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Algebraic EK-theory of topological spaces. II

Friedhelm Waldhausen

The purpose of this paper is to explore the relation between stable homotopy
theory and the functor A(X) of the title. The relation turns out to be very pimple:
The former splits off the latter.

This splitting of A(X) is an unexpected phenomenon. Consider the case where
X = %,
a point. In this case we may (and will) take as the definition

A(#) = Z % ( lin B autrkdh y*

ny K
where

Rsn , .

v = wedge of %k spheres of dimension =

At(..) = simplicial monoid of pointed homotopy equivalences

B Auwt = ite elassifying space

(...)+ = the + construction of Quillen

Lim : by suspension, and by wedge with identity maps, respectively.
ny K

The artificial factor £ is required to avoid disagreement with other definitions
of A(*). Thanks to a theorem of Barratt-Priddy, Quillen, and Segal on the other hand
stable homotopy is definable in terms of the symmetrie groups,

a"” = 2% (lLmB 5, ).
K
Since & ® Aut(VkSu), the map
At (vRs®y —— 1im Autvis™
"
therefore induces a map nos” A(%), It is this map for which the splitting theorem

provides a left inverse, up to homotopy.

Let us compare with known facts from algebraic X-theory. There is a map from
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A(x) to the algebraic K—theofy of the ring of integers,
K(z) = 2% 1%111 B G, (2) )",
it is induced from
At (VRSN —s Autl n(v".s”)) p - GLy (2)

This map is a rational homotopy equivalence [14] (an easy consequence of the finite-

ness of the stable homotopy groups of spheres ng, i>0).

The composite map
a7 —s A(%) —> K(2)

is the usual map resulting from identification of a symmetric group with a group of
permutation matrices. This map has been studied by Quillen [10]. The main result

is that

Trs > Kagers @

iz injective on the image of the J-homomorphism, the subgroup ImJ#k+3; in fact, the
map is split injective on the odd torsiom, and also on the 2-torsion in half the cases
(tc odd). Tn the other half it is not. TFor, Lee and Szezarba [5] have computed K3(2)

and &3 a result the map ImJ4k+3 -+ K4k+3(z) js, for k= 0, the inclusion
712 ™ Indy 1T§ —> Ky (2) ™ B[4

Browder [3] has deduced from this that the map ig not aplit for all even k. It also
follows from the Lee-Szczarba computation that ni -+ Ki(Z) is not in gemeral injec-

tive, and specifically [3] that
7 ]

s . S P . .
is the zero map. To sum up, the relation between 1; and Ki(z) is very interesting,

but apparently also very complicated, - Certainly the map a”s” - X(2) does not split.

One may wonder here how possibly a result can be provable in the 'non-linear’
case (the splitting theorem for A(X) ) but fail to hold in the 'linear' case (alge-
braic X-theory}. The answer is of course that the proof does not really break down
in the linear case, it just proves a different result. This result will be digcussed

at the end of the paper.

Returning to the splitting theorem, to prove it we must in fact prove a BEtromger
result involving the stabilization of A} ,
A0 = 1im oF Fibre( A(STAR + A(K) )

m
where

X, | = X with a disjoint basepoint added

fibre{..) = the homotopy theoretic fibre

" = the m=th locp space,



358

and where the direct system involyves certain naturally defined maps.
There is a natural transformation
A(x) — 45

of which one should think of being induced from the identification of A(X) with
the 0-th term in the direct system defining AS(K). {There is a technical poipt here.
The definition of A{X) we use requires that X be connected. 5o the G-th term in

the direct system is not defined. So the map
A(X) —> @ Eibre( 4(S'AX,) = A(%) )

must be artificially produced. We have to introduce the external pairing for that

purﬁose).

Theorem. There is & natural map, well defined up to weak homotopy,
ABw — 27570

8o that the diagram

ﬂ""s”(x;)

=

AR = A5 —> 0"5"(x,)
commutes up to (weak} homotopy.

Recall that two maps are called weakly homotopic if their restrictions to every
compactum are homotopie. 'Weak homotopy' is the price we have to pay for working
with stable range arguments.

To produce the required map on AS(X) is equivalent more or less, in view of
the definition of AS, to producing for highly connected Y a map, defined in a
stable range,

A — 275D

It is not obvious that such a map should exist, and conaiderable work goes into its

construction.

Our method to produce the map is to first manipulate A(Y) in a stable raﬁge
(section 3). A curious construction of simélicial objects is needed here which will
bo referred to as the eyelic bar construction. The idea for this construction comes
from unpublished work of K. Dennis (talk at Evanston conference, January 1976), in
fact, the Hoohschild homology that Dennis uses may be regarded as a linear version
of the cyclic bar comstruction. General facts relating to the cyeclie bar construction
are assembled in section 2.

Given the manipulation of A(Y) din the stable range, a map A(Y) = Q°5 (Y) ,
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defined in a stable range, may simply be written down (section 4, there are however
some technicalities involved here) and it is entirely obvious that this map admits

some section.

We are then left to show {section 5) that the section is Ghat we want it to be.
This requires some preparatory material which is scattered through earlier sections,
particularly section | which gives a review of some general properties of A(X) and
of material involved in the Barratt~Priddy-Quillen—-Segal theosrem.

§1. Review of A(X) and stable homotopy.

Let X be a simplicial set. We assume X 18 connected and pointed, so the
loop group G(X) in the sense of Kan [4] is defined. The geometric realization
|G¢X)| is a topological group which will be called G for short.

Letting G, denote G with a disjoint basepuiﬁt'added, and VkSn the wedge
of X spheres of dimension #n, we form the G-space ' ' '
VkSnAG+ (e Ve / *%G )
which should be thought of as a free poinbed G-cell complex with Xk G-cells of

dimension n.

We consider the simplicial set (= singular complex of the topological gpace) of
G~equivariant pointed maps o
Mpe) = IMG}GG(VRSJ“AG_',, VR"AG,)
which may be given the structure of a simplicial monoid, by cempesition of maps.
Further we consider the simplicial monoid of G-equivariant pointed weak homotopy
equivalences o
HEeey = Auty(Vi'ag,) .

There is a stabilization map from n to n»+l, by suspension, hence we can form the
direct limit with respect to 7. We can also consider a stabilization map from &
to k+l; in the case of HZ(G) it is given by adding the identity map on a new
summand in the-wedge.

Using the identity element of G we have a canonical map §¢ -+ G_. By restric-
tion along this map we obtain an isomorphism

e k '
Hapy (Vsnc,, VE8™nG,) — Hap(Vs”, VESae,)

This igomorphism in turn restricts to an igomorphism from tge und;rlying simplicial
aet of HE(G) to & union of connected components of Map(¥ S”, Y S”AG+).

It is suggestive to think of ME{G) as a space of Kkxk matrices of some kind.

The suggestion is particularly attractive in the limiting case n = o, for in this
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case Mz(G) is actually homotopy equivalent, in the obvious way, to the product of

kxk coples of

M@y = Lim Map(s”®, §'46,) = °5(6,) ,
n . ’ .

and the composition law on M;(G) corresponds, under the homotopy equivalence, to

matrix multiplication. '

Let NH;(G) denote the nerve (or bar comstruction) of the simplicial monoid

H;(G); it is the simplicial object
(m] — H;(G) X oee X HZ(G) {m factors)

with the usual face structure. Let B HE(G) = IHHZ(G)I be its geometric realization.
Then, by definitiom,
ARy = B x ( Lim B H(6) )"
nk
where (..)+ denotes the + ;onstruction of Quillen [9] (recall that € denotes the
geometric realization of the loop group of X ).

This definition is essentially the same as the first definition of A(X) in [14].
To make the translation one verifies that the apace BHZ(G) used here is homotopy
equivalent to the classifying space of the category used there (this is the content
of [14, lemma 2.1], essentially). The requisite arguments are probably well known,

a detailed account will be in [15].

The above congtruction can also be made for any finite n, giving a kind of
unstable approximation to A(X). In particular, the case # = Q gives stable homo-
topy. Indeed, Hg(G) 4 S(6) (the singular complex of G ) and in general

) =~ 5 [ S

(wreath product with the symmetrie group on %k 1letters). Hence the theorem of
Barratt-Priddy, Quillen, and Segal [il] gives a homotopy equivalence

(571K | =) QTS = Bx (UnB B "
The map
HO(G) — 1;1;111 HE(G)

therefore induces

I

878" 1%, | —— A(X) .

We will need a different description of this map, in a stable range.

Lemma 1,1, The following diagram commutes up to weak homotopy {homotopy on compacta)
in which the homotopy equivalence on the right is that of the Barratt~Priddy-Quillen~
Segal theorem and the map on the bottom is the natural stabilization map:



3st

BH (6) ——> BHO(G) —— 2 x BHO(G)™

S

1XI > 075 1%,

The lemma is, essentially, a quotation from Segal [11]. Before making this
explicit we review some material on I'-spaces. We do this in some detail as the material

will also be needed for other purposes, particularly the treatment of pairings below.

