace
A(X) by another functor, not too far removed from it, and then map the latter. This
functor is related to the idea of an elementary expansion. We will refer to it as the
combinatorial Whitehead space of X, denoted WhCemb(X'), Its definition, which is
rather involved, will now be given.

First we need a very rigid notion of cell complex, in fact we want k-parameter
families of such. Working in the framework of topological spaces, a diagram

Y < Y
\Ak /
where 4* is the k-simplex, will be called a k-parameter family of cell complexes from
Y, to Y if it is endowed with the following data:

(i) a finite filtration Y, = Y; < --- = Y, over 4%,
(ii) for eachj > 0, an attaching map over 4*

Sm Y - U S"i)y x Jk = Y,
and an isomorphism over 4*

Y; = ¥ia U <u,-sn,~x4k)<u Dritl x Ak>;

these data are subject only to the equivalence relation of refinement: two cells which
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are attached simultaneously, may also be attached one after the other (in any
order).

Similarly, we define a k-parameter family of expansions from Y, to Y, by not
attaching disks D»*1 along spheres S”, but attaching pairs (D**1, D) along pairs
(D7, S»1). Again, the structure is supposed to be very rigid, subject only to the
equivalence relation of refinement, as above. In particular, we insist here that the
particular pairing of cells is part of the data, and not subject to change.

DEFINTION. &(X), is the category in which:

(i) an object is a k-parameter family of cell complexes from X x J* to some Y
which is ‘acyclic’, i.e., the inclusion X x 4* — Y is a homotopy equivalence;

(ii) a morphism from (Y, ---) to (Y, ---) is a k-parameter family of expansions
from Y’ to Y such that the cell structure in (Y, ---) coincides with the cell structure
induced from the expansion.

We let £(X) be the simplicial category which in degree k is £(X),. Its geometric
realization, E(X) = |&(X)|, will be referred to as the expansion space.

An interesting question is if the ‘two-index-theorem’ holds for E(X). That is, if
one defines E%#+1(X) by insisting that all the cells involved have dimension either
iori+ 1,isit true that dir lim;, E***1(X) is homotopy equivalent to £(X)? This is
far from being obviously true, in fact it might well be wrong.

In view of the composition law ‘gluing at X”, E(X) is the underlying space of a
['-space, hence canonically an infinite loop space, and WhCmb(X) is defined as the
deloop.

THEOREM 3.3. There is a map A(X) — WhComb( X)), well defined up to homotopy. The
sequence

Q(X) - A(X) > WhComb( X)
is, canonically, the homotopy type of a fibration.

REMARK. Continuing the discussion of what ,A4(x) is (cf. the material just before
Proposition 2.3), we have 7;WhCemb(x) =0 if i = 0, 1, and

Ty A(*) ~ 7y K(Z) ® 7o WhComb(x)
and the map
Z, ~ 7y Qf(BSG) = 7, fibre (A(*) — K(Z)) — m, WhComb(x)

is surjective. In view of what this map means geometrically, the candidate for a
nontrivial element in 7, WhCemb(x) = 7, E(x) is represented by a ‘rolling collapse’,
a circle of cell complexes S* |Jg. D**1 where the attaching map is homotopic to
the identity, and varies through the nontrivial element of z3. The aforementioned
argument of Igusa is that this element, and hence 7 E(x), must be zero for the fol-
lowing reason. There must exist a 2-parameter family of cell complexes which over
the boundary of the parameter domain consists of an odd number of rolling col-
lapses, plus maybe a few circles of expansions (‘nonrolling’ collapses); for if such a
2-parameter family would not exist, it would follow by a (tricky) geometric argu-
ment that 7§ should split off K3(Z), in contradiction to the result of Lee and
Szczarba [13]. This ends the remark.

