XVII

THE MAP BSG
$$\rightarrow$$
 A(*) \rightarrow QS⁰

Marcel Bokstedt and Friedhelm Waldhausen

§1. INTRODUCTION

Let A(X) be the algebraic K-theory of the space X. This can be defined in various ways, see [9], [10], [11], [12]. Let BG be the space classifying O-dimensional virtual spherical fiberbundles. There are maps $F: BG \to A(X), 1: A(X) \to K(\mathbb{Z}); i: QS^0 \to A(*).$ In [10], [11], maps $A(*) \to QS^0$, splitting i up to homotopy are constructed.

In this paper, we construct a splitting map $\text{Tr} : A(*) \to \mathrm{QS}^0, \quad \text{and compute the composite } \mathrm{BG} \to A(*) \to \mathrm{QS}^0. \quad \text{We apply this construction to show that } \\ \pi_3(\mathrm{Wh}^{\mathrm{Diff}}(*)) \approx \mathbb{Z}/2. \quad \text{A further application is [4]}. \quad \text{There it is used that the splitting given here agrees with the splitting in [11]; this will be proved in [5]}.$

Recall that

$$A(*) \simeq \lim_{n,k} B \text{ Aut } (v^k S^n)^+$$

where Aut denotes the simplicial monoid of homotopy equivalences, and + denotes the Quillen plus

construction. In this description of A(*), we can define $f:BG\to A(*) \quad \text{as the inclusion}$

BG =
$$\lim_{n}$$
 (B Aut S^{n}) $\subset \lim_{n,k}$ B Aut $(v^{k}S^{n})^{+}$ = A(*)

and $l: A(*) \rightarrow K(\mathbb{Z})$ as the linearization map

$$A(*) = \lim_{n,k} B \text{ Aut } (v^k S^n)^+ \rightarrow \lim_{n,k} B \text{ Aut } (H_n(v^k S^n))^+ = K(\mathbb{Z}).$$

Let $BSG \subset BG$ classify the oriented spherical

fiberbundles. The composite

$$\mathrm{BSG} \to \mathrm{BG} \xrightarrow{\mathbf{f}} \mathrm{A}(*) \xrightarrow{1} \mathrm{K}(\mathbb{Z})$$

is the trivial map.

In §3 we will show that the composite $BG \xrightarrow{f} A(*) \xrightarrow{Tr} QS^{O} \text{ equals a certain map } \eta : BG \to QS^{O},$ studied in §2. In §2 we show that if $i \geq 3$, then

$$\pi_{\mathtt{i}-1}^{S} \, \simeq \, \pi_{\mathtt{i}}(\mathtt{BG}) \, \xrightarrow{\, \eta \,} \pi_{\mathtt{i}}(\mathtt{QS}^{o}) \, \cong \, \pi_{\mathtt{i}}^{S}$$

is given by multiplication with $\bar{\eta}$, the generator of $\pi_1^S \approx \mathbb{Z}/2$. In particular, for $i \geq 3$ the map

$$\theta : \pi_{i-1}^{S} \oplus \pi_{i}^{S} \cong \pi_{i}(BSG) \oplus \pi_{i}(QS^{0}) \xrightarrow{f_{*}+i_{*}} \pi_{i}(A(*)) \rightarrow \pi_{i}(QS^{0}) \cong \pi_{i}^{S} \text{ is given by } \theta(x,y) = \overline{\eta}x + y.$$

The splitting of A(*) induces a splitting $\pi_i(A(*)) \cong \pi_i(QS^0) \oplus C_i$. If $x \in \pi_i^S$, $i \geq 2$, then $\Theta(x,\eta x) = 0$, so that $f_*(x) + i_*(\eta x) \in C_{i+1}$. We want to show that for some choices of x, this element is nontrivial.

The composite $QS^0 \xrightarrow{i} A(*) \xrightarrow{l} K(\mathbb{Z})$ is studied in [7]. There it is shown that

 $\pi_{4i+3}(QS^0) = \pi_{4i+3}^S \to \pi_{4i+3}(K(\mathbb{Z})) \text{ is injective on the image}$ of the J-homomorphism.

