WALTHER KINDT

THE INTRODUCTION OF TRUTH PREDICATES
INTO
FIRST-ORDER LANGUAGES*

0. This paper is a shortened and slightly changed version of my 1976 paper.
In the present paper | will only deal with the question in which way it might
be possible to extend first-order languages to languages with truth
predicates.! The problems of the Liar paradox and of the introduction of
truth predicates have often been treated and different solutions have been
proposed. But such proposals are not very useful unless they are developed
within a precise theory of language and, what is more important, within a
theory of language extensions. It is astonishing that there were for a long
time no serious systematic attempts to answer the questions: what type of
language extension should the introduction of a truth predicate be regarded
as, and under which conditions can such a predicate be introduced in a
unique way.? Only if one tries to answer these questions is it possible to find
a complete and adequate solution to the problems under discussion. But if
one does try to do it then in my opinion it is not too difficult to give what
looks like an intuitively acceptable solution.?

1. First-order languages (without equality symbol and without function
symbols) are given relative to a set of logical symbols (we will take 1, v, V
as primitive symbols), a countable set V of variables (denoted by v, v', .. .)
and a class of constants among which individual constants (denoted by
a,a’,...) must be distinguished from relation constants, also called
predicates (denoted by P, P',...). If K is a set of constants, then 1 will
designate by T(K) the set of K-terms, i.e., the set which contains the
indtvidual constants of K and the variables. Formulas (denoted by
@, ¥, . ..)are constructed in the usual manner. A formula ¢ is called a K-
formula if the only constants which occur in ¢ belong to K. The set of K-
formulas is denoted by F(K). A formula ¢ is called a statement if no variable
occurs free in ¢; the set of K-statements is denoted by A(K). A K-structure is
an ordered pair S= (X, I), where X # 0 and [ is a mapping which interprets
each constant of K in the usual manner. Elements of XV are called
assignment {functions and are denoted by o, o', . . . . I shall write S E; o for: o
is valid under a in § (see e.g., Bell and Slomson, 1974); specifically S F ¢
means that ¢ is a statement and that ¢ is valid in S (ie., S Eo for any a). A
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first-order language L (of classical type) consists of a set K(L) of constants
and a set of K(L)-structures. These structures are also called L-structures
and instead of A(K(L)), F(K(L)) and T(K(L)) I shall write A(L), F(L) and
T(L) respectively.

1.1. DEFINITION: Let L and L' be first-order languages. L' is an
extension of L iff

(1) K(L) < K(L),

(2) there is a bijective mapping f from the set of L-structures to the
set of L'-structures such that f(S)] K(L)=S for any L-
structure S.*

1.2. DEFINITION: Let L’ be a first-order language, and let W be a
monadic predicate of K(L').

W is a truth predicate in L' iff for every L'-structure §'={X"’, I'> and for
every ¢ € A(L):

(A,) if @ e I'(W) then S’k g;
- (4y) if 'k ¢ and @ € X' then ¢ € I'(W).

Icall(A4,)the correctness condition and (A ,) the completeness condition for
W with respect to S'. If W satisfies (4,) but not necessarily (A,) for each §,
W is called a partial truth predicate in L.

In a wider sense it follows from Tarski (1935) that it is impossible in
general to extend a first-order language L to a first-order language with
a truth predicate W ¢ K(L). For instance, if there is any L-structure
S=<X,I)> and any individual constant g € K(L) such that I{a)="Wa
(— Wa corresponds to the Liar sentence), then such an extension cannot be
defined. Conversely, it is clear that such an extension exists if, for example,
the only statements which lic in the universe X of any L-structure
S=<{X, I> belong to A(L). It is a remarkable fact that in the latter case it is
not always exactly one extension that is allowed by 1.2. For instance, if
every L-structure § = { X, I> has the property that Wa is the only statement
which belongs to X and that I(a) = Wa, then, with respect to each structure
of the extended language, it is possible both to regard Wa as true and to
regard Wa as not true.