(1.2). TI-spaces. OQur reference is Segal [111; ef. also Anderson [1] for some re—
-formulation. Let s denote the basepointed set with s non~basepoint elements

!y vus, B. We recall that a (special) T'-space is a covariant functor F from the
category of finite pointed sets to the category of spaces (respectively, the category
of (multi-)simplicial sets in our case) which satisfies that F(0) = *, and which
takes sums to products, up to homotopy; this means, if ppt X V¥, + Xy is the re-
traction which takes X, to the basepoint, and pp similarly, then

is & weak homotopy equivalence. The space F(]) 1is called the underilying space of

the T-space F.
In our preaent situation we have for every ne 0, 1y +..5 o ==, a I'—-space
Fg whose underlying space is
n
Fa() = U_kNH;:(G).
The higher terms can be obtained by a gemeral procedure of Segal [11, section 2]; the

next term is
2 = Llgg CEHRE x BHEO) x B, (0) )/ H© x Hy (G

where E denotes a universal bundle (one-sided bar construction) and */' means

quotienting out of the action, and the genmeral term is

il
@ = Wy, (Tacs B 60 1 e @ x.x i ©

12

h = -
where k. g Ry

Returning to the general notion of I'-space, we can extend the functor F, by
direct limit and degreewise extension, to a functor defined on the category of pointed
simplicial sets. TFor example if the original functor took values in the category of
simplicial aets,‘thé extended functor will take values in the category of bisimpliecial
setsg,

In the special case of a [~space which is 'groupwvaluedf (For example this holds

if the underlying space is connected) the extended functor is a (reduced) hemology
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theory; that is, it preserves weak homotopy equivalences, and it takes cofibration
sequences to fibration sequences up to homotopy, c¢f. [1) and e.g. [13] for a more
detailed account. In view of a natural transformation XAF(Y} = F(XAY) it therefore

gives rise to a (connective) loop spectrum

IFII =5 @IFEH 1, IFEHT =S 2lFE®] , ...

Our I'-gpaces Fg are not group valued in the above sense. In this general
case the list of properties must be weakened a bit, namely the extended functor F
will not in general produce a fibration sequence from & cofibration sequence unless
the latter involves connected spaces only. Thus the spectrum mw F($™ is a loop
spectrum only after the first map. The space F(Sl) is equivalent to the underlying
space of the TI=~space which in Segal's notation would be called BF, and one of the
main general results about P-spaces says that it is computable by means of the + con—

struction. Specifically in our situation we have
RIFGN Y = 2 x ¢ 1in B (&) )Y,
G Z k
Thus in the cases # =0 and # = ©® we recover nfs“lx+| and 4A(X), respactively.

Remaprk, The latter homotopy equivalence-is well defined up to weak homotopy only
(for it is obtained by means of an ifomorphism of homotopy functors on the category -
of finite CW complexes [11]). This kind of ambiguity (weak homotopy instead of homo-
topy) arises frequently in commection with the + construction} It would be‘tempting
to avoid the ambiguity by avoiding the + construction, and specifically by not using
the universal property. We could indeed aveid the + construction altogether., But
the effort would be in vain. For the stable range srguments that we have to use

later omn, would re-introduce the ambiguity.

Proof of lemma 1.1. This is a corollary of Sepal's proof of the homotopy equivalence
of infinite loop spaces .

075" 1%, | e AIF (8]

In [11, proofs of propositions 3.5 and 3.6] Segal does in fact exhibit a specific map
of spectra from the suspension spectrum of IX,] to the spectrum mm ang(xJ(gm+1)|
which he then shows is a weak homotopy equivalerce of spectra. Since the receiving

spectrum is a loop spectrum this map is characterized by the map of first terms which
is the composite map

BSIGEO) |y —— | B(6) = IFR(S%) | ——s alFY(s"y!
BSIG(X) | ~——> BiY(E)
* — 0 wile) .

It is immediate from this that there is a version of lemma 1.1 in which 2 x BHg(G}+



363

has been replaced by ﬂng(Sl)l. To translate into the form stated, one has to take
into account the wey the homotopy equivalence between these two spaces arises (11,
section 4) and particularly the way that 2 BH&(G) arises as the telescope of
lj_kBﬂi(G) and a shift map. ' ' o

. . - 1T ',
(1.3). Pairings. Smash product induces a palring HZ(G) % Hey (G') ~ Hk,k,(GxG')
and therefore alsc a pairing of I—spaces {(resp. of their extensions described above)

FHn) B2ty — FIT (ar)

The pairing is compatible with the natural transformation ¥" A FE(Y) -—ng(Y"AY);

Taking ¥ and Y' to be spheres, we have in particular

Fies™ a FL ™) — P (6™

which defines a pairing of spectra because of the compatibility with the structure
map 5 A FR(s™) — FRs™h . |

Using that, for m > 0, we have A(X) o nmIFz(K)(Sm)I, and using that the weak
homotopy equivalance G(MX') —» G(X)xG(X') induces one

Ca—d

7 n
Fooay @~ Forymoxn 4
we thus obtain a pairing, well defined up to (weak) homotopy,

A(x) A AK") ——p ALAXX')

Note that the pairing coﬁld also have been defined more directly in terms of
the definition of A(X) by the + construction (similarly to the pairing in K-theory
in [6]); with the present definition any dési:ed naturality properties of the pairing

are ssgentially obvious.
The pairing formally implies others. Let A¢X) be the redused part of A(X),
A(x) = Eibre( 4(X) = 4 ) .

Taking the difference (with respect to the H~space structure) of the identity map on
A(X) and the composite map A(X) - A(x) - A(X), one obtains the required map in a

splitting
A® = A x 30
There is a pairing
A A A(Y) —> AEAL
which is definable as the composite map
A0 A 4D —> AG) A A — AGXY) — ARXI/T) 5

. it satisfies that the following diagram is (weakly) homotopy commucative
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AQD) A A(T) —rm—ey ALXXY)

1 J

AKX A AQY) ———r A(XAY,)

Similarly there is a pairing
Lad i~ ~
A(X) A A(Y) —— A(RAY)
There are analogous pairings involving (reduced and/or unreduced) stable homo-
topy, resp. stable homotopy and A(X). For uniformity of notation we let

("s"I%,) =) Q) = 2 x ( lim B H(G) )’
P

Lemma 1.4, There is a map A(X) - ﬂz(Slhx,l_) so thdt the diagram

Q(X) —Ss 0F(SAX,)

|

A(X) =z QA (S AX,)
commutes up to homotopy.

Proof. Let 8% ~ Q(Sl} *'E(Sl) be the Hurewicz map from homotopy to stable homotopy
(the first map is that of lemma {.}). Using the above pairings we have a diagram

5 A Q) —— RS A QU ——s G(S'AX)

51 A A(K) —— QY A A —> A(5TAY,)
and the adjoint of the composite map on the bottom will have the required property
if we can show that the adjoint map ‘
Q(X) —— 23(5'A%,)
is a homotopy equivalence.

We note here that in treating this @(X) the necessity of having X comnected

and pointed is of course an illusion. For

I %

5
k NG(X)k‘ o EL, * X

N(Z, [ G(R) ) ~ Ef x

80 that we are in the situation of [1]] and the term on the right is quite generally

defined. Furthermore the pairing extends to this more general situation. Therefore
Q%) ——> RG(S'AX,)

is in fact a natural transformztion f£rom stable homotopy theory to itself, and it
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gsuffices to show it is a homotopy equivalence in the case X = % .

Since (%) - QQ(SIJ extends to a map of spectra it suffices in fact to show
that it induces an isomorphism on LIy equivalently, that its adjoint is surjective

on m . But from the explicit deseription of the Hurewicz map (lemma 1.1) we see

that the composite map

St A & 5 A Q(x) —— (&Y A Q¥ —— @(5Y)

Y A QUx) —— @sh)

is itself the Hurewicz map, and we arve done. ‘ o

§2. GSimplicial tools.

(2.1). The realization lemma, This asserts that a map of simplicial objects which
is & wesk homotopy equivalence locally (i.e., the partial map in every degree is a
weak homotopy equivalence) is also one globally. We need a version of this for

finite connectivity.

We say a ﬁap is k~aonnected (or is a k-aquivalence, by abuse of language) if it

induces an isomorphism on s for j <k, and an epimorphism on .

Lemwa 2.1.1, Let X., - Y., be a map of bisimplicial sets. Suppose that for every
n the map of simplicial sets ., = Y. is k-conneeted. Then the map X.. =+ Y..

is also k-connected.

Indeed, recall the argument in the case k = =, cf, e.g. [16]. One considers
the 'skeleton filtration' x(n) of |X..| induced from the second simplicial diree-
tien, that is, x(h) is the geometric realization of the bisimplicial subset of X..
generated by XK., . Then one proves induetively that X(n) -+ Y(n). is a k-equivalence
using the gluing lemma. The same argument works in the case of finite k in view of

the following version of the glhing lemma.