Here is how to map WhCmb(X) to WhPL(X): Take an acyclic cell complex, fatten
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the cells until a handle decomposed A-cobordism (of suitably large dimension) is
obtained, and then forget the handle structure. To make this idea work, one
redefines the expansion space using handle decomposed /-cobordisms instead of
cell complexes. Thus if X is a PL manifold, define §3(X) to be the category in
which an object consists of

(i) an object of the category €3(X) (cf. the beginning of the section),

(ii) a handle decomposition of the s-cobordism (including all the necessary data
to describe it completely), up to an equivalence relation of rearrangement of handles
(as in the definition of the expansion space),

and where a morphism is a standard handle cancellation, or composition of such
(subject to an equivalence relation of rearrangement). More generally define £7(X)
to be the category whose objects are the PL k-parameter families of such handle
decomposed A-cobordisms, and whose morphisms are the PL k-parameter families
of standard handle cancellations. £#(X) is the simplicial category which in degree
k is &%(X).

Forgetting the handle structure gives a map &7(X) — ¢*(X). This uses that a stan-
dard handle cancellation involves a canonical isomorphism of the underlying
manifolds.

In order that this define a map WhCmb(X) — WhPL(X), one needs that £#(X) is
sufficiently close to &(X). The latter is seen as follows. One maps £7(X) to (X) by
squeezing each handle to its core. Then a handle-by-handle argument shows that
this map is highly connected (depending on the difference of dim(X) + » and the
index of the handle; each test for homotopy equivalence in the limit involves a
finite diagram only, so there is a highest handle index).

The map WhCemb(X) — WhPL(X) so obtained satisfies that

A(X)

WhComb( X)—— WhPL(X)

commutes up to homotopy.

It appears that a careful wording of the argument actually yields a smooth an-
alogue, a factorization up to homotopy of Whmb(X) — WhFL(X) through a map
WhCemb( X) — WhPiff(X). This leads to a startling consequence. Namely in view
of the resulting homotopy commutative diagram

A(X)

WhPiff( X'y —— WhPL(X)
the homotopy fibre of A(X) — WhDif(X) can be identified to the homotopy fibre of
fibre(4(X) — WhPL(X)) — fibre( WhPif(X) — WhPL(X)),

a map of homology theories. Hence fibre(A(X) — WhPif(X)) is also a homology
theory, and stabilization gives a diagram of fibrations
? — A(X) — Whbifi(X)

? —— AS(X)——(WhDH)S(X)
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in which the left-hand vertical map is a homotopy equivalence. Because (WhPif)S(X)
~ x, it follows that A(X) actually splits,

A(X) ~ WhDif(X) x AS(X).

It appears that this splitting is hard to reconcile with the computation of
w3 WhPif(x) described in §3 of [9].

Finally a word about the map A(X) — WhCmb(X). The very description of this
map requires the machinery of the following sections, involving a very particular
way of constructing simplicial objects. An indication of the nature of this kind of
simplicial structure can be seen from the following remarks. For ease of notation
we consider only the case X = .

Let & be the category whose objects are the finite pointed simplicial sets of the
homotopy type of, say, a wedge of two spheres of dimension twenty, and whose
morphisms are the weak homotopy equivalences which happen to be monomor-
phisms. Then ¥ maps to A(x) and hence, by composition, to WhCemb(x). By wishful
thinking (a bit too wishful really, but not too far off either) let us insist on the
following:

(1) WhCmb(x) can be described as a simplicial object in such a way that

nerve(%) — WhComb(x)

can be a simplicial map,
(ii) on I-simplices, this map is given by

(Yp,» )= Y/ Y,

What does such wishful thinking imply about the simplicial structure of WhComb(x)?
A 2-simplex in nerve(®) is a sequence (¥, —»~ Y; »~ Y,), and its faces are
given, respectively, by (Y7 »~ Y;), (¥Yy »~ Y), (¥, »~ Y;). We conclude that
there must be a 2-simplex in WhCmb(x) whose faces are given by Y,/Y;, Y,/ Y,,
Y,/ Y,, a particular arrangement of the terms in the cofibration sequence (Y;/Y;) ~
(Ya/ Yo) » (Y2/ Y.
What is the general conclusion for #-simplices?

4. An exact sequence K-theory in nonadditive categories. Call a simplicial set
finite if the number of nondegenerate simplices is finite. Suppose we want to define
[Y], the reduced Euler characteristic of a pointed finite simplicial set Y. Then we
may take [Y] to be an element of the abelian group eul with generators the finite
pointed simplicial sets Y, and relations

O [Y]l=1[Y] ifY»~ Y,

@) [Y]=[YT1+[Y"] if Y » Y Y"is a cofibration sequence.