Apart from the problem of whether L can be extended to a first-order.
language with a truth predicate or only with a partial one, it is an important
question whether there is a natural way of defining such an extension.

e S R A
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Before dealing with this question I will consider an example. Let S=<{X, I')
be a L-structure, ¢ € A(L), S F ¢ and a € K(L). In order to extend S to a
K(L)w {W}-structure §'={X’, I') one has to specify how W is interpreted
by I'. In the case of I(a) = ¢ it seems to be quite natural to set Wa e I'( W). On
the other hand, in the case of I(a)= Wa it is not yet clear whether one should
assume Wael'(W or not. The difference between the two cases
demonstrates the crucial point concerning an intuitively adequate
interpretation of W. In the first case, the decision on Wa e I'(W) can be
reduced to S F ¢ with (4,). In the second case, on the other hand, the
decision on Wa e I'(W) is not reducible. Indeed, the attempt to reduce this
decision leads back to the initial condition Wa e I'(W). According to this it
seems to be obvious that an interpretation of W by I' is adequate only if for
every ¢ which belongs to I'(W) the decision for ¢ € I'(W) is reducible in
some way or other to validity properties of S. For if one wishes to have W as
a truth predicate it is not admissible to regard arbitrary statements as true
in §’, but only such statements for which this can be justified by recourse to
certain validity properties of S.

With the notion of reducibility it will be possible to characterize certain
extensions of L as natural. But first of all it is necessary to give this notion a
precise definition.

In the following let L be a first-order language, and let W be a monadic
predicate such that W¢ K(L). Let K'=K(L)u {W} and suppose that
S=(X, I') is any L-structure.

1.3. DEFINITION: The two-place relation R(S) is defined by: For every
p,yeF(K),aeX" teT(L),veVand xe X:

(1) if 9 € A(K’) and (I U a)(t)=g then
(Wi, o) R(S) {{p, 2>} and (Wi, a) R(S) ({1, ad};
(2) if @ ¢ F(L) then {171 ¢, > R(S) {<o, a};
3) if ¢ vy ¢ F(L) then (o v ¢, a} R(S) {{¢, a)},
(@ v i, @) R(S) {<¥, &)} and
(e v ) @) R(S) (<, ad, <, ad s
(4 if Vug ¢ F(L) then {Vvg, &) R(S) Ko, £}
and {1 Ve, a) R(S) {{e,ald; ye X},
where of is defined by
al(v)=(v') for v'#v and al(v)=y.

R(S) is called the reduction relation with respect to S.
{@, a) R(S) {{@;, a;>;j € J} means that the decision on the validity of ¢
under « can be reduced to all the decisions on the validity of ¢; under «;
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for all j € J. It should be remarked here that R(S) is not the only reduction
relation which might be defined. For instance, instead of 1.3(3) it would
also be reasonable to define (@ viy,ad> R(S) {{@, o), <y, @},
(o v, a) R(S) {<p, o), (g, a0}, o v, ay R(S) ({0, (f,a)]
and (T1{@ v ), 2> R(S) {{1 ¢, a)d, {1y, a)} for ¢ v ¢ ¢ F(L). But in this
case one gets a relation which leads to an interpretation of W that is
weaker thanthe one which is obtained by the proposed definition.One can
show, however, that 1.3 yields the best possible compatibility with the
validity concept of first-order languages.

1.4, DEFINITION: An ordered pair (B, m,) is a tree with the imtial
point m, if:

(1) B is a two-place relation,

(2) for each element m of the field of B (i.c., the union of the range
and the domain of B) there is a finite B-chain ® which leads from
m, to m.

A point m of the tree (B, m,) (i.e., m=m, or m belongs to the field of B) is
called an end point if there is no m’ such that m B m’. {B, m,) is said to be
finite if there does not exist an infinite B-chain.

1.5. DEFINITION: Let M(S) be the set of ordered pairs (¢, a) such that
peF(K')and o e XV.

A tree (B, m,», with B < M(S) x M(S) and m, € M(S), is called a R(S)-tree if
for each element m of the range of B there is an M’ < M(S) such that for
each m’:

mBm' iff me M and m R(S) M.

1.6. DEFINITION: The set G(S) = M(S) is defined by:
{e, a> € G(S) iff there is a finite R(S)-tree with the initial point (¢, &) such
that S k ¢ for every end point (¥, a') of the tree.

1.7. DEFINITION: Let ¢ be a statement of A(K'). The decision regarding
the truth of ¢ with respect to S is reducible Hff there is an a such that
{@,a> e G(S). ¢ is called grounded with respect to S if the decision
regarding the truth of ¢, or the truth of 1 ¢ with respect to S, is reducible.®

It is now clear that the adequateness condition proposed above can be
formulated as follows: an adequate extension S’ = (X, I’> of § must satisfy
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the condition that for each ¢ € I'( W) the decision regarding the truth of ¢
with respect to S is reducible. Therefore the optimal extension which can be
defined must also fulfill the condition that each ¢ € X for which the decision
regarding the truth of ¢ with respect to § is reducible belongs to I'(W).