Lemna 2.1.2. In the commutative diagram

Klf ::'{0 >X2
¥ et Yy— ¥,

let the two left horizontal maps be cofibrations, and suppose that all the vertical

maps are k-connected. Then the map of pushouts xluxnxz - YIUYOYZ is also k—connec~

ted, A
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(2.2). Partial monmoids. - This notion, due to Segal [i2], allows a concise descrip-
tion of certain simplicial objects. By definition, a partial monoid is a set E

together with a partially defined composition law
ExE 5 E)——E

which is associative in the sense that if one of (ejep)e; and el(ezea) is defined
then so is the other and the two are equal. Further there must ba a two-sided iden-

tity element #* and multiplication by * must be everywhere defined, that ieg,
E v E c E; .
The simplicial set associated to the partial monoid (we refer to it as the narve
of E, notation NE ) 1is given by
[n] ey E = set of composable n-tuples

with face and degeneracy maps given in the usual way by composition, resp. by inser-

tion of the identity.

Similarly one has the notion of a simplieial pariial menoid; its nerve is a

bisimplicial set.

For example [12] a pointed simplicial set X can be considered as a simplicial
partial momoid in a trivial way, with X, = XvX . The nerve in this case is the
simplicial object

[n] —— Xv,.,vX

s [), it}
whose diagonal simplicial set is a suspension of X ,

Other examples arise in the following way. Let M be a monoid and A a sub-
mopnoid of M. Then we can manufacture a partial monoid by deelaring that two elements
of M shall be composable if and only if at least one of them belongs to the submo-
noid. Thus M, = MxAUAxM, and M, is what we will refer to as a generalized wedge,

VE(M,A) =~ sget of n-tuples‘of elements in M,

with at least {n-1) elements in A .

Similarly this construction can be made with a simplicial monoid M 'and a simplicial

submonoid A of M.

Lemma 2.2.1. In this sitvation, if A+ M is (k-1)~connected then the inclusion of
gimplicial objects ‘

In] —— (VA —— ™)
is (2k—l)-connec£ed.

Proof. In view of the realization lemma (2.1.1.} it suffices to show that for every

n the inclusion Vn(M,A) - M* is (2k~l)-comnected., This is certainly true if n
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ig either O or 1 as the inclusion is an isomorphism in those cases. The case

n = 2 follows from the following remark. .

A map of simplicial sets is (k-1)-connected if and only if its geometric reali-
zation is homotopy equivalent to an inclusion of CW complexes K -+ X wgo that XS K
kas no cells of dimension < k. Let similarly ¥~ L have no cells of dimension
< 1 Then Xx¥ ~ XxLUKXY has no cells of dimension < k+l, and therefore the map
XxLUKXY =+ XxY is (k+l=1)-connected. | -

The general case follows inductively by factoring the inclusion suitadly and

using the same remark and the gluing lemma. o

Finally we will need to comsider, in this framework of partial monoids, the no-

tion of semi-divect product.

Suppose first that F is a monoid (which we think of as multiplicative) and
that E is another‘(whiéh we think of as additive). Let F act ffom_hnth sides,
and compatibly, on E (in other words, if 7°? denotes the opposite monoid of F
then F x F°F acts on B from the left, say). In this situaticn, the gemi-direct

rroduct
FuxE
is the monoid of pairs (f,e) with multiplication given by the formula
(F,e) (£',e') = (ff', ef' + fe')
Ramark. In case.this looks unfamiliar, consider the case where F is a group. Here
one can rewrite in the usual form, as follows. Write
(f,e} = (f, f&)
where & = £ le. Then - L
(£,58) (£',£18') = (E£', £af' + ££'%")
o (gE', (g£T)E'lE £+ (EE")EY)
and hence with [£,&] = (F,£8) the multiplication is given by the formula
[f,a][f',é'] - lefr, £' 7 laEt ¢ a'] |
This ends the remark.
Suppose now that E is a partial monoid on whieh the monoid F acts compatibly
from both sides., We need to aessume that E is eaturated with respect to the action

in the sense that the following condition is satisfied: for every pair {e,e') whose

sum is defined, and for every £, the sums of the four pairs
(fe,e') , (ef,e’) , (e,fe') , (ee'f)

must also be defined (they need not however be related in any particular way). Undexr

thig assumption the formula (£,e)(£',e') = (£f'!,ef'+fe’) carries over to define a
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partial monoid F k E with underlying set. F x E and with (Fw E);, & F % F % Ep,

We will be especially concerned with the particular case whére E iz a pointed
set X considered as a partial monoid in & trivial way. 1In this case (F & E), 1is

the generalized wedge.
(FrxX), = VE(FxX,Fx*) m¢ FT % (Zv...vX) .

In particular (F & X), = FxFx(XvX}, and the partial compositinnllaw is given by the

cagse distinetion
(£,6) (£',%) = (E£', xE')
(£,2)(£",x) = (££', £x) .

All of the above extends to (and will be used in) a simplicial framework.

[

{2.3). Ihe cyclic bar construction. Let F be a monoid which acts on a set X

both from the left and the right, and compatibly. The eyolic bar conetruction is

defined to be the simplicial set
e , [K] ——3 Fx ,,, xFxX
e | —

with face maps

do(fliliogfk, X} - (fz’lll’fk’ xf])
di{f],.'.’fk’ x) - (fl’...’fifi‘{"]’...,fk, x) if 0<i<k
dk(fl,luo,fk, x) = (fl,i--,fk_l, ka)

Similarly if F is a simplicial monoid and X a simplicial set, the cyelic bar con-

struction is defined in the same way, giving a bisimplicial set..

The cyclic bar construction may be ragarded as a generalization of the two~sided
bar construction. Indeed, the latter may be identified to the special case of the
former where X 1is the product of two factors of which the first has a left F-stru-
ture and the second a right F-structure, respectively. '

Ag another example consider the case of a (simplicial) group acting on its under—
lying (simplicial) set from either side by multiplication. Then the map which in
degree k Ls

{slp'-':gkr g) ——t (gl""’gk' 3(3]-"3k) )

defines an isomorphism from N§°7(G,G) to the one-sided bar construction of € acting

on itself by conjugation. The lattet represents the free loop space of NG .-

The case of main concern to us arises in the situation where a (simplicial) mo-
noid ¥ acts on a (simplicial) partial moncid E in such a way that the semi-direct

product . F Kk E is defined. In this situation F will also act on the nerve NE in



369

such 2 way that the cyclie bar construction N®Y(F,NE) is defined. We dencte by
diagN®Y (F,NE) the simplicial (resp. bisimpliciel) set resulting from diagonalizing

the two N~directions of the latter.

Lemma 2.3.1. There is a natural map
u: diag 8% (F,NE) ———> N(F % E) ,

The map u is an isumorphiém if ¥ acts invertibly. If w,F is a group then u

is a weak homotopy equivalence.

Proof. In the formulas to follow we will suppose for simplicity of notation that F
and E are a monoid and partial monoid, respectively, rather than a simplicial monoid
and simplicial partial monoid. In the genmeral case the formulas are exactly the same

except that a dummy index has to bé added everywhere.
By definition, diag NCY(F,NE) is the simplicial set (resp. simpiicial object
in the general case)

[n] — Fx...xF % E & Fx,..XF % EX...xXE
—n—s ¢—f—t —n—>

with face maps taking (fl,...,fn; e1,...,en) to

dOqu) = (Ezglo;fn; e2f1""enfl)

di(..) = (fl,..’fifi"']’.."fn; -el.’--,éi"'ei_l-l’an,en) 3 '0< i. <n

dn(.-) a (f},.-,f fne],..,f e I) ,

n-1? n o~

while N{(F k E) is given by
[n} —— (FXE) € F*E % ,,. X FxE

— N —

with face maps taking (Eysepseees £ .e,) to

dOC--) = (fz,ez;..; fn!en)

00 = (Epegees BEp g ey e s fpe) O <

dn(.‘) = (fl,e];t-; fn"l’en—]) L]

We define un(f],..,f ; el,..,en) to be

n
(£ (£ E e (E) 5 £y (Epeefdep(EiE5) 5 «oe i (£ e (E o ) ) s

then the collection of maps u, forms a simplicial map u as one checks. Here is

the situation for face maps: evaluating on (f;,..:f.; el""en) we obtain

(e ) £y, (Eperfden(fE9) 5 oon 5 £y (£ )e (£,..80)

{un-1d0= ( Py (fz..fn)(ezfl)(fz) Foer3 fn’ (fn)cenfi)(fZ"fn) )
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and similarly with dnun and “n-ldni’ further if 0 < i <n then

(diun=) (-n; fi.fi.'i'l’ (fi"fn)ei(fl'.fi)fi*]+fi(fi+l"fn)ei+l(fl..fi"'l} H ou)
(un_ldi:) (bi; fi-fi"'l’ C(fifi*'l)fi‘l'Z“fn)(ei+ei+l)(f!”£i—](fifi'i'l}) H no) >

thus the identities for iterated face maps are satisfied.

If the two actions of ¥ on E are invertible then each of the maps u is

an isomorphism, therefore u 1s an Lsomorphism in this case.