Recall from [1] that there are classes $\mu_{8i+1} \in \pi_{8i+1}^S$, $i \geq 1$, so that $\bar{\eta}^2 \mu_{8i+1}$ is in the image of the J-homomorphism. Similarly, $\bar{\eta}^3 \in \pi_3^S$ is also in the image of the J-homomorphism. Choose $x = \mu_{8i+1}$, $x = \bar{\eta}\mu_{8i+1}$ or $x = \bar{\eta}^2$. Then $f_*(x) + i_*(\bar{\eta}x) \in C_{8i+3}$, and $f_*(f_*(x) + i_*(\bar{\eta}x)) = f_*i_*(\eta x) \neq 0$.

We have proved

THEOREM 1.1. The kernel of the map $\operatorname{Tr}_n:\pi_n(A(*))\to\pi_n(QS^0)$ contains a nontrivial element of order 2 if $n\equiv 2,3 \pmod 8$; $n\geq 3$.

On the other hand, it is known that $C_3 \le \mathbb{Z}/2$ [6], so we have

COROLLARY 1.2. $\pi_3^{A}(*) \cong \pi_3^{S} \oplus \mathbb{Z}/2.$

It is known [9], [11] that A(*) splits as a product $A(*) \simeq QS^{o} \times Wh^{Diff}(*) \times \mu.$

It will be proved in [13] that $\mu = 0$. We conclude

THEOREM 1.3.

(i)
$$\pi_3 \text{ Wh}^{\text{Diff}}(*) = \mathbb{Z}/2$$

THE MAP BSG
$$\rightarrow$$
 A(*) \rightarrow QS^O

421

(ii) There are nontrivial two-torsion classes in $\pi_{\rm Si+2}({\rm Wh}^{\rm Diff}(*)) \ \ {\rm and} \ \ \pi_{\rm Si+3}({\rm Wh}^{\rm Diff}(*)) \ ; \quad {\rm i} \ \geq 1.$

§2. SPHERICAL FIBER BUNDLES AND η .

In this paragraph we study a certain map $\eta: BG \to G$. We first give a homotopy theoretical definition of η , and calculate the induced maps of homotopy groups. Finally, we show that η agrees with a geometrically defined map, which will be used in §3.

Let $X = \Omega^3 Y$ be a threefold loopspace. Let $\bar{\eta}: s^3 \to s^2$ be the Hopf map.

Definition 2.1. $\eta_{X} : BX = \Omega^{2}Y \rightarrow \Omega^{3}Y = X$ is the map induced by $\bar{\eta}$.

Example 2.2. $X = \Omega^{\infty} S^{\infty}$. We identify $\pi_{\mathbf{x}}(X)$ with the ring $\pi_{\mathbf{x}}^{S}$ of stable homotopy groups of spheres. The map $(\eta_{X})_{\mathbf{x}}: \pi_{\mathbf{x}}^{S} = \pi_{\mathbf{x}}(X) \to \pi_{\mathbf{x}}(BX) = \pi_{\mathbf{x}+1}^{S}$ is given by product with $\bar{\eta} \in \pi_{1}^{S}$.

Example 2.3. Let $X = \mathbb{Z} \times BG$ be the classifying space of based stable spherical fibrations: X is an infinite loop space [3]. Then $\Omega X = \Omega BG$ can be identified with the space of stable homotopy equivalences of spheres, i.e., $i: \Omega X \xrightarrow{\sim} (\Omega^{\infty} S^{\infty})_{\pm 1}$. This equivalence is not an H-space

equivalence, when $\Omega^{\infty}S^{\infty}=QS^{0}$ is given the H-space structure derived from loop sum. But

$$\Omega^{3}_{i}: \Omega^{4}_{X} \xrightarrow{\sim} \Omega^{3}(QS^{0})$$

is an equivalence of threefold loopspaces, so that $(\eta_{\Omega^3 OS}^{0}) \ \Omega^3 i \simeq (\Omega^3 i) (\eta_{\Omega^4 X}^{4}).$

We conclude from the previous example, that for $i \geq 3$ $(\eta_{\mathbb{Z} \times BG})_{\mathbf{x}}: \pi_{i-1}^S \cong \pi_i(\mathbb{Z} \times BG) \to \pi_i(G) \cong \pi_i^S$ is induced by composition with $\bar{\eta} \in \pi_1^S$ for $i \geq 3$. For $i \leq 2$ we do not get any information. Actually, $\Omega^3 X$ is not equivalent to $\Omega^2(QS^0)$ as a threefold loopspace. The induced map $(\eta_{\mathbb{Z} \times BG})_{\mathbf{x}}: \pi_2^S \to \pi_3^S$ is trivial, whereas multiplication by $\bar{\eta}$ is nontrivial.