This is analogous to the definition of the projective class group Ky(R), the abelian
group with generators the finitely generated projective R-modules P, and relations

@) [Pl=[P] fP~ P,

(i) [P] = [P'] + [P"] if P’ » P » P” is short exact.

In the latter case, relation (i’) is redundant since it is implied by (ii’). In the former
case we might try to find a single type of relation which is equivalent to (i) and (ii)
together. However it is clear that the only thing we may gain in doing so is a loss of
simplicity.



52 FRIEDHELM WALDHAUSEN

Hence if we want to interpret eul as a low-dimensional homotopy group of some
space, this space be better not constructed as a simplicial set (e.g., the nerve of
a category); rather we should look for a bisimplicial set (e.g., the nerve of a sim-
plicial category). Also it is hard to imagine that eul could be a 7 in a reasonably
direct way since relation (ii) is a typical z,-relation.

On the other hand, eul will clearly be the z; of any simplicial category &. that in
low degrees satisfies

(0) &, is the trivial category with one object and one morphism,

(1) &, is the category of weak equivalences ¥ —~ Y’ of finite pointed simplicial
sets,

(2) &, is a category whose objects are the cofibration sequences Y’ ¥ - Y”
of finite pointed simplicial sets; and the faces of (Y’ » Y + Y”) are given by the
collection Y’, Y, Y” (in this order, or in reverse order).

This is as far as the structure of &. can be suggested by the relations (i) and (ii)
above. We must now provide our own choice of morphisms for the category &%.
The most natural choice is to let a morphism in &, be a weak equivalence of cofi-
bration sequences, that is, a commutative diagram

Y’H Y""Y”

oL

Y » Y » Y
where the rows are cofibration sequences, and the vertical arrows weak equiva-
lences.
A moment’s reflection shows that the sequence &g, &1, &2, can be continued in a
simple way. Namely we may generally define &, to be the category in which an
object is a sequence of cofibrations

* > Yl D S Yk
and where a morphism is a commutative diagram

* YIH"'H Yk

- L

x> Y o e Y,

in which the vertical arrows are weak equivalences. The new definition of &, is equi-
valent to the old one since by the gluing lemma Y,/Y; — Y3/ Y; will now also be a
weak equivalence.

In order to assemble the &, to a simplicial category, we must define face and de-
generacy maps. The following rule for face maps from &, to &), extends the rule
given in (2) above for the case k = 2. The ith face map, for i > 0, just drops Y;
from the sequence

- Yo oo Y.

But the Oth face map, as it drops *, must force ¥; to become a new =, that is, the
Oth face is given by the sequence

0 Tyl Yy o o0 Yy Yy,
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With this rule, the simplicial identities for iterated face maps are satisfied—except
possibly for a choice problem with the choice of cokernels.

The degneracy maps from &, to &,+; can be defined in the obvious way, by the
insertion of an identity map at the appropriate place of the sequence.

The above choice problem with the face maps is not serious. In fact there is a
standard trick to avoid such choice problems, to replace the category in question
by an equivalent one to incorporate all the necessary choices. In the case at hand,
one may proceed as follows.

Let 4 denote the category of ordered sets [0}, [1], ---, [/l = (0 < 1 < --- < n),
and weakly monotonic maps.

Define <{n) to be the partially ordered set of pairs (i, j), 0 < i £ j £ n, where
(i,j) = (', j)ifand only if i £ i’ and j < j'. Considering {n) as a category, we may
identify it to Mor[#n], the category whose objects are the morphisms in the ordered
set [n] when the latter is considered as a category. The notation emphasizes that
[n] — Mor[n] is a covariant functor on the category 4.

DEerFINITION 4.1. &,, is the category whose objects are the functors

Y: Mor[n] — (pointed finite simplicial sets),
@) e Y(i,j)
satisfying
(i) for any i, Y, equals the (distinguished) zero object,
(ii) for any triple i < j < k, the sequence

Yip = Yaw = Yiw
is a cofibration sequence,
and whose morphisms are the natural transformations of functors, satisfying
that all the maps involved are weak equivalences.
An equivalence from &, to &, is given by the forgetful map

Yo (Y0 = Yo » o= Yon)

and it is clear from the definition that the &), assemble to a simplicial category & .