Suppose now that ToF is a group. Then any action of F is homotopy invertible,

that is, 1f F acts, from the left say, on X then the shearing map

Fx¥e———FxX
(f,x) ——> (£,fx)

is a weak homotopy equivalence. Therefere in order te show the map u is a weak
homotopy equivalence it suffices to write it as a composite of maps each of which is
isomoxphie to a shearing wmap. But u, is isomorphic to the composite map

1,
Fxl!IxF x Eﬂ "'"""_n""b (F ® E)n —N+inlle x En

and the latter may be factored
ll ‘e l.n T, eee Ty T {composition from right to left)

where r, is the restriction of the map

Fr,...# FXEHX,,.x E — FX...X F x E‘xillx E

ﬁp.”,f ;er.”,egl——a “P'“’fn;BP'”ekl’%ﬁf'”ﬂFﬁ

n

and where 1. is similarly defined using the left action,

Thus each of the maps u is a weak homotopy equivalence. In view of the
realization lemma therefore the entire map u is a weak homotopy equivalence, too.

The proof is completa. o

§3. Manipulation in z stable range.

In the theorem below we will suppose that X is highly connected and, for tech-
nical reasons, that it actually be given as a suspension. While there is no canomical
way to suspend a simplicial set, a choice can of course be made universally. Qur
present choice is to be made so that G(SX) is the free simplicial group generated
by the non-bagsepoint simplices of X [4]. The geometric realization of the cancnmical
map X -+ G{SX) then represents I[X! - 05IX] and is (2m~1)~connected if X is (m-1)-
connacted., '
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If V, W are pointed topological spaces we denote Map(V,W) the pointed sim-
plicial set (= the singular complex of the topological space) of pointed maps from
V to W, and H(V) the simplicial monoid of pointed (weak) self-homotopy equiva-
lences of V. In a context of G~equivariant maps the analogous notions are indicated
by & subseript G .

The simplicial monoid H(Vksn) acts from the left on the pointed simplicial
set Map(VkSn,VkS”AIXI), by compesition of maps. But it alsc acts from the right
in view of the canonical map

HOESYy s HOVESALR)
h — hAid.*i'

and the two actions are compatible. Hence the cyclic bar construction, cf. (213),
WY ¢ HORS™, Map(s Vo alxD )
is defined.’

Theorem 3.1. Let X be a pointed simplicial set which is m~connected, m » 0. Let

58X be its suspension. Then the two spaces
% ,
N Higesy |V Sa1G(s%) L)
and .
NV ¢ HORGY , MapevRe VT AlskD) )
are naturally g-equivalent, where
| q = min(n=2,2m+) ;

that is, there is a chain of natural maps connecting these two spaces, and all the

maps in the chain are g-~connected.

Naturality here refers to n and K, and the X variasble. We will also need

a further piece of naturality which we record in the following addendum,

Addendum 3.2. There i§ a chain of {2m+1)~equivalences betwaen NG(SX) and SX, and
a transformation from this chain to the one of the theorem with the property that the
first map in the transformation is thg composite of NG(SX) 3 NHg(IG(SX)I) with the
inclusion NH?(IG(SX)I) - NHz(IG(SK)I) (cf. lemma 1.!); and the last map in the

transformstion is given by the composite map ‘

8K —=s SIsK| —= Hap(v's? W ePAlsKl) —— Map(v*s, vRgAlsxI)
together with the identification of the latter space with the term in degree 0 of
Ncy(on) . .

The proof of the theorem will occupy this section. The addendum will be noted
as we go along. The chain of maps will consist of five maps; it could be reduced to
four as the first two maps are composable. Each of the maps will be described in its
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awvn subsection.

(3.3). The first map. The simplicial monoid of the theorem,

H) s | vEPAle(sO 1)

can be considered as a simplicial partial monoid by declaring that multiplication of
elements in a fixed degree is possible if and only if at most one of them is cutside

the simplicial submonoid
HORSY

Thus the nerve of the simplicial monoid contains as a simplieial subobject the nexve
of that simplicial partial monoid (the situation of lemma 2.2.1)., The inclusion map

will be our first map.

To verify the asserted connectivity, and also for its own sake, we do some re-
writing now. As pointed out ip section 1, the canonical map 50 - |G(SX) |, induces
an isomorphism from the underlying simplicial set of the simplicial monoid to a union
of connected components of the simplicial set of mapa

Hap (V5™ VRSP A l6 (55 1) 3
we denote this union of components by
Map(..) .

Clearly the isomorphism is compatible with the left and right actions of H(VkSn).
Further the inclusion of the underlying simplicial set of the simplieial submonoid

H(Vksn) corresponds, under the ilsomorphism, to the natural inclusion
Hoksh —— TS Ve ala(s) 1,)
induced from 87 - IG(SX} I, .

But it is only those two bits of éfructure, the latter inclusion and the left
and right actions of H(Vksn), which matter in the structure of the simplicial par-
tial monoid. Therefore its nerve may be described as the simplicial object given by
generalized wedges (cf. (2.2) for thia notation),

[p] ——s VP( Mapevis®, viealesxy 1), HORS™ ) o

The inclusion into the nerve of the original simplicial monoid is (2m+1)-connected
by lemma 2.2.1, for the inclusion

HERSY —— TR VoA e (s 1)
is m-connected since S0 - 1G(sX) [, is. |

This finishes the account of the first map. Concerning the addendum, the first
map in that chain is given by the analogous ineclusion

[p] —— (VP( (81, 6tx) ) — GNP ),
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(3.4). Tha second map. The inclusion X ~ G(58X) induces one

Tapv st Ve alxl,) — Map (Ve Ves Al (smy 1,)

where we are continuing to denote by Map a suitable union of connected components

of Map, and the latter inclusion is (2m+1)-connected since the former is.

The inclusion is compatible with the left and right actions of H(Vksn). It is
also compatible with the inclusion of the underlying simplicial set of H(Vksn), for
the natural map s - IXl, given by the basepoint of X satisfies that

80 —— Ixl,

l6(sx) |,
commutes,
Therefore the nerve of the simplicial partial monoid considered before, contains
anothex,

lo] s YP( WA VT Ix 1), HOVRSh )

The inclusion is our second map.

To show the map is (2m+I)-connected it suffiees, by the realization lemma, to
show this in each degree p. The case p =1 was noted before. It implies the ge-
neral case in view of the gluing lemma (2.1.2) and induction.

Thig finishes the account of the second map. Cogcerning the addendum, the second

map in that chain is given by a similar inclusion, nanely

[p]l ——r ¢ VP(X,%) — VP (8R) ,G(%)) ) .

: ‘ - ' . s k. . : -
(3.5). The third map. The pointed simplicial set Map(VkSn;V F'A1X])  can be consi-
dered as a simplieial partial monoid in & trivial way, and the simplicial monoid
H(VkSn) acts on it from bokh sides, and compatibly. Hence the product

Hvs™y x Map (VRPN AIR D)

' F)
can be given the structure of a simplicial partial monoid, mamely the semi=-direct
product in the sense of (2.2),

The pair of maps [X!, = g% Ixl, ~ Ix| induces a map of gimplicial partial
monoids whose underlying map of simplicial sets is
2

REF RS AR —— HOESY x Hap(VEs Ve AIxD)
We show this map is (n-2)-connected, Indeed, since X is connected (we assumed this
in the theorem) this map is the restriction to a union of connected components of the
map ‘

Hap (S T AIXL,) —— Hap(VRSh x Hep(Vs VESAIxI)
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50 it suffices to show the latter map is (n-2)~connected. We treat the case X = I

first.

Lemma. The map n"s”(lxIU*) o o' x g% is (n-2)-connected.

Proof. The long exact sequance of stable homotopy groups of the cofibration sequence
8% — Izl — IRl

decomposes into split short exact sequences. As niS”Y - ﬂ?SnY is an iscmoxrphism
for 1 = 2n-2 it follows that SHIxIue) - §% x §*X|] induces an isemorphism on

homotopy groups for i < 2n~2. The assertion results by taking loop spaces. o]

The case %k = | being established, the case of gemeral % now follows from the

isomorphism
Hap (Ve Yy —Es ( Map(st, 1y ¥
and the (n—l)-equivalence
Ma.pcsn,ka/\‘f') —_— Map(;s”,fﬂ') )k
induced from the (Zn-l)-equivalence
(S'AY) v oo v (SPAYY) ey (SAYT) % L. x (TTAYY)
The map of simplicial parfial monoids indudes a mép of their nexrves, In the
notation of generalized wedges, this is a map from
[p] — VP( Tapevhs, vRdhlxt,), HORs™h )
to :
[p] ——s VP ( HORSY x Map g™ vEaixDy, HOREH) < # ) .

This map ie (n-2)-connected for every p (the gluing lemma reduces the assertion to
the case p = | which was verified above) and therefore the entire wap is also (n-2)-

connected by the realization lemma. This is our third map.
Concerning the addendum, the third map in that chain is the identity map on

[p] —— VPCIX[,%) .