Let X be an infinite loopspace. Composition of loops defines an infinite loop map

$$\mu : \Omega^{\infty} S^{\infty} \times X \to X.$$

There are structure maps $\;\theta_n:\; E\Sigma_n \times_{\sum_n} X^n \to X,\;\; \text{and a}$ commutative diagram

$$(2.4) \qquad \begin{array}{c} \coprod_{m \geq 0} B\Sigma_m \times X \xrightarrow{\text{(id} \times_{\sum_{m}} \Delta)} \coprod_{m \geq 0} E\Sigma_m \times_{\sum_{m}} X^m \\ \downarrow \coprod_{m \geq 0} \Theta_m \\ \Omega^{\infty} S^{\infty} \times X \xrightarrow{\mu} X \end{array}$$

There are two maps $f_i: S^1 \times X \to B\Sigma_2 \times X$, $f_i = (f_i \times id)$, where f_o is the trivial map, and f_1 represents the generator of $\pi_1(B\Sigma_2) = \mathbb{Z}/2$.

Composition with the square above defines maps $\mathbf{g}_{\mathbf{i}}: \mathbf{S}^1 \times \mathbf{X} \to \coprod_{\mathbf{m} \geq \mathbf{0}} \mathbf{B} \mathbf{\Sigma}_{\mathbf{m}} \times \mathbf{X} \to \mathbf{X}. \quad \text{The difference } \mathbf{g}_1 - \mathbf{g}_0$ defines a map $\mathbf{g}: \mathbf{S}^1 \wedge \mathbf{X} \to \mathbf{X}. \quad \text{This difference is the}$ image under μ of the difference $(\mathbf{i}_2\mathbf{g}_1 - \mathbf{i}_2\mathbf{g}_0) \times \mathbf{id}. \quad \mathbf{But}$ $\mathbf{i}_2\mathbf{g}_1 - \mathbf{i}_2\mathbf{g}_0$ is equal to $\bar{\eta}: \mathbf{S}^1 \to \mathbf{Q}\mathbf{S}^0$, so that the adjoint of \mathbf{g} is the map $\eta_{\mathbf{X}}: \mathbf{X} \to \mathbf{\Omega}\mathbf{X}.$

In particular, the map $\eta_{\mathbb{Z}\times BG}:\mathbb{Z}\times BG\to G$ can be described as the difference between the adjoints of the maps g_i (i=0,1)

$$g_i : S^1 \times (\mathbb{Z} \times BG) \to E\Sigma_2 \times_{\Sigma_2} (\mathbb{Z} \times BG)^2 \xrightarrow{\theta_2} \mathbb{Z} \times BG.$$

Let ξ be the standard (virtual) spherical fiberbundle on $\mathbb{Z} \times \mathbb{B} G$. Let Λ denote fiberwise smashproduct. Then g_i classifies certain virtual bundles on $S^1 \times (\mathbb{Z} \times \mathbb{B} G)$. These bundles are the identifications of the bundle $\xi \wedge \xi$ on $I \times (\mathbb{Z} \times \mathbb{B} G)$, using certain bundle maps $\tau_i : \xi \wedge \xi \to \xi \wedge \xi$ as clutching function, where $\tau_0 = \mathrm{id}$, and $\tau_1(x \wedge y) = y \wedge x$.

We reformulate this description as follows.

LEMMA 2.5. Let ξ be the standard bundle over $\mathbb{Z} \times BG$. The automorphisms $\tau_i : \xi \wedge \xi \to \xi \wedge \xi$ (i = 0,1) induce maps

$$t_i : \mathbb{Z} \times BG \to G.$$

The difference t_1^{-t} equals $\eta : \mathbb{Z} \times BG \to G$ up to homotopy.

Finally, consider the following situation. Let B be a finite dimensional space. Let ξ be a spherical fibration over B, classified by a map

$$f : B \rightarrow \mathbb{Z} \times BG$$
.

Let ξ ' be a spherical fibration over B, and u a fiber homotopy trivialization:

$$\mathbf{u} \;:\; \xi \; \stackrel{\blacktriangle}{\underset{B}{\cdot}} \; \xi \; \rightarrow \; \mathbf{S}^{\textstyle N} \; \times \; \mathbf{B}.$$

The map u can be interpreted as an S-duality parametrized over B, see [2].