We have thus achieved a fairly natural classification of the Euler characteristics
of finite pointed simplicial sets by the elements of some homotopy group, namely
71l€7|. But, after all, one expects Euler characteristics to be classified by a z,. So
we should really consider the loop space Q|&|.

THEOREM. Q|&°| ~ A(x).

This is a special case of Theorem 5.7 of the next section. To prove it, one has to
consider variants of Definition 4.1.

Other variants of Definition 4.1 have to be considered for other purposes. It is
therefore desirable to have an abstract version of this definition. The ingredients we
need are: a category, and notions of ‘cofibration’ and ‘weak equivalence’ in this
category. These must satisfy certain conditions, to ensure that Definition 4.1 makes
sense. Preferably they should also satisfy other conditions of a general nature which
we can expect to hold in cases of interest, and to be useful in proofs.

Thus a category with cofibrations and weak equivalences shall mean a category
% together with subcategories co(¥¢) and w(¥) satisfying the following three groups
of conditions:
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(I) & has a (distinguished) zero object 0;

(II) (1) Isomorphisms in % are cofibrations (i.e., are morphisms in co(%)).
(2) For every object 4 of %, the morphism 0 — A is a cofibration.
(3) co(%) is closed under cobase change; this means, if in the diagram

.

« —> o

the left vertical arrow is a cofibration, then the pushout of the diagram exists in &,
and the right vertical arrow will also be a cofibration.
(II) (1) Isomorphisms in & are weak equivalences (i.e., are morphisms in w(%)).

(2) If in the diagram
B «A4 - C
Bl « AI - CI

the left-hand horizontal arrows are cofibrations, and all vertical arrows are weak
equivalences, then the map

BUAC—B UxC

is a weak equivalence.

REeMARK. The axioms have been chosen for their simplicity, so that they reproduce
easily under chains of constructions. The axioms are sufficiently general to include
many uninteresting cases; for example if ¢ has 0 and colimits, and co(%) = %;
or w(®) = ¥. In either of the latter two cases one may expect the homotopy type
associated below not to be very interesting either; this is indeed the case.

In practice there will never be any doubt about what the cofibrations are, so the
category co(%) will be dropped from the notation in the following definition. By
contrast there will, as a rule, be several categories of weak equivalences to choose
from, so the category w(%) has to be specified in the notation.

DEFINITION 4.2. wS,% is the category whose objects are the functors

A: Mox[n] » €
(i, J)— A, j
satisfying
(i) 4,5 = 0, the distinguished zero object, for every i;
(ii) for every triplei < j < k, the morphism A;,;, - A, is a cofibration, and

A p —4Auw

A(j,j) ’A(j,k)

is a pushout;

and whose morphisms are the natural transformations of functors satisfying that
all the maps involved are weak equivalences.

wS. & is the simplicial category which in degree n is wS,%.
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COROLLARY. [WS.%| is canonically an infinite loop space.

Prookr. It follows from the axioms that (4, 4') > A v A" = A |J, A’ defines a
composition law on |wS.%|; therefore |wS.%| is the underlying space of a ['-space,
with respect to this composition law, whence the assertion [17].

The present construction generalizes the Q-construction of Quillen: Let o/ be
an exact category in the sense of [16], co(/) the category of admissible monomor-
phisms, and w(s/) the category of isomorphisms. Then there is a natural homotopy
equivalence [wS.o/| ~ |Q.«/| (Quillen, unpublished).

Because of the added generality one cannot expect many of the general results on
Q7 to carry over directly. In fact, only Theorem 2 of [16] has a direct analogue here
to which we refer as the additivity theorem.

The additivity theorem says, roughly, if @ is a category with cofibrations and
weak equivalences, then the category E(%) whose objects are the diagrams (4 ~ B)
in € can be made into a category with cofibrations and weak equivalences in a
natural way, and

wS.E(%) - wS.¥ x wS.¢
(4~ B) — (4, B/4)

is a homotopy equivalence.