(3.6). The fourth map. Considering the pointed simplicial set Map{VkSn,VkSnAIXI)
ag a simplicial partial monoid in & trivial way, and forming the nerve of the latter,

we obtain the simplicial object

[p] > Map(¥*g?,VEFAIRD) v oov v Mdp(\iks“,vks”hlxn‘

ri [
= p Cd

which we denote by

z Map(vks"‘,vk.s”.\lxl) -
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It inherits compatible left and right actions of the simplicial monoid H(VkSn); 50

we can form the cyelic bar construction
NV HOVRE™), @ MaptVRst VESAIRD )

a trisimplicial set. Our fourth map is provided by lemma 2.3.1. It is the weak ho=

motopy equivalenge whose source is
aiag NY( HOKSY, T MapWRst vRata1x1) )

(diagonal along the N- and I-directions) and whose target is identical to the target
of the third map, namely the nerve of the simplicial partial monoid given by the
semi-direct product of H(VkSn) acting on Map(VkSn,VkSnAIXI).

Concerning the addendum, the fourth map in that chain is again the identity map

on

( [pi —s VE(IXI,® ) (= I IXI )

3.7m. Eﬁg_fiﬁgh.ggg. Partial géome;ric realization takes the bisimplicial set
z Maptvksn,vksnnlxl)
to the simplicial‘tppological space
| s1 & Map(vEs? VESAIRI)
and the canonical map from the latter to
Map(vks"‘,vks”,\shlxl) N MﬁP(VkSn:VkEﬁMSKU
ig (2m+1)~comnected. The induced mép from (the partial geometric realization of)
NCY( RS, £ MapvRe® VESAIXD) ) |
to
N HOKSY , Hap(s s )
is rherefore also {2mtl)-connected, by the realization lemma. This is our fifth map.

Concerning the addendum, the fifth map in that chain is the isomorphism from -

(the geometric realization of)

E 1%l

to

|sx| .

The proof of the theorem and its addemdum are now complete. o
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§4., The stabilization of A(X).

We will need the following elementary properties of the functor A(X). Namely,

.

1t
(1) takes n-equivalences to n-equivalences if n is at least 2 ,

(ii) satisfies a version of homotopy excision, namely for m, n=2 , k< min-2,
it preserves (m,n)-commected k-homotopy cartesian equares, that is, commutative

squares

V—">VY

b

— X

in which the horizontal (resp. vertical) arrows are m—connected (reep. n-connected)
and the map £ibre(V - X) - fibre(W - ¥), or equivalently the map fibre(V - W) -
fibre(X =+ Y), is (k+l)-connected,

These properties are propesitions 2.3 and 2.4 of [14]., Their proofs are actually
easiest with the definition of A(X) used here, ‘

We note here that A(X) can be a functor on the nose, not just up to homotopy.
In our present context we may simply point to the possibility of performing the + con-
struction uniformly {(for example by attaching a single 2-cell and 3-cell to Bit(v3s%) ).
In particular the above maps of homotopy fibres are well defined,

Let 5" denote a suitable simplicial set representing the m-sphere, and let

m A m
sm I D2 —_—

be a decomposition into hemispheres, Then for any X the diagram

il
Dy

s ax, —> DA,

|

- DyaK, —— 5Ky
being (m-1,m~1)=-connaected, is (2m~4)=-homotopy cartesian by the homotopy excision the-
oren, In view of the above therefore the map

fibra( A(Sm_IAK+) - A(DIIZJA}{_") ) ——— fihre( A(DTAX+) I A(S‘m/\x-l-) )
o f fibre{ A(S™AX,) = A(¥) )

is (2m-3)=-connected, Thus we have 2 spectrum
m b——s Fibre( A(STAX,) = 4(x) ) ,
and we define AS(K) to be its telescope, |

A = Lim 0" fibre{ A(S"AX,) + A(%) ) .

The map |X| ~» A(X) (lemma 1.!1) is a nztural transformation if wa write it in
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the form |ING(X)| - A(X), therefore it is compatible with the stabilization process

and induces & map
"5 1%, 1 —> 40
Theorem 4.1. There is a map
Ay —- a5"Ix,
well defined up to weak homotopy, so that the composite map
075" 1%, | — 4500 — 25" IK, |
is weakly homotopic to the identity map.

The proof of the theorem will occupy this gection. The first step is to rewrite

AS(K) in terms of the cyclic bar construction. We abbreviate
hn = N HEE, Hap (Vg VESHAIZD )

c(x) = l_J';mVCZ(X}.
Ny k

Lemma 4.2. The chain of maps of theorem 3.1 induces & homotopy equivalence between
4° 0

and

1im a® fibre( c(smhx+) + C{x) )
4 _
where the maps in the latter direct system are, up to homotopy, given by ﬂm-]_ ap-

plied to the vertieal homotopy Libres of the stabilization diagram

le(s™ ax) 1Y — 1c@Tax )17

|

' +
loiar) 17 —— le(smarn I

The homotopy equivalence itself is well defined up to weak homotopy.

Proof. In order to get theorem 3.1 to apply to all the terms in the stabilization
. . m
diagram, we replace the variables Smnx+, DTAX+, etc., by their suspensions S(8 AX4),

S(D?AX+}, ete. This can be accounted for in the end by passing to loop Bpaces.

In view of the naturality with respect to #, k, and the X variable, theorem
3.1 induces, for every m, a chain of natural tranaformations of stabilization dia-
groms before the + construction, By performing the + construction uniformly (for
example, by attaching a 2-cell and 3-cell to IN H(VSSO)l which is contained in every-
thing in sight) we obtain from this another chain of natural transformations of gtabi-
lization diagrams, and all the diagrams invelved are still strietly commutative. 5o
the requisite maps of homotopy fibres are well defined, and we obtain a chain of
transformations connecting the m—th map of the original direct system to the m—th map

of the new direct system.
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By splicing these, for varying m, we obtain a chain of transformations between
the original direct system and the new one. As the comnectivity of the transformations
increases with m, we cbtain in the limit a chain of weak homotopy equivalences. To
show the latter is well defined up to weak homotopy, it suffices to show that the chain
of maps is well defined up to homotopy if everything in sight is replaced by & term in
its Postnikov tower. But if we replace by the m~th terms in the Postnikov towers then
our original direct system becomes essentially constant (the mape are weak homotopy
equivalencas from number mw+3 on). Consequently, in view of the connectivity of the
transformations, the other direct systems also become essentially constant. So the
ehain of maps between those terms in the Postnikov towers comes from a ehain of maps
at some finite stage, and this is well defined up to homotopy. . o

We nete that the addendum 3.2 provides a description of the map n“s”|x+l 4-AS(X)

in terms of our new definition of AS(K).

Before proceeding we state a lemma which will be needed presently.

Lemms 4.3. Suppose that Y is (m—1)~connected. Then the map
Hap(VRg™, 50 A Hap(@™™, 8Ty s dap ke, M)

given by composition, is (3m-1)~commected., Similarly, in the case %k = !, we obtain

a (3m-1)-connected map if we compose the other way, that is, consider the map
Map('S’Tm;Sn+mAY) A Mﬂ-p(s’i,snm) r— Map(sn*‘m’bn+2m”£)

obtained by stabilizing the second factor to Map(5n+mAY,Sn+2mAY), and composing.

Proof. The first map is isomorphic to the upper horizontal map in the commutative
diagram

Map(s™, gryk Hap (™™ ) s Hap(, &M A ¥
VRSOAg™ A Map(3”+m,snhan)

Rglag™ A Map(s®, 8°AY) ey VReOA(PAT)
;

(50 Ag™ ax

The arrow on the right is (4m~1)-connected, Each of the two arrows on the left and
the diagonal grrow on the bottom is the smash product of a (2m-|)-connected map with
the identity on an (m-1}~connected space, hence (3m—l)-~connected. So we muat have

the asserted commectivity of the first map.

The second map is part of the commutative diagram
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Hap (FT0 SHwy A Map(d, 85T ——— Map (™™, & ay)
Map(81E, &) A Map(s®,s™)

Map(s©, 1) A Map(s®,d™ ———s Map(s®,5"AT)
and the same_kind-of connectivity considerations apply as before. ‘ . o

Returning to the proof of the theorem, we will proceed in two steps. In the
first step (4.4 below) we represent, in a stable range, the asserted map by a chain
of two maps of which one is highly connected and has to be inverted, By taking inte
account some more data it will be immediate that the map is a retraction up to homo-

topy in that range., In the second step (4.5 below) we discuss the stabilization pro-

cedure,

(4.4}, The representative in the stable range. The relevant data are displayed on
the following diagram. The diagram shows the part in degree p of a commutative
diagram of simplicial objects. Two of these simplicial objects are given by the
eyclic bar congtruction (Fhe upper and middle terms in the left column), the four

others are trivial simplicial objects.

_ Map(s”,sﬂﬂmhlx»,l)

/ 1

HOKSMP x tap(vea, vis™ i1, 1)

o

Hap(s",5* ™ A Hap(s™*™, 8 2%, 1)

—

HORSYP % ¢ Map(VRs?, &) A Nap(s™ B W58 2%, 1) )

v
Map(§F™, 50 1%, 1)

/

v
Map(s+™, 1%,

maps in the disgram. .
The

Two of the maps require comment, these are the lower vertical

The one on the right is given by composition of mhpa after switch of factors.

one on the left similarly imvolves a switch of gactora, It is the unique map of
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quotient spaces induced by the following sequence of maps,

HOKE™ % oo x HOEEY = MapV*dh, 8™ x Map(d*' ™, vRd 2 1x, 1)

{switch of factors)
v
Map(& D VRS20 2 1y x HERSY x . x HORSY) x Map(vhs™t, P

(smash product with identity maps)

v

Map(E VRS0, 1x 1y x HERST IR, 1) x ... x MapVRg B 1z, 1,8 A 8, 1)

{composition of maps)

L 4
Map (™, 83 1%, 1)

The mep is compatible with the structure maps of the cyelic bar construction. This

fact, indeed, is the reason why we are using the cyclic bar construction.