1.8. THEOREM: Let L be a first-order language, and let W be a monadic
predicate, with W¢ K(L). Let L' be defined by:

K(L)=K(L) U {W};

S'=(X", I'> is a L'-structure iff §' | K(L) is an L-structure and
I'(W)={pe X", {p,a) e G(S) for some a}. Then W is a partial truth
predicate in L’ and furthermore the following conditions hold:

(1) For every L'-structure §’=<{X’, I'> and for every statement ¢
which is grounded with respect to S’ [ K(L) the conditions (4,)
and (4,) in 1.2 are fulfilled.

(2) Let L” be an extension of L such that K(L")= K(L')and that(4,)
and (A4,)are satisfied for every L”-structure ' = (X", I and for
every statement ¢ which is grounded with respect to " { K(L).
Then for all L'-structures §'= (X', I'> and for all L"-structures
S'=<(X", I"5, f § | K(L)=8" | K(L) then I'( W) < I"(W).

This theorem says in particular that L’ is in a sense the weakest extension of
L such that (1) is satisfied. A proof of 1.8 is sketched out in my 1976.

The definition of G(S) which is given by 1.6 starts from the intuitive idea
that a statement should be regarded as true with respect to the extension of
S if this decision can be reduced to validity properties of S. Besides this
characterisation of the interpretation of W, it is plausible that for the G(S)
which determines the interpretation of W there must exist a recursive
definition which is based on the repeated application of (4,). In fact, it is
easy. to prove the following result.

1.9. THEOREM: G(S) is equal to the set G'(S) defined, under the
assumptions of definition 1.3, by:

if Sk ¥ then (¢, o) € G'(S);

if (<@, a;>;jeJ}=G(S); and

(@, 2> R(S) {<@;, a;>; je J} then (g, a) € G'(S).

2. In the preceding section the question has been discussed of whether
there is a natural way of defining an extension L’ with a truth predicate or at
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least with a partial truth predicate W ¢ K(L)for each first-order language L.
I have argued that such an extension L' is adequate only if L’ satisfies the
condition:

(O) For every L'-structure §'={X',I'> and for every statement
¢ € I'(W) the decision regarding the truth of ¢ with respect to
S’ I K(L) is reducible.

However, in my opinion this condition does not suffice for characterizing L'
as adequate. It seems to be necessary to postulate that instead of (C) L'
fulfills the following condition.

(C) For every L'-structure $'={X’, I’y and for every ordered pair
(9,2, if §'F ¢ then (@, a) € G(S' [ K(L)).

(C’) is a more general condition than (C) (it is easy to show that (C') and (4,)
imply (C)). What (C') postulates is that — intuitively speaking — each
validity property of a given structure of the extended language L' must be
Justified by recourse to validity properties of the underlying structure of the
restricted language L. The requirement to give such a justification is in my
opinion necessary because the introduction of a truth predicate should not
have the effect that in any structure of the extended language some
statements become valid by accident and the validity is not based on
properties of the underlying structure. If one accepts this argument one has
to ask under which conditions an extension L’ of L which satisfies {C’) can
be defined.

It is clear that it is not in general possible to define a first-order extension
L’ which satisfies (C'). If there are, for instance, an L-structure S =<X, 1) and
an individual constant a e K(L) such that I(a)=Wa then Wa is not
grounded with respect to S. On the other hand either ' £ Waor §’' £ 1/ Wa
is fulfilled for any suitable extension S’ of §. )

I think that the only conclusion which can be drawn from these facts is
that first-order languages of classical type don’t give an appropriate frame
for a theory of languages with truth predicates. For in an adequate
extension L’ of L it must be admissible, if necessary, that for some L'-
structures §'=(X,I’> and for some statements ¢ neither S’ F ¢ nor
S’ E 71 . More exactly, it follows from (C’) that §' F ¢ or S’ F —1¢ can be
fulfilled only if ¢ is grounded with respect to ' | K(L). Therefore, in the case
of «(v)=¢, 5" E Wvor S’ E 1 Wumust be satisfied only if ¢ is grounded with
respect to S’ [ K(L). This means, in other words, that it seems to be
inadequate to postulate generally that a truth predicate W is defined for
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every statement of the extended language. Instead of this one should only
demand that W is defined for every grounded statement. But if one wants to
satisfy the latter postulate one must leave the frame of first-order languages
of classical type and proceed to consider first-order languages with partially
defined predicates (called PDP-languages in the following).