That is, cofibration sequences can be replaced by sum diagrams. It thus appears
that, philosophically speaking, Definition 4.2 is just another version of the bar
construction, applicable in another unusual situation.

5. The functor A(X), revisited. Let X be a simplicial set. Denote by ¥(X) the cate-
gory of pairs (Y, s) where s: X — Y is an injective map, and where a map from
(Y, s)to(Y’,s’) is a map of simplicial sets, f: ¥ — Y’, such that fs = s’.

A map f: (Y, s) » (Y, s') is called a weak homotopy equivalence, or A-map,
for short, if |[f|: Y| — |Y’'| is a homotopy equivalence relative to the subspace
IX1;

it is called a simple map if | f| has contractible point inverses (and in particular is
surjective). Simple maps can be defined without recourse to geometric realization,
but this will not be done here. Any simple map is an A-map. Let s@(X) denote the
category whose objects are those of #¥(X) and whose morphisms are the simple
maps. v

Denote by s%(X) the full subcategory of s&(X) of those (Y, s) which are finite,
i.e., which satisfy that all but finitely many of the nondegenerate simplices of Y
are contained in the simplicial subset s(X);

and by s@%(X) the full subcategory of s&(X) of those (Y, s) which are acyclic,
i.e., which satisfy that s: X — (Y, s) is an h-map; equivalently, that |s(X)| is a
deformation retract of | Y.

Hatcher’s main result in [8] is that Q WhPL(X) is homotopy equivalent to s#(X).
(Actually, Hatcher uses simple PL maps of polyhedra. The translation into simple
maps of simplicial sets is nontrivial, but not too surprising either. Also, because of
the ambiguity of PL mapping cylinders, the formulation of Hatcher’s theorem in
terms of simple maps of polyhedra requires additional justification.) It will be
indicated below how to prove Theorem 3.1 from the homotopy equivalence
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between QWhPL(X) and s@’(X). There is a more direct proof, independent of
Hatcher’s theorem, but the present proof is simpler at least in the regard that mani-
folds do not have to be used anymore.

To relate s¢%(X) to A(X), the machinery of the preceding section has to be used.
But #(X) has no cokernels, so we have to modify it.

Let 22(X) be the category in which an object is a triple (Y, r, s) where r: ¥ — X
is a retraction of simplicial sets, and s is a section of r; and where a map fi(Y,r,s)
- (Y',r',s")isamapf: ¥ —» Y’ suchthatfs = s’andr = r'f.

#(X) has a distinguished zero object 0 = (X, id, id), and it is a category with
cofibrations in a natural way: the cofibrations are the maps (Y', r', s") = (¥, r, 5)
with ¥’ — Y injective. The axioms put down in the preceding section clearly hold.
To any cofibration is associated a ‘cofibration sequence’

(Y’, r,, S’) i (Y7 r, S) - (Y3 r S) U(Y’,r’,s’) 0.

There are four notions of weak equivalence in 2(X) that we have to be aware
of. In either case, the subcategory of weak equivalences will be denoted by prefixing
any of the letters i, s, 4, hy, respectively, whichever applies.

(i) i®(X) is the category of isomorphisms in Z(X);

(s) s(X) is the category of simple maps, i.e., maps such that |f| has contractible
point inverses; or equivalently, where the associated map in €(X) is simple;

(h) h#(X) is the category of weak homotopy equivalences, or h-maps, for short;
by definition, a map f in 2(X) is in h2(X) if and only if the associated map in
%(X) is in hg(X);

(hy) hx(X) is the category of hereditary weak homotopy equivalences, i.e., maps
(Y, r,s) = (Y, r',s") such that for any X’ < X, the induced map X)) - (X
is an A-map in 2(X’); these maps are mainly introduced here for the purpose of
making it clear that we will not use them.

We have i2(X) = s®B(X) c hxy®(X) = hR(X).

Similarly as before, the subscript ‘f” added to the notation of £(X), or any of its
subcategories, will refer to the full subcategory of finite objects, i.e., those (Y,r,s)
satisfying that all but finitely many of the nondegenerate simplices of Y are con-
tained in s(X);

and the superscript ‘4’ added to the notation of Z(X) or Z,(X), or any of their
subcategories, will refer to the full subcategory of those (Y, r, s) for which s: X —
(Y, r, s) is an h-map.