Remark. The left column of the diagram really describes nothing else but a homotopy
theoretic version of the trace map, at least in the case p = 0. Indeed, let R be

8 commutative ring end P a projective of finite type over R. Then the trace map
HomR(P,P)—j———+ R
is given by the diagram
Hom{P,P) €——— Hom(P,R) @ Hom(R,P) s Hom(R,?) @ Hom(P,R) ~—> Hom(R,k) ~ R

in which the first arrow has to he inverted, and the last arrow is given by composi-
tion of maps. 1In the case of general p, the left columm is a version of the map
trace of the produot matrim

(I8 (P))? x Hom(P,P) ——— R

which is given by the diagram

(Is(P))P % Hom(E,P) —=—— (Ia(P))® x Hom(P,R) @ Hom(R,P) ———s Hom(R,R)

(gl,...,gp, £) < - Cgl,...,gp, flﬂfz) f > fzgl...gpf]
This ends the remark.

Concerning the relevance of the diagram of simpliecial objects deseribed, we will
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eventually have to pass to loop spaces, namely the (2m)-th loop spaces. Thus any
required connectivities must increase faster than 2m. This is indeed the case. The
map on the uppen left is (3m-1)-conneeted: The realization lemma reduces us to show-
ing this in every degree p in which case it ia the content of the first paft of
lemma 4.3. Thus the left column does represent a map, defined in a stable range, from
top to bottom. This map 18 a retraction up to homotopy, tn that vange., This infor-
mation is provided by the rest of the diagram sinece the two vertical maps on the right
are (3m—1)-connected by lemma 4.3 again. 2he coretraction itnveived (the upper hori-
zontal map) is a representative (before the + cdnstruction, in a stable range) of the
map ﬂ”SmlszmAK+| -+ A(Szmhx+). As noted before, this is the content of the sddendum
3.2,

Paseing to geometric realization and performing the + construction to the terms
on the left, we obtain the diagram '

\Map(s* 8" 2 Atk 1) |
/ 1
NSV RS, Hap(s? VRS, 1) 1 |

[\

Map(s &™) A Hap (T, S 1%, 1) )

NSV HOKS™Y, MapWRs?, 87Ty A Map(st ™, VRS x, D 1Y

2 .
Wap (8™, 85T 1%, 1) |

IMap(s*t®, 838 1%, 1) 1F

The + construction is possible if Kk dis at least 5 and it can be done uniformly
with regard to the upper and middle space on the the left by attaching a pair of cells
to the common subspace !N(H(VSSU))I. It preserves the conmnectivity of the upper

map on the left (by the gluing lemma). The + construction on the bottom term on the
left refers to the induced attaching of the pair of cells (a pushout). As the origi-
nal term had abelian fundamental group, the + construction does not change the homo-

topy type. Its sole purpose is to keep the whele diagram strictly commutative.

Everything we have done so far is natural with respect to # and k, so we may
pass to the direct limit in those variables {recall that stabilizing with respect to

% involves wedge with an identity map on the H(..} part, but wedge with a trivial
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map on the HMap(..) part).

(4.5). The stabilization procedure. This must be adjusted to the needs of the pre-
ceding subsection. Namely the two factors & in SmASmh|X+| play rather different

roles, so we must stabilize in both of these factors. To do this we just alternate

in stabilizing either the first or the second.

In order to stabilize in the firast Sm, say, we must write down (or better,
contemplate) a large diagram involving four versions of the diagram of (4.4), ome for
each of the terms in

m—1 DT

im

Nothing new appeare in this diagram except for fancy notations of contractible spaces

o

2

.

as for example the factor in
HOMEP % ( Map(V*s™, 8ADT) A Map (A, VA0S X, 1) )
These fancy termg simply ensure that the whole diagram is strictly commutative.

Taking homotopy fibres we thus do obtain from the diagram a well defined map
reprasanting

2m-]

fibre( 168 ax )Y + A(x) ) ~—— 0 Fibre( IC(SzmAK+)I+ =+ A(%) )

(where C(..) is the short hand notation used before for the eyclic bar construction),
namely '

fibre( 1C(S™ IASAX) 1Y+ 1CDTASAX ) [ ) s
fibre( 10(DZAs™AR) 1T » Io(s"As™Ax )17 ) ,

together with a chain of two transformations (one of these in the wrong direction but
highly connected) to a map representing the hemotopy equivalence

2m-~1

875182 AR | —— 0 8757 185K, |

We apply ﬂzm-l to all this. Then we may splice, for varying. m, to obtain
& chain of transformaticns of divect systems, Passing to the limit we obtain what
we are after; the appropriate coneluding remarks here are similaz to the proof of

lemmz 4,2, This completes the argument. -



383

§5. The splitting of A(X),

Let nmSme+[ -+ A{X) be the map given by the Barratt—Priddy-Quillen-Segal theo-—
rem (section 1), and let A(X) - AS(K) be the stabilization map (it will be defined

in lemma 5.2 helow).
Theorem 5.1, There is a map AS(X) -+ nmSm|X+] so that the diagram

a"s" 1%, |

| T

A — A5 — 25",
is weakly homotopy commutative.

Proof, This results from theorem 4.l in 'view of the following lemma. ‘ o

Lemmn 5.2, There is a natural stabilization map A(X) »_AS(X). Its composition
with nm3”|x+| -+ A{X) is weakly homotopic to the map used in theorem 4.1.

Proof. Letting E(X) denote the factor in the natural splitting (sectiom 1)
~d
ARy o A(X) % A(%)

we define a direct system
AX) — 0 Z(SIAK.l.) — 0t "3(52.\1{.“) —_—

in which the first map ie provided by lemma 1.4, and the other maps are given by the
maps of vertical homotopy fibres in the appropriate stabilization diagrams (as de-
scribed in the beginning of section 4). The map from the initial term of the system

to its telescope gives the required map A(X) - AS(X).

To make the asserted comparison we consider the map of direct systems

a°57 1%, ——s 0 275718 A%, | —— 0% 2757 15%x, | —

| |

AR ————s g A(8lA%,) ——— 0? L(s2A%y) ——»

where the vertical maps are the natural cnmes (the weak homotopy commutativity of the
first square is due to lemma !.4). The maps in the upper direct system are homotepy
equivalences: the first map by lemma 1.4, and the other maps by the excision property
of stable homotopy. The maps in the direct system defining 4 {X) are eventually
highly connected (ef. the beginning of gection 4), So it will suffice te compaxre the
vertical maps in the diagram with the map used in theorem 4.1, and to show these

coineide in a stable range.
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The diagram of inclusions (section 1)
HY (6) — HO(6)
Heo (G)

with G = 1G(5"AX;)}{, induces the left part of the following diagram.

187AX, | = 7871 (8"AX, ) 4| ~—s 8757 8™ A%y |

A(S™AX,) ————5 A (5AX,)

The vertical map on the right is, up to de—-looping, the same as the m-~th vertical map
in the diagram above, and the composite map on the bottom is an approximation to the
map used in theorem 4.1. The composite map on top is the Hurewicz map from homotopy
to stable homotopy (lemma 1.1), hence it is {Pm-1)-connected., So the two maps in

question do agree in a stable range, and the proof is complete. =

Remagrk 5.3. The maps in theorem 5.1 are maps of infinite loop spaeces, and the disgram

is weakly homotopy commutative as a diagram of infinite loop spaces.

Here is an indication of proof for the first assertien, the second involves simi-
lay considerations. Two of the maps are clearly infinite loop maps, namely the map
ﬂmSw|K+i =+ A(X} as it is the map of underlying spaces of a map of PHSéaces, and the
map AS(X) ~ ﬂmSle+| of theorem 4.1 as it was defined as the telescope of & map of
spectra.

The remazining map A(X) =+ AS(K) is also a map of infinite loop spdeces provided
that we use a possibly different infinite loop structure on AS(X). "For the stabili-

zation diagram

A(s‘“"'z\xg — 4 (DTAL_)

|

| ADAR,) —— A(S"AK,)

is in fact the disgram of underlying spaces of a diagram of T'-apaces. Therefore there
is a I-space of which AS(X) is the underlying space, and the map

Q fibre( 4(s'AX,) » A ) ~— 25
is a map of underlying spaces of I—spaces. The map
A(X) — @ Eibre{ A(S'AX,) =+ 4(%) )

of lemma 1.4, too, is & map of underlying spaces of I'-spaces. Hence so is the cémpo~
site map ACX) + 45¢X).