A 2N-dual u' of this map is a map $u': S^N \times B \to \xi \ \, \hbox{$_{\!\! A}$} \ \, \xi' \quad such \ \, that \ \, the \ \, following \ \, diagram \ \, \, R$

commutes up to fiber homotopy

$$\xi' \underset{B}{\wedge} \xi \underset{B}{\wedge} (S^{N} \times B) \xrightarrow{u \wedge i d} (S^{N} \times B) \wedge (S^{N} \times B)$$

$$\downarrow i d \wedge u' \downarrow \qquad \qquad \downarrow \cong$$

$$\xi' \underset{B}{\wedge} \xi \underset{B}{\wedge} \xi \underset{B}{\wedge} \xi \qquad \qquad \downarrow \qquad \qquad (S^{2N} \times B)$$

where $v(a,b,c,d) = u(a,c) \wedge u(d,b)$. The transfer B

 $\begin{array}{ll} \text{Tr} \; : \; B \to \Omega^N S^N \to Q S^o \quad \text{is defined as the adjoint of the map} \\ t \; : \; S^N \times B \xrightarrow{u'} \xi \underset{B}{\wedge} \xi' \xrightarrow{Twist} \xi' \underset{B}{\wedge} \xi \xrightarrow{u} S^N \times B \to S^N. \end{array}$

LEMMA 2.6. The following diagram is homotopy commutative

THE MAP BSG
$$\rightarrow$$
 A(*) \rightarrow QS^O 425

where $i: SG \to QS^0$ is the standard identification of SG with the component of 1 in QS^0 .

Proof. The map Tr can also be defined as the adjoint of a suspension of t:

Let $\xi' \ \stackrel{\wedge}{\ } \xi \ \stackrel{\wedge}{\ } \xi \ \stackrel{\wedge}{\ } \xi' \ \rightarrow \xi' \ \stackrel{\wedge}{\ } \xi \ \stackrel{\wedge}{\ } \xi \ \stackrel{\wedge}{\ } \xi'$ be the map $B \ B \ B \ B \ B$

permuting the second and third factor. By assumption, the following diagram commutes up to fiber homotopy

$$(S^{N} \times B) \wedge (S^{N} \times B) \xrightarrow{id \wedge u'} S^{N} \wedge \xi \wedge \xi' \xrightarrow{id \wedge (u \circ Twist)} (S^{N} \times B) \wedge (S^{N} \times B)$$

$$V \qquad \downarrow u \wedge id \qquad \downarrow v$$

$$\xi' \wedge \xi \wedge \xi \wedge \xi' \xrightarrow{B B B}$$

$$Tw_{23} \qquad \xi' \wedge \xi \wedge \xi \wedge \xi' \xrightarrow{B B B}$$

We conclude that $B \to G \subset QS^0$ is the difference $t_1' - t_0'$ between the maps

$$t_i': B' \rightarrow G$$

induced by the automorphisms

$$\tau_{\bf i}':\ \xi'\ {\stackrel{\wedge}{a}}\ {\stackrel{\xi}{b}}\ {\stackrel{\wedge}{a}}\ {\stackrel{\xi}{b}}'\ {\stackrel{\wedge}{a}}\ {\stackrel{\xi}{b}}'\ {\stackrel{\wedge}{a}}\ {\stackrel{\xi}{b}}'\ {\stackrel{\wedge}{a}}\ {\stackrel{\xi}{a}}'\ {\stackrel{\xi}{b}}''$$

$$\tau_{\bf 1}'={\rm Tw}_{23},\quad \tau_{\bf 0}'={\rm identity}.\quad {\rm The\ lemma\ follows\ from\ }2.5.$$

§3. TRANSFER AND SPLITTING

In this paragraph we will construct a splitting map ${\rm Tr} \,:\, A(*) \to QS^0. \quad {\rm This \ splitting \ map \ will \ be \ used \ to \ prove }$

theorem 1.1. In a later paper it will show that this map agrees with the splitting maps in [10] and [11], cf [5].

We recall some properties of the transfer map [2].

Let B be a finite dimensional space. Let $F \to E \to B$ be a fibration with section, and suppose that fiber F is homotopy equivalent to a finite complex. Then there is a transfer map $\tau: B \to \Omega^\infty S^\infty(E_+)$. Let $Tr_E: B \to \Omega^\infty S^\infty$ be the composite of τ with the map $\Omega^\infty S^\infty(E_+) \to \Omega^\infty S^\infty(pt_+) = \Omega^\infty S^\infty$, induced by $E \to pt$.