One of the many categories now defined is s#(X). We would like to prove that
sRMX) —» s€X) is a homotopy equivalence. Unfortunately this is wrong in
general, simply for the trivial but still annoying reason that if s#%(X) is not con-
tractible then the two maps

SRUX) - sAUX x A

are not homotopic.

The counterexample suggests the remedy, namely we must allow things to ‘move’.
Fortunately there is a simple way to allow for such moving without loss of func-
toriality, namely, to replace everything in sight by k-parameter families, with
varying k, of the same kind of thing. An organized way of doing so, is to introduce
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a dummy simplicial direction, in replacing X by the simplicial object of its higher
path spaces. To be precise,

DErINITION. If K, L are simplicial sets, let LX denote the function space, the sim-
plicial set which in degree # is the set of maps

Kx 4> L.

If F: (simplicial sets) - 2, X — F(X), is any functor, define a functor from sim-
plicial sets to the simplicial objects in 2, or equivalently, a simplicial object of
functors F.: (simplicial sets) — 2 by letting Fy(X) = F(X%".

Parenthesis. To understand the meaning of this construction, and why it helps,
one should note that a functor F: (simplicial sets) — (simplicial sets) may not
respect ‘homotopy’ in any sense, for example the functor O-skeleton, X — sko(X).
However there is a natural transformation of functors from simplicial sets to sim-
plicial sets, F — F with the following properties:

() F respects simplicial homotopies,

(i) if F respects simplicial homotopies, then F(X) —~ F(X ).

Indeed, one defines

F(X) = diag F.(X).

Exercise. What is qu,? This ends the parenthesis.
For the purpose of better readability, the notation F(X4) will be used instead of
the more precise F.(X).

LEMMA 5.1. s€4(X) -~ s€M(X?); if X satisfies the extension condition then also
SRUXA) S sEHXD).
REMARK. /x-maps are redundant. For if X satisfies the extension condition then
SRUXY) = hyRUXD).

From now on, 24(X) and #/(X) will be considered as categories with cofibrations
and weak equivalences (with several choices for the latter) in the sense of the preced-
ing section. Thus by Definition 4.2 we have, for example, for each 7 the category
sS, 2% X) and the simplicial category sS,2%X?), and we have a simplicial category
sS.2%X) and a bisimplicial category sS R X?). Henceforth we assume that X
satisfies the extension condition.

LEMMA 5.2. The ‘subquotient’ map

SS,RHXT) - (sRU X))
(4: Mox[n] - ZUX*)) — (A1), A2 Ap1,m)

is a weak homotopy equivalence.

The idea of proof is, if X — (Y’, r’, s") is an h-map then a cofibration sequence
(Y',r',s") > (Y,r,s) » (Y",r",s") can be ‘moved’ to a split one because (Y, r', s")
is acyclic.

The lemma implies that |sS.2%X4)| is homotopy equivalent to the canonical
deloop (from the composition law) of [s2%(X“)|. Because of Hatcher’s theorem,
Lemma 5.1, and the definition of WhPL(X) as a canonical deloop, we have therefore




58 FRIEDHELM WALDHAUSEN

PROPOSITION 5.3. [sS. 24X #)| =~ WhPL(X).

Using this transcription, we may compare WhFL(X) to other functors. The
following diagram involves the forgetful maps ‘simple maps are h-maps’ (the
horizontal arrows) and ‘acyclic objects are objects’ (the vertical arrows):

5S.RHX4)—hS.RHX D)

SS.RAXTY—hS. A (X?)
LEMMA 5.4. (i) This square is homotopy cartesian; (ii) hS.ZUX?) is contractible.

PROOF OF (ii). In each bidegree, the category in this bidegree has a terminal object
(in fact, a zero object) and is hence contractible. This implies the assertion, in view
of a well-known result on the geometric realization of multisimplicial sets.

Part (i) of the lemma is a special case of a general result which is deduced from
the additivity theorem in a similar way as Propositions 7.1—7.3 in [18].

In view of the lemma, the left and bottom arrows in the diagram form a homotopy
fibration. The next results below identify the other terms in this fibration. This
yields Theorem 3.1.