It remains to be seen that the twe infinite loop structures on AS(X) are egui-
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valent. In view of their definitions these infinite loop structures are compatible
in the following sense, They are definable in terms of spectra (obtainzble from the
T-structure, resp. from stabilization in the X~variable) and the two spectra can be
combined into a double spectrum. Further both spectra are connective. But this im-
plies they are equivalent (the argument is probably well known; cf. [13, section 16}

for a detailed account in a particular case).

Remark S.4. The maps in theorem 5.1 are compatible with pairings.

Here is an indication of why this is so. In the case of 29 IX,| -+ A(X) it is

immediate from the definition of the pairings.
To treat the case of the map A(X) = AS(K) one shows that the stabilization map
Eibre( A(SPAX,) ~» A(X) ) ——> 0 Eibre( 4(s™ 1A%y = 40 )

is the same, up to homotepy, as the adjoint of the composite map (ef. gection 1)

ot 1

S A A(SAK,) —— B(Y) A A(sPAx,) —— AS™ axy)

where &' +'5(SI) is the Hurewicz map (to prove this one has to use that A{X) is
definable in a more general context than we are using here, i.e., for X which are
net necegsarily pointed nor comected = cf. a similar point in the proof of lemma 1.4).
Thus stabilization itself is definable in terms of the pairing, and so the pairing

i~

on 4 induces one on 45 and the required compatibility holds.

To treat the case of the map AS(X) - ﬂmSm|X+| one redefines AS(X) in terms
of the cyclic bar construction (section 4). One notes that the smash product also
induces a pairing in texms of the eyeclic bar conmstruction, and that this pairing is
(obviously) compatible with the one on stable homotopy via the two maps of theorem 4.1
of which the map in question is one. To finish onme has to chase the pairing through
the chain of maps of theorem 3.1 in order to compare with the pairing formerly used.

This ends the indication.
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§6. Appendix: The stabilization of X-theory.

The stabilization of 4(X) to AS(K) may be mimicked with X-theory provided
that one works with a suitably extended notion of K-theory in the framewerk of sim~
plicial rings [14, section 1]. The extended notion of K-theory is needed even in

the treatment of the stabilized K-theory of an ordinary ring.

We need some notation. If A is an abelian group and X a set we denote A[X]
the direct sum of A with itself indexed by the elements of X. Similarly A[X] is
defined if A is a simplicial abelian group and X a simplicial set, and is a bi-
gimplicial abelian group (which we may diagonalize if we wish to a simpliciszl abelian
group}. If R is a (simplicial) ring and € a (simpliecial) group then R[G] may
be aguipped with a multiplication in the usual way so that it is a 'group ring'.

For pointed X we let ‘K[x] = A[%]/Af%*]. If A thas an R-module structure then so
have A[X) and EIX], respectively,

The set of comnnected components #.R is a ring in a natural way (the exotic
case 1 =0 in 7R way be ignored, for in this case R is contractible (multiply
by a path from | to 0 ) and such an R ig without interest to us); we let
K,(myR) denote its projective class group, as usual.

If A is a simplicial abelian group we denote M, (A) the simplicial abelian
group of Kxk matrices in A, If R 1is a simplicial ring then sc is Mk(R) and we
denote éﬁk(R) the multiplicative simplicizl monoid of hemotopy units in Mk(RJ (the
matrices in the connected components indexed by the elements of GLR(WDR) c:Mk(woR) )
The K-theory of the simplicial ring R 1is, by definition,

K® = Ky(mgR) » lim Bék, ()"

(in [14] the factor Kj(myR) was replaced by Z in order to simplify the comparison
with A(X) ).

The funetor R+ K(R) is a homotopy funetor in a suitable sense (cf. the proper-
ties of A(X) stated in the beginning of section 4). In particular if R - R' is
a weak homotopy equivalence then s¢ iz X(R) = K(R'). It extends the X-theory of
Quillen in the sense that it reduces to the latter in the case of, a ping considered

as & simplieial ring in a teivial way.

The stabilized K-theory of R is defined to be

K5®) = iim 0° £ibre( X(RIG(S™]) = X(R) )
m
where S™ denotes a simplicial set representing the m-sphere and 6(..) s Kan's
loop group functor; the maps in the direct system are defined as in section 4. It is
natural, in fact, to consider a slight generalization, the functor of two variables
R and X (a simplicisal set)
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E3,R) = Lim 6" fibre( KRIG(E"AX)]) =+ K(R). )
m .

In detail, the terms in the direct system are defined for m > 0, and the maps are
(loops of) the maps of vertical homotopy fibres of K(R[G( 7 )]) applied to the sta-
bilization diasgram

m—1

S AXy —> DTAK,

L]

DAY, —> STAX,,

This KS(K,R) ie a homology theory in the X wvariable [14], the coeffictients of the
homology theory are given by KS(*,R) A KS(R).

Here are some remarks about the numerical significance of stabilized K-theory.
Let R be a ring {not simplicial ring), let K?(R) - wiKS(R). Thera is a gpectral

sequence (with trivial action in the 12 term)
S
HPCGL{R) ,Eq(R)) - Hp+q(GB(R) HERYY

with abutment the homology of GL{R) acting by conjugation on M(R), the essentially
finite matrices in R, This is proved by the method of [14, lemma 1.5]: %o deduce
the existence of the spectral sequence in a stable range, one compares the spegtral
saquence for stable homotopy of the map Bﬁ(R[G(Sm)]) = BGL(R) with that of the
corresponding map after the + construction. After a suitable dimension shift the
latter spectral sequence has the desired E2 term, while the former one collapses and

gives the desired abutment (everything in a stable range).
Stabilized X-theory may be 'computed' in the following way. Let again R .be a
ring (not simplicial ring). Let F(R) be the homotopy fibre ‘

F(R) = f£ibre( BGL(R) - BGLR)T ) .

Then F(R} is an acyclic space with m F(R) ~ St(R) (the Steinberg group), and
niF(R) HK]._H(R) if 1i>1. : |
Penoting the homotopy fibre of the map B@(R[G(Sm)]) -+ BGB(R}+ by U,  ome
ghows that after the + construction one obtains a homotopy equivalenca
0t « fibre( 3EERIGEMDT - BE®T ) .
On the other hand U may be identified to the homotopy pullback of the diagram
F(R) ——> BGL(R) <—— BOL (REG(S™]) .
As U - U' is an acyclic map, the spectral sequence of a generalized homology

theory A, £or the map U =+ F(R) therefore gives a gpectral sequence

H (PR, hygibre( BEERIGEMD) » BEEN = By pqfibrel BEE@IGEMD ~ 3E® ™) .
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The fibre involved in the E2 term may be identified, in a stable range, with the
Eilenberg-Mac Lane space EMdE[Sm-I]}. Teking %, to be the stable homotopy groups
one obtains hence that, in a stable range, the stable groups can be identified to the

actual ones and the spectral sequence collapses. Whence the isomorphism
L(R) ~ B (FR), H(R))

where, as one checks, the homology involves the action of m,F(R) on M(R) pulled

back from the conjugation action of GL(R). In particular,

KS(R) ~ H (S5(R), M(R)) ~ R/[R,RI, KR 1 (S5R), M) .

It will be indicated now how the results on A{X) described in the earliex
sectiong can be adapted to X-theory.

The heart of the matter is to recast the definition of stabilized XK-theory in
terms of the eyelie bar construetion, Let Y be an m-connected simplieial set,
m=0, and let S8Y bLe its suspemsion. As in section 3 one constructs a matural
chain of maps (five of them, just as in theorem 3.1) between Nébk(R[G(SY)]) and
ey ézk(RJ, Mka[SYi) } satisfying that each of the maps in the chain is (2m+1)-

connected, One deduces from this a homotopy equivalence

KPR e 1im 0™ £ibre( NV Gy, (B0 4, RIS“A%,1) 31 - NGB, (R)I* )
kym

Let us insert here as a parenthesis how to go from this homotopy equivalence to
an interasting new definition of stabilized K~theory which we do not have occasion to.
use, though. If R is a ring and A an R-bimodule (resp. simplicial ring and sim-
plicial bimodule) then R @ A can be considered as a ring (zresp. simpliciél ring) by
giving A trivial multipliecation. WNow suppose that A is connected. Then there is
a natural isomorphism

éﬁkmm) - ébkca) X My (4)

where the term on the right is the semi-direct product in the semse of (2.2)., Hence
lemma 3.1 gives a homctopy equivalence

diag N7 ( @B, (®), Wh,() } — NEL, (Rep) .
On the other hand, NMk(A) HMk(NA) rd Mk(ZIPSIJ), and so we can conclude
BOGR) > Lim o £ibre( XRRIS™TAx,]) » K(R) ) .
3 .
Notice in particular that ﬁtsm-l] is just an Eilenberg~Mac Lane'group, and
EB® =~ 1w fibre( KReRIS™]) 4 2®) )

'
This ends the parenthesis.
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Let A(X,R) denote the (unreduced) homology of X with coefficients im R, it
is represented by [R[X]|. There is a natural map A(X,R) - KS(X,R). It arises from
the homotopy equivalence A(X,R} =~ I1im TR fE[smAx+]| together with the identifica-
tion of ‘E[SmAX+] with the part in degree 0 of Ncy( éhl(R), MICE[SmAX+])‘).

