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1 Introduction

If we compare present day information processing technology with the abilities of biological neural
networks, we notice several puzzling differences. From an engineering perspective, biological neurons
are slow and exhibit formidably large tolerances. However, even with our most powerful computer
devices we have nowhere come even remotely close to the information processing capabilities of even
simple animals, such as bees or birds, if issues of perception or movement control are concerned (in
other fields, such as theorem proving or algebra, the performance of computers might seem much
more acceptable. At least, biological brains do not deal effortlessly with such problems either).
Therefore, to understand the working principles of neural networks, the field of robotics seems to
be a particularly adequate and promising area, both for studying the kind of information processing
tasks that are well solved by biological networks, and for exploring ways to replicate these capabilities
with artificial neural networks.

These considerations are the motivation behind the research project described in this paper that
aims at exploring the synthesis and the use of artificial neural networks for the control of grasping
movements for robots. The process of grasping is a central issue for the application of robots in many
domains and therefore, also of considerable practical interest. Currently employed robots use only
very simple types of grippers that are limited in many respects. The main reasons for this state of
affairs is the still very limited availability of more sophisticated, articulated grippers that are suited
for an industrial environment, and the lack of suitable control strategies to make efficient use of such
devices. This is mainly due to the fact that a multi-fingered gripper alone usually comprises more
joints than the robot arm to which it is attached and the simultaneous control of several fingers
raises many of the issues encountered when trying to coordinate the movements of multiple robots.
The difficulty of the task is further aggravated by the fact that the combined system robot arm -
hand is kinematically redundant, and that dextrous manipulation movements must take into account
a fair amount of sensory information, primarily touch and vision. However, even if suitable sensors
allow the acquisition of sufficient sensory information (a highly non-trivial task in itself), using this
information for the sake of controlling the movement is a very difficult task, since the tactile and
visual information encodes the mechanical interaction between complex geometrical shapes under
conditions of substantial uncertainty about e.g. frictional properties of object surfaces and their

precise shapes.

2 The Role of Learning Approaches

A precise theoretical analysis of these interactions and processes is only feasible in principle, but
unlikely to succeed in practice, since in real world situations many parameters will not be known or
will be too variable. Even in cases where such full analysis might succeed it may be too costly, since
changing some aspects of the task might require to start all over again, which is not compatible with
the idea that dextrous robots should ultimately add flexibility e.g. to a production process instead
of absorbing large amounts of manpower into reprogramming.
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On the other hand, we all are highly competent experts for dextrous manipulation tasks. Conse-
quently, a very natural approach would be to create interfaces which can use this knowledge to teach
robots grasping movements shown by human ”experts”, and to use the capabilities of neural networks
for adaptively creating complex, nonlinear mappings between e.g. sensory signals and required joint
movements to learn the required knowledge from examples and to refine it by further explorative
motions of the robot.

To realize this goal, we have set out to investigate neural network archictures for the task of
learning sensori-motor mappings under a variety of different conditions. The key theme is to exploit
visual information about the hand movements of a human "teacher” for the control of robot hand
movements. In a later stage of the work it is intended to integrate tactile information from the robot
manipulator into the control loop in order to allow the control of forces which cannot be inferred
from the visual image alone.

In order to learn the required transformations, an important issue is the proper choice of repre-
sentations for the sensory and the joint data. Usually, many different degrees of freedom interact in
a complex, non-linear way, and learning in the resulting, high-dimensional spaces is a hard problem
which cannot be solved if the dimensionality of the input space becomes too high, since then it
becomes infeasible to provide sufficiently many training examples to achieve a sufficient good gen-
eralization ability for new inputs. Closely related with this issue of representation is the issue of
choosing a suitable network architecture which on the one hand must be sufficiently general to allow
learning of the required mapping and which, on the other hand, is sufficiently modular to facilitate
pre-structuring by the designer to employ a-priori-knowledge about the intended task.

3 Recognition of Hand Postures from Images

To meet these requirements, we have developed network architectures that are based on the so-called
LLM-networks [14, 15]. An LLM-network can be thought as consisting of two layers (Fig. 1). The
first layer (Fig. 1, bottom), which receives the input and which may be a self-organizing map [5] or
a GRBF-network [13], acts as a kind of "gating network” for the elements of the second layer (Fig.
1, top). The first layer is trained in an unsupervised fashion. To each element of the first layer there
corresponds an element of the second layer which computes an output quantity from the same or a
different set of inputs as the input layer and contributes to the output of the system in proportion
to the activation received from the first layer. By using a linear mapping network for each element
of this second layer, training of the second layer can be based on a well understood, perceptron-like
learning rule that requires no back-propagation steps. Still, for the entire system a high degree of
flexibility results, since the gating layer can learn to decompose the overall mapping into a set of
locally valid, linear mappings between which it will interpolate smoothly. The resulting architecture
can be viewed as a special case of the architecture of ”competing experts” as proposed by Jacobs
and Jordan [4].