We will need the following properties of the transfer: Let S^l $_A$ E \to B be the fiberwise double suspension of E. B

3.1.
$$\operatorname{Tr}_{E} \simeq \operatorname{Tr}_{S^{2} \wedge E} : B \to \Omega^{\infty} S^{\infty}.$$

Let E_1, E_2 be two fibrations over B as above. Then we can consider the fiberwise wedge $E = E_1 \vee E_2 \rightarrow B$.

3.2.
$$\operatorname{Tr}_{E} \simeq \operatorname{Tr}_{E_{2}} + \operatorname{Tr}_{E_{2}} : B \to \Omega^{\infty} S^{\infty}$$

These properties will be proved at the end of this section.

Recall that the algebraic K-theory of a point can be defined as

$$A(*) = \lim_{\substack{n \in \mathbb{R} \\ n,k}} B \operatorname{Aut}(v^k S^n)^+.$$

Let $f: B \to B$ Aut $(v^k S^{2n})$ be a finite dimensional approximation. There is an induced fibration $(v^k S^{2n}) \to E \to B$.

To this fibration, there is an associated transfer map $Tr_F: B \to \Omega^\infty S^\infty. \text{ Let } \sigma: B \text{ Aut}(v^k S^{2n}) \to B \text{ Aut}(v^k S^{2n+2}) \text{ be}$

THE MAP BSG
$$\rightarrow$$
 A(*) \rightarrow QS⁰ 427

induced by double suspension. Then the map σf induces the fiberwise double suspension of $E:(v^kS^{2n+2})\to E'\to B$, and because of 3.1 $Tr_E\simeq Tr_E$. By a homotopy colimit argument, these maps extend to a map

$$\operatorname{Tr}_{k}: \lim_{n} \operatorname{B} \operatorname{Aut}(\mathbf{v}^{k} \mathbf{S}^{n}) \to \Omega^{\infty} \mathbf{S}^{\infty}.$$

The stabilization map

$$B \operatorname{Aut}(v^k S^n) \rightarrow B \operatorname{Aut}(v^{k+1} S^n)$$

induced by adding a factor in the wedge, induces by 3.2 a diagram, which is homotopy commutative on all finite subspaces

The map *[1] here denotes loop sum with the identity loop. Again, you can extend to a map, defined on finite subcomplexes

$$Tr : \mathbb{Z} \times \lim_{\substack{n,k}} B \operatorname{Aut}(v^k S^{2n}) \to \Omega^{\infty} S^{\infty}$$

And by the universal property of the plus construction, this finally extends to a map

$$T_r : A(*) \rightarrow \Omega^{\infty} S^{\infty}$$

Recall from [8] that $\Omega^{\infty}S^{\infty}\cong\mathbb{Z}\times\lim_{k}B\Sigma_{k}^{+}$. The map $\mathbb{Z}\times\lim_{k}B\Sigma_{k}\to\mathbb{Z}\times\lim_{n,k}B$ and $\mathbb{Z}^{\infty}S^{\infty}$ actually is the map inducing the equivalence, so $\mathbb{Z}^{\infty}S^{\infty}$ is a split surjection.

Now, theorem 1.1 follows from the description of $\eta_{\mathbb{Z}\times \mathrm{BG}} \quad \text{as a transfer in 2.8}.$

It remains to prove 3.1 and 3.2. Recall from [2] that the transfer $\tau_E^{}$ has the following properties:

3.3 Given a fibration $p : E \rightarrow B$ as above, and a map $g : X \rightarrow B$, we have a pullback diagram

$$\begin{array}{ccc}
\stackrel{\sim}{E} & \stackrel{\sim}{\xrightarrow{g}} & E \\
\stackrel{\sim}{p} & \downarrow & \downarrow & p \\
X & \xrightarrow{g} & B
\end{array}$$

Then $\Omega^{\infty} S^{\infty}(g_{+}) \circ \tau_{E}^{\sim} \simeq \tau_{E} \circ g$.

3.4 Given fibrations $p_i: E_i \to B_i$ as above, we can form the fiberwise smashproduct

$$P_1 \xrightarrow{\Lambda} B_1 \xrightarrow{P_2} : E_1 \xrightarrow{\Lambda} B_2 \xrightarrow{E_2} \xrightarrow{\longrightarrow} B_1 \times B_2.$$

The following diagram commutes up to homotopy

We can now prove 3.1. If $F \to F \to *$ is a fibration with trivial base, then

$$\tau_{\rm F}: {\rm S}^{\rm O} \to \Omega^{\rm \infty} {\rm S}^{\rm \infty}$$

is given by the Euler characteristic $\chi(F)$. This is to be understood in the pointed sense here; thus a sphere has Euler characteristic +1 or -1 depending on the parity of the dimension.