One may thus say that Theorem 3.1 is obtained by comparison of two notions of
weak equivalence in 24(X), namely ‘s-map’ and ‘simple map’. From this point of
view, Theorem 3.3 is obtained similarly, by comparison of ‘4-map’ and ‘isomorph-

2

ism’.
LEMMA 5.5. The functor X — sS.R(X*") is a homology theory.

To prove the lemma one compares 55.% (X “) to the functor X - 55.24(sko(X*))
which is a homology theory by the recipe of how to associate a homology theory
to a ['-space [1]; cf. [18] for a more detailed treatment.

One uses that, for any X, the skeleton filtration sk;(X) induces a filtration of the
identity functor on Z4(X),

sk¥(Y, r, 5) = (r~Y(sk (X)), --).

The key fact is that sk* does induce an endomorphism of sS.224(X), because

(i) simple maps are hereditary (as opposed to 4-maps),

(ii) the objects are not required to be acyclic.
The additivity theorem implies that the identity map on sS.2,(X) is homotopic to
the map induced from

sk¥ v skf/sk§F v .- Vv sk¥[sk¥ Vv .-

This means that for the purposes of s5.2/X), one may restrict to those objects in
Z(X) which are given as a sum of ‘objects with small support’.

LEMMA 5.6. hS.Z(X) »~ hS.Z(X?).
THEOREM 5.7. 2 |hS. Z(X) | =~ A(X).

The main steps in the proof of this theorem will be indicated in the remaining
material.
DEFINITION. 2(X)? is the full subcategory of those (Y, r, s) such that [s| is homo-
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topy equivalent, relative to | X|, to the inclusion of |X| into (|X| wedge k spheres of
dimention n).
LemMMA 5.8. Z x |dir lim,,, hR2(X)Z|t ~ A(X).

PrOOF. The old definition of 4(X) was only given for connected pointed X. So
we assume X is connected and pointed. Let G be any loop group for X, for example
the G(X) of Kan, and h¥(G); the category considered in §2, in defining 4(X).
There are functors

hR(X); > h(G)y,
(Y, r,8) > r¥(X,x @)X ,xG)
(and the action changed from right to left), and
hF(G); — hR(X)},
Yo (X,x G) xG Y

and these functors are adjoint. Hence h%(X); —~ h%(G)}; hence

Z x |dir limg,,) ht%(X)gl+ = Z x |dir limg,,, h.V(G)z|+
and the latter is 4(X), by §2.

Let 2/(X); = 2(X) (| R(X);.

LEMMA 5.9. hZ (X))} —~ hR(X)}.

The composition law on %,(X) induces a composition law on R:(X)*, the union
of the categories %2,(X)7; hence this is naturally the underlying category of a
[-category, and so is the subcategory A%, (X). Hence a simplicial category
N(h#4X)"), the nerve with respect to the composition law, is defined, cf. [18]
for details. By Segal [17] there is a natural homotopy equivalence

Q|NH(hR(X)")| = Z x |dir limg, hRAX)|*;
hence one is reduced to showing that
dir lim |Np(h.%’f(X)")| = IhS.g{’f(X)l.

The category Z,(X)” is a category with cofibrations (this requires some care).
Hence hS.Z4(X)" is defined. There is a map of simplicial categories Np(h (X)) >
hS.Z:(X)* which sends each sum diagram to a cofibration sequence by forgetting
part of the data.

LEMMA 5.10. dir lim Np(h(X)") —~ dir lim hS. R (X)n.

Define functors cone, C: Z(X) » #(X), C(Y, r, s) = (mapping cylinder of
r, +--), and suspension, S = coker(id - C). When the cone and suspension are
considered as endomorphisms of 4S.2,(X), one has by the additivity theorem a
homotopy C —~id v S. In particular, the suspension represents a homotopy
inverse to the identity on 4S.2(X), and the map

hS.g%f(X) — dir lim(s) hS..%f(X)
is a weak homotopy equivalence.
LemMa 5.11. dir lim,) AS.Z4(X)* —~ dir lim 5, hS.Z/(X).

This ends the indication of proof of Theorem 5.7.
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