First I shall generalize the hitherto used notions of structure and validity
for the case of PDP-languages.

2.1. DEFINITION: Let K be a set of constants. $§=(X,I) is a K-
structure iff

(1) X #0,

(2) I is a function with range K,

(3) I assigns to each individual constant of K an element of X,
4) I assigns to each n-ary predicate of K an n-place partial relation

on X, i.e,, an ordered pair {(Z,, Z,) suchthat Z, < X" fori <2
and Z,n Z, =07

2.2. DEFINITION: Let K be a set of constants, and let S= (X, I be a K-
structure. For any n-ary Pe K, fort,,,...,t,_,€ T(K),a € XV, @, ¥ € F(K),
ve Vand for x e X we set:

(1) if (I U afte),...,(I v at,-,)>e(I(P), then S F Pty ... 6,y
if {(Fwaj(te), ..., v, ) e{(P), then
SE Py ...ty

(2) ifoqothenSL:—i—up;

(3) ifSEpor SkythenSEop vy,
ifo—lgoandSE“n,bIhenSI:‘"l((pvlji);
4) if $ F ¢ then SE Vug;

ifSE_ﬁqo for each yeXthenS[:—le(p.

In 2.2 T have chosen Kleene’s strong interpretation of the logical symbols
(see Kleene, 1952, p. 334), the only one which is compatible with 1.3.

2.3. DEFINITION: A PDP-language L consists of a set K(L) of constants
and a set of K-structures in the sense of 2.1.

First-order languages of classical type can be regarded as special PDP-
languages.



366 WALTHER KINDT

2.4. DEFINITION: A PDP-languageis a first-order language of classical
type iff for every L-structure S=<{X,I)> and for every n-ary predicate
P e K(L):

(P v (I(P), =

In the following I shall use, as far as possible, the notations and definitions
which I have introduced in Section | also for PDP-languages.

At first glance the logic of PDP-languages seems to have the
disadvantage that the completeness theorem does not hold any longer with
respect to the classical predicate calculus.® However, it is easy to see that
this theorem holds if one generalize the notion of logical consequence as
follows.

2.5. DEFINITION: Let K be a set of constants, ¢ € A(K) and ® < A(K).
@ is a logical consequence of @ iff § F ¢ forevery K-structure S=<X, I> and
for every o e XV with the property that S is defined for ¢ and « (ie,
S E @v 71¢) and that Sk y for every ¢ e ®.

2.6. THEOREM: Let K be a set of constants, ¢ € A(K) and ® < A(K).
¢ is deducible from @ iff ¢ is a logical consequence of @.

For the proof of the nontrivial ‘only if” part one uses a calculus without cut
rule.

In the following we deal with the problem of introducing truth predicates
into PDP-languages. For this we must first generalize the definition 1.2 and,
in particular, decide under which conditions a statement ¢ should belong to
(I'(W)), for any L'-structure §'= (X", I'>. I will choose the generalisation
which best preserves the properties of truth predicates in first-order
languages of classical type.

2.7. DEFINITION: Let L be a PDP-language, and let W be a monadic
predicate such that W e K(L).

W is a truth predicate in L' iff for every L'-structure §'= (X', I'> and for
every @ € A(L):

(B,) if @ e (I'(W)), then S' F " g;
if @ e(I'(W)), then Sk ¢;

(B,) if §F g and ¢ € X' then ¢ (I’ (W))O,
if S'F ¢ and ¢ € X’ then ¢ € (I'(W)),.
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2.8. DEFINITION: Let L, L' and L” be PDP-languages such that
K(L')=K(L") and such that L' and L" are extensions of L.

L’ is a weaker extension of L than L” iff for every L'-structure §'={X", I')
and for every L"-structure §" = (X", I, if §' [ K{(L)=S" | K(L) then:

(1) I'(a)=1I"(a) for each individual constant a € K(L');
(2) (I'(P)); = (I"(P)), for each predicate P € K(L) and for each i < 2.