In recent work, we have investigated the capabilities of LLM-networks to extract the three-
dimensional shape of complex, multijointed robot manipulators from monocular, perspective pixel
images [11). To solve this task with conventional robot vision algorithms constitutes a difficult
problem, since the 3d-shape of a complex object of variable shape and varying amounts of self-
occlusion must be recognized. The neural network approach allows to solve this task on the basis of
only a set of training images of known manipulator postures. In a preprocessing stage, each image is
reduced to a 36-dimensional feature vector that then forms the input of a LLM-network. No explicit
geometrical model of the manipulator is needed and the performance of the trained network degrades
gracefully if the geometry of the manipulator is changed or if parts of the manipulator are missing.
In addition, the approach is not limited to the processing of visual images. In a very similar way, the
method might e.g. be applied to the task of processing haptic information from tactile sensors. In
this case, the availability of traditional algorithms is much more restricted than in the vision case,
and consequently learning algorithms are of even higher interest.
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Fig. 1: Structure of LLM-network

To systematically explore the influence of different factors, such as changes in illumination,
changes in the geometry of the hand, network size, number of training samples and learning pa-
rameters, on the recognition accuracy of the network, we have studied this approach extensively
with artificially generated, computer rendered images of multi-joint robot manipulators of different,
anthropomorphic shapes [11].

Fig. 2: Recognition of human hand postures with LLM-networks. Top row: input images. Bottom row:
visualization of recognized hand postures using a 16-jointed hand model.

We also have begun to investigate the feasability of this approach for images of human hands.
First results are reported in [12]. Fig.2 gives some visual impression of the resulting recognition
performance for a typical case (10 units and 1000 training samples). Currently we are extending this
work further, in particular to allow focal attention on parts of the entire image and to use an internal

hand model to improve the recognition further.
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4 Neural Architectures

The previous section has reported results
demonstrating that already single LLM net-

works can be trained to extract important Output
and nontrivial control information from pixel

images after only very little preprocessing.

However, controlling grasping n‘loverne‘nts is Hidden layer 2 LLM
a complex process which most likely will re- o
quire the integration of several neural mod- (Output) Net
ules into a larger system. Therefore, it is
important to study systematic approaches Hidden layer 1 LLM
to combine subnetworks into larger network Net ®
architectures. In his experimental study of (Output) ©
control architectures for robots Brooks has

proposed a subsumption architecture which Q
consists of a set of layers of simple agents

LLM
Net

. !

xn
[2]. In his case, each agent is non-adaptive Input { @ ——
and is implemented as an augmented finite
state automaton. Agents on the lower lev- @ *
els perform simple behaviours, while agents
on higher levels modify these behaviours by Bias @ ®
supressing inputs or outputs of lower level
agents. Fig. 3: Cascaded Network with LLM Modules.

Brooks has demonstrated that this concept is very well suited for implementing many important
aspects of sensori-motor behaviour in real world environments. This success makes it attractive to
look into the possibility to construct similar architectures from adaptive neural modules. Building
on an earlier approach by Fahlman (3], we have developed a scheme to incrementally construct such
cascaded architectures which start with at single low level network, to which incrementally further,
higher-level networks are added, so that each new network can compute its transformation from all
existing input lines together with the outputs of all its predecessors in the cascade. The resulting
architecture is shown in Fig. 3, where LLM-networks are used as cascaded modules.

We have studied this architecture on a variety of benchmark problems with promising results
[6, 7, 8]. Currently we are investigating the approach for learning figure-ground separation in visual
images. A preprocessing stage that performs various figure ground separation tasks will significantly
simplify the task of a subsequent hand recognition network and allow its successful operation under
more variable conditions of background and illumination than presently, where all these factors must
be taken into account by the same network.

Parallel to this work we are investigating neural network architectures the structure of which is
inspired by the structure of the visual system of the toad. This work is carried out in close collabora-
tion with the group of Prof. Ewert at the University of Kassel and attempts to construct a computer
model of the visual recognition of prey in toads that allows to be used for robotics applications.