From 3.3 it follows, that if $F \to F \times B \to B$ is a product fibration, then $\tau_{F \times B} : B \to \Omega^{\infty} S^{\infty} (B \times F)_{+}$ is the composite

$$B \to \mathrm{pt} \to \mathrm{pt}_+ \to \Omega^{\infty} S^{\infty} (\mathrm{pt}_+) = \Omega^{\infty} S^{\infty} \xrightarrow{\chi(F)} \Omega^{\infty} S^{\infty}.$$
 Applying 3.4 to $E_1 = E$; $E_2 = S^2 \times B \to B$ and then 3.3 to the diagonal map $B \to B \times B$, the statement 3.1 follows.

In order to prove 3.2, note that if $f_i:S^N\times B\to E_i$ are duality maps of exspaces in the sense of [2], then the fiberwise coproduct followed by fiberwise wedge

$$s^{N} \times B \rightarrow s^{N} \vee s^{N} \times B \xrightarrow{f_{1} \vee f_{2}} E_{1} \vee E_{2}$$

is also a duality map. The 2N-dual of this map is the wedge of the 2N-duals of f_1 and f_2 followed by the fold map

$$E_1 \vee E_2 \xrightarrow{Df_1 \vee Df_2} (S^N \vee S^N) \times B \xrightarrow{fold} S^N \times B$$

The transfer map $\text{Tr}_{E_1 \text{vE}_2}$ is the adjoint of the composite $s^N \times B \to (s^N v s^N) \times B \xrightarrow{f_1 \text{vf}_2} E_1 \text{ v } E_2 \xrightarrow{Df_1 \text{vDf}_2} (s^N \times s^N) \times B \to s^N \times B$ which equals the sum $\text{Tr}_{E_1} + \text{Tr}_{E_2}$.

REFERENCES

- [1] Adams, J. F., On the groups J(X) I, II, III and IV, Topology 2: 181-195(1963), 3: 137-171, 193-222(1965) and 5: 21-71(1966).
- [2] Becker, J. C. and Gottlieb, D. H., Transfer maps for fibrations and duality, Composito Mathematica 2: 107-133(1976).
- [3] Boardman, J. M. and Vogt, R. M., Homotopy invariant structures on topological spaces, Lecture Notes in Mathematics no 347, Springer 1974.
- [4] Bokstedt, M., The rational homotopy type of Ω Wh^{Diff}(*), Lecture Notes in Mathematics no 1051, Springer 1984:25-37.
- [5] Bokstedt, M., Equivarant transfer and the splitting of A(*), to appear.
- [6] Kassel, C., Stabilisation de la K-theorie algebrique des espace topologique, Ann. Scient. Ec. Norm. Sup. 4^e Serie, t. 16:123-149(1983)
- [7] Quillen, D., Letter to Milnor on $Im(\pi_i O \rightarrow \pi_i^S \rightarrow K_i \mathbb{Z})$, Lecture Notes on Mathematics no 551, Springer 1976: 182-189.
- [8] Segal, G., Configuration-Spaces and Iterated Loop-spaces, Invent. Math. 21: 213-221(1973).
- [9] Waldhausen, F., Algebraic K-theory of topological spaces, I, Proc Symp. Pure Math. vol 32 Part I: 35-60, A.M.S. (1978).
- [10] Waldhausen, F., Algebraic K-theory of topological spaces, II, Lecture Notes in Mathematics 763 (1979): 356-394.
- [11] Waldhausen, F., Algebraic K-theory of spaces, a manifold approach, Canad. Math. Soc., Conf. Proc., vol. 2, part 1: 141-184, A.M.S. (1982).

- [12] Waldhausen, F., Algebraic K-theory of spaces, Lecture Notes in Mathematics No. 1126, Springer (1985): 318-419.
- [13] Waldhausen, F., Algebraic K-theory of spaces, stable homotopy and concordance theory, these proceedings.

Marcel Bokstedt Fakultät für Mathematik Universität Bielefeld D-4800 Bielefeld F.R. Germany Friedhelm Waldhausen Fakultät für Mathematik Universität Bielefeld D-4800 Bielefeld F.R. Germany