2.9. THEOREM: Let L be a PDP-language, and let W be a monadic
predicate such that W ¢ K(L).
Then there is exactly one PDP-language L’ such that

(1) L' is an extension of L and K(L)=K(L) u {W},
(2) W is a truth predicate in L/,
(3) L’ fulfills the condition (C’).

The language guaranteed by 2.9 is called the natural extension of L with
respect to the introduction of W as truth predicate. There are some other
characterisations of L' which I will now state.

2.10. THEOREM: Let L and L' be PDP-languages, and let W be a
monadic predicate such that W ¢ K(L). Suppose that L’ is an extension of L,
with K(L)=K(L) v {W}.

Then the following conditions are equivalent:

(1 L' is the natural extension of L with respect to the introduction
of W as truth predicate.
(2) For every L'-structure §'= (X", I"), for every ¢ € F(L') and for

every a e X'Y,
(o, 2> e G(S" | K(L) iff S"F &.

(3) For every L'-structure §'=<{X", I'),
W), ={p e X'; (T, a) e G(S' | K(L)) for some a},
('), ={pe X’; {p,a) e G(S' | K(L)) for some a}.

(4) L’ is the weakest extension of L such that W is a truth predicate
in L.

For proofs of 2.9 and 2.10 see my 1976 paper. Finally I will present a
characterisation of L' which gives a rather simple and plausible
construction for L'.° It should be remarked, however, that this construction
and the determination of the interpretation of W defined thereby are based
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essentially on the generalized concept of structure introduced in 2.1. In
contrast to this, the determination of W defined via G(S) is independent of
this concept.

2.11. THEOREM: Let L be a PDP-language, and let W be a monadic
predicate such that W¢ K(L). Let L’ be the extension of L defined as follows
(for sets @ of formulas let ¢ ={—1¢; ¢ € ®}):

(1) K(L)=K(L) L {W).

(2) To each L-structure S =< X, I') is assigned an L’-structure §’ via
S'=(X, 10 {{W,(Zy, Z,»}>, where Z;=Z, and Z, is
recursively defined by:
ifpe ALY X,DcZ, and (X, I U {{W,{D,®D}> F ¢ then
pelZ,.

Then L' is the natural extension of L with respect to the introduction of W
as truth predicate.

The construction of L given in this theorem follows closely the idea of how
— 1 suppose — one would intuitively say that a language extension with the
aim of introducing a truth predicate W must proceed: For a given structure
S of the underlying language one defines successively the extension and the
anti-extension of W in the extended structure in such a way that they are
closed under (B,).

3. I will conclude this paper with a few general remarks about some of the
consequences of the above discussion. This discussion may have made clear
why the problems of the Liar paradox and of the introduction of truth
predicates could have been controversial for such a long time. In my
opinion, this was because the problems of language extensions had not been
analyzed strictly enough. There are, however, different types of language
extensions. For example, no difficulties attach to the case where a new n-ary
predicate Q is introduced into a PDP-language L relative to the variables
Vg, - - -» U, and to the formula y € F(L) as follows.

Each L-structure S=(X,I) is extended to a K(L)u {Q}-structure
S§'={X, I) such that:

(B) for every a e XV,
S'EQug...0,_, il SEY,
S E=Qug... v, iTSF mlA
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§’ is uniquely determined by this condition and hence the definition of the
extended language L’ can be represented concisely by postulating that (B)
holds for each L'-structure. In the special case where L is of classical type it is
possible to replace (B) by the condition

SFAvy...Av,_,(Qug...v,_,¥).

Therefore the definition of L' can be represented in this case by postulating
that Avg... Av,_, (Quy...v,_,«¥)is valid in L. In other words, Q is
definable in L and the language extension considered here is of the well
known type of extensions by definitions, where
Avg...Av,-1(Qug...v,., <) is the defining axiom.

In contrast to this the language extensions for introducing truth
predicates are of a more general type which can be described as follows.