Progositidn 6.1, If R is commutative then A{X,R) = KS(X,R) is a coretractien,
up to weak homotopy.

This is the analogue of theorem 4.1, Concerning the proof, if A is an R-mo~
dule (resp. simplicial R-module) considered as a bimodule in a trivial way (both the
left and the right structure are given by the original module structure) then the |

trace map

S P

GLR(R) ® Mk(A} —_— A

(8)r--Bgr 8) > tr{g,..5,8)
is insensitive to cyclic rearrangement of the factorxs. Therefore it is compatible
with the face maps of the cyclic bar construction and defines a map
A .

N GL (R), My Ay ) ——> A

which is a retraction with section as described. To complete tha proof one has to

check naturality with regard to stabilization, as in section 4.

One constructs a natural transformation EERIGE]1) -+ KS{K.R) by producing
artificially & map E(R[G(X)]) = 0 fibre( K(RIG(SIAR)]) » K(R) ) as in lemma 1.4,

using pairings.

The inclusion of the 'monomial matricas', ZRIG(X) - éﬁk(R[G(X)]), induces a map,
as usuval, ﬂ"Sm|x+I -+ K(R[G(X)]).

Let HNS“IX+I -+ B(X,R) be the Hurewicz map from stable homotopy to R-homology.
Proposition 6.2, The diagram of the above maps commutes up to weak homotopy,

078 1K, | ————> R(X,R)

l

KRIGR) ] — K5 (x,B) .

Putting this together with the preceding result we obtain for conmutative R
&n analogue of the splitting theorem 5.1, a diagram ‘
Q87 1%y} —— R(X,R)
l | l ~\\\$i\‘s

KRIG(R)]) —— K5 (X,R) —— h(X,R)
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that commutes up to weak homotopy and whose maps have the naturality properties in-
dicated in section 5: they are infinite loop maps and compatible with the respective

pairings.

Proposition 6.2 is the analogue of lemma 5.2, and the preof of the latter may be
adapted. One can also deduce it from lemma 5.2 because of the following naturality

property: there is a natural transformation
A(X) —— ERIGD]) ,

it induces a corresponding transformation of the stabilized theories, and

a75"1%,

A T’-) > 45 1(}:) ; n"’s‘]l X, |

KQRIGK)]) ——s KO (X,R) —— h(X,R)
commutes up to (weak) hemotopy, and finally in the case of commutative R so does

A5 — 255 I%, |

K3 (4,8 —— A(L,R) .

Using the notion of 'Hochschild homology' one can give a variant of the map
KS(X,R)‘* R(X,R) which is more generally defined. We no longer assume that R is
commutative, but we do assume that R is given as an algebra (resp. simplicial alge-
bra) over some commutative ring (resp. simplieial ring) k, and that it is flat

over k (resp. degreewise flat).

Let A be a (simplieisl) R-bimeodule, over k. Fd;lowing K. Dennis, one defines
the Hoohsohild homology

H(R/k,A)

as the additive version of the cyclic bar construction, the simplicial object

[p]'_—"R@k [N E'kR@kA

——— p——b
(degreewise temsor product) with face and degeneracy maps as in the cyclic bar con-
struction. We will need the fact, due to Demnis [talk at Evanston conference, Janu-
ary 1976, unpublished], that the Hochschild homology is Morita invariant in the sense
of the following lemma.

Recall that two rings are called Morita equivalent if their module catepories
are equivalent categoriess. This relation is equivalent [2, chapter II] to the follow—

ing property which in our present more general situation we will take as the defini-
tionn
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We say that R is Morita equivalent over k with a (simplicial) k~algebra R'

if there exist (eimplicial) bimodules E.., R‘FR over k which are {(degreewise)

projective both from the left and the right, so that

i3

E o, ¥F = R, Fe,E & R

as (simplicial) R-bimodules, resp. R'-bimodules.

Lemma (K. Dennis). In this situation there is a natural homotopy equivalence
H(R/k, B) = H{R'[k, FoAv;E) .

Proof., Letting B = Fo A we may reformuléte the assertion as a homotopy equivalence
H(R/k, &g B) = H(R'fk, BegE) .

To prove this it suffices to consider the case of rings rather than simplicial rings
and establish the hometopy equivalence by a chain of two natural maps. The general

case then follows in view of the realization lemma. So we assume R, R' are rings,

not simplicial rings.

The common source of the two maps to be constructed will be the following bi-

simplicial object. The object in bidegree (p,q) is given by

Resiuin BR

a -] ) R
E B ' | By .q
[ 2]

Rt @ LI I ] ®R'
——q— "

(tensor products over X ), and the way this has been written ds a cirele is to
guggest in which way the various face mape are given by multiplication at the appro-
priate tensor product sigus. ' -
Let H(E,R'/k,B} be the simplicial object.
[q]4————sE®R'® .., ®R' ® B
' — ] —

(a 'two-sided bar construction'). It maps to the trivial simpliecial object EsR,B
by the map which in degree q multiplies together all the factors. This map is a
homotopy equivalence. Indeed, using the right projectivity of E over R' we can
reduce the assertion to the case whexre E = R'., But this case is cltear (the simpli-

cial object is a ‘cone').
The bisimplicial object (#) may be identified to one

H(R/k, H(E,R'"/Kk,B) )
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(a combination of the cyclic bar construction and the two~sided bar construction)
and the map described just before, induces a moep from this bisimplicial object to
the simplicial object H(R/k, E@R,B). The latter map is a homotopy equivalence de-
greewise in the p-direction. Indeed this follows from the homotopy equivalence
established just before in view of the flatness of R over k. In view of the rea-
lization lemma it therefore follows that (H) maps by homotopy equivalence to
B(R/k, Eep:B).

By identifying (H) to a bisimplieial object H(R'/k, ¥(B,R/k,E) ) one simi~

larly sees that (&) maps by hometopy equivalence to HF(R'/k, BmRE). This completes
the proof of the lemma. a

The lemma applies to the case where R' = Mk(R}, the kxk matrices in R. The
required {simplicial) bimodules are given in this case by the 'row vectors' and 'co-
lumn vectors', raspectively. Hence we have & homotopy equivalence

H{B/lkk, A) H(Mk(R)/k, FopA® E) o H(Mk(R)/k, Mk(A)).

This homoteopy equivalence iz compatible with stabilization (stabilization is given
on Mk<R)’ resp. Mh(A), by adding 1, resp. 0, in the lower right corner), one
seas this by comparing stabilization with the maps involved in the lemma,

The map from N“Y(d}.k(m, M, () to HQ,(R)/k, M (A)) given by

R % 1o étkm) X My (8) ———> My (B) @ 1.0 @ My (R) ® My (A)
< p > € p >

therefore induces a map
Ks(x,a) —— H(R/k, RIX]) .

This map is the promised generalization of the map KS(X,RJ <+ A{%,R) constructed
earlier. For, as one may check, it reduces to the latter in the case where R is

commutative and k = R.

Remark, Maps like the omes here, from (unstabilized) X-theory to group homolegy,
resp. Hochschild homology, have been constructed earlier by K. Dennis [talk at
Evanston conference, January 1976, unpublished]. Dennis! constructions are scmewhat
different from the ones here. It remains to be seen if the maps are equivalent.
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Concluding vemank. It has been stressed that the material on K-theory described in

this appendix is an analogue of the splitting theorem for A(X). However the connec-
tion is more than just an analogy, both of these results may be considered as specizal
cases of one and the same general result. To formulate this result one needs a com-

mon framework for A{X) and K-theory.

One such common framework is a X-theory of 'rings up to homotopy'. This was
indicated in [14] as a means of how to thipk about A(X) in terms of what one is
accustomed to from K-theory. In fact, it is a useful way to think about - A(X), oc-
casionally: the splitting theorem for A(X) was found that way (and for a while it
even required the X~theory of rings up to homotopy in its procf = the only result
about A(X) so far which ever did that). In the long run the K-theory of rings up
to homotopy may hopefully turn out to be ugeful as a computational tool.

The X¥~theory of rings up to homotopy does involve serious technical problems.
The prime one is to give sense to the classifying space of the homotopy monoid of
homotopy invertible matrices. May [8] has made a start in dealing with these prob-
lems, in particular he has given a definition and verified a few of the elementary
properties, However as May states, there is difficulty in showing his definition isg
the correct one in the sense that it produces A(X) £from the appropriate ring up to
homotopy. (There is an alternative framework in which to handle those technical
problems, a motion of ring up to homotopy elaborating on one proposed by Segal (i1,

secticn 5]. Here that particular difficulty does not arise).

In this framework of rings up to homotopy and their X~theory, the general result
referred to is simply propositions 6.1 and 6.2, with the abuse of allowing R to be
a 'ring up to homotopy', resp. 'commutative ring up to homotopy’. Note'how this ex~
plains the difference of why we get a splitting theorem in the case of A(X) but not
in the case of X-theory. We get a splitting theorem omly if the map ﬂmSmEX+I -+ h(X,R)
is a homotopy equivalence. For this to hold, 'R-homelogy' must be stable homotopy,
so R must be 8 and we must be dealing with A(X).
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