A new n-ary predicate Q is introduced into a PDP-language L relative to
the variables v, . . ., v,_, and to the function f: Y"— F(K(L) u {Q}) so that
each L-structure S={X,I) is extended to a K(L)u {Q})structure
§’'={X, I") which satisfies the condition

(B) for all ¢ € F(K(L)u {Q}), for all y,,...,y,_, € Y and for all
ae X", if f(yo..., ya—1)=¢ and a(v;)=y; for each i <n then:
SEQuy...v,_, if SE g,

§EQu,...v, , if §F e

In general, (B') does not determine uniquely one extension S’ and hence it is
not sufficient for a characterisation of an extension L’ of L to postulate that
(B’) holds for every L'-structure. According to the results of our discussion
in Section 2 it seems to be reasonable, however, to regard the weakest
extension L' of L such that every L'-structure fulfills (B’) as the natural
extension.

An important difference between the two types of language extensions is
the fact that the first, but not the second, type has the following elimination

property:

There is a function e: F(L')— F(L) which can be defined in a
natural way with respect to (B) such that for every L'-structure
S'=LX', I, for every ¢ € F(L') and for every a e X'V,

S E@ilf §'[K(L)E e(o).

The second type has instead only the following reduction property:

For every L-structure S there is a relation R(S) which can be
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defined in a natural way with respect to (B’) such that for every
L'-structure S'=(X', I'), for every ¢ € F(L') and for every
ae X',

S’ k ¢ iff there is a finite R(S' [ K(L))-tree with the initial point
(¢, ay such that §' [ K(L) £ ¢ for every end point {y, ') of the
tree.

The loss of the elimination property for the second type is compensated by
an essential gain in expressibility. For the example of a truth predicate this
gain consists, e.g., in the possibility of expressing the proposition that there
are true statements, a proposition which could not be expressed otherwise,
not even by an infinite disjunction of statements. I think it is an important
task to investigate which theoretically or empirically relevant predicates
can be introduced after the second type of language extension (the predicate
‘heterological’, ¢.g., on which the antinomy of Grelling is based can be
introduced correctly in this way). In addition to this a more general
discussion of the problem of language extensions seems to be necessary.
Two questions, in particular, should be dealt with:

First, what types of language extensions can or should be distinguished
on empirical or theoretical grounds?

Second, what problems arise if several language extensions are carried
out successively, especially with regard to the compatibility and
extendibility of the respective new notions?

These questions will have to await further investigation; my aim in this
section of the present paper has simply been to point out the need for such
research.

Fakultdt fiir Linguistik und Literaturwissenschaft
Universitat Bielefeld

NOTES

* I would like to thank M. Patzold and D. Segal for helping with the English.

! The basic ideas underlying my investigations were first presented in a talk on the occasion of
a conference at the University of Bielefeld, December 1974. Kripke's research in this field and
his paper, November 1975, and also the article of Martin and Woodruff 1976 were unknown to
me during my work on the first draft of my 1976. Kripke’s approach is based on the same idea
and reaches the same main results. There are, however, several differences in matters of
presentation, explicitness, emphasis and in some particular resuiis.

2 Meanwhile | have learned from Feferman {1976) that — besides the approaches of Kripke
and Martin and Woodruff - there are also investigations which deal with related problems
concerning type-free mathematical theories and propose similar solutions. By the way, the
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method of truth and validity definition described in this paper is not essentially new. In
particular, 1 have already applied this method in a general form to the theory of dialogue
games although I did not explicitly handle the case of languages with truth predicates
(cf. Kindt, 1972).

3 In contrast to Kripke I am convinced that the given solution is the best justifiable one.
* IfS=<(X, > isa K-structure, then $ | K' isdefined by S [ K': = (X, [ | K'), where I [ K" is
the restriction of I to K.

* A sequence fis a B-chain ifl f; Bf;, , whenever j and j+ 1 belong to the range of f.

® For the notion of groundedness see also Kripke (1975, p. 706). In contrast to Kripke 1 have
defined this notion in a way which is based directly on the idea of reducibility and which is
independent of the later discussion dealing the question of what type of languages gives an
appropriate frame for the introduction of truth predicates. This way has in my opinion the
advaniage of showing more clearly why it is natural to restrict the application of truth
predicates exactly to the set of grounded statements.

7 In the terminology of Kripke Z, is called the extension and Z, the anti-extension of the
predicate.

¥ More exactly, this calculus seems to be complete but not correct.

¢ Cf. Kripke (1975, pp. 702-705); the construction of L' given by Kripke is based on a
definition by transfinite induction. It is, however, not necessary to make use of the theory of
ordinals and the method of transfinite induction if one does not have the need to discriminate
different levels in the construction of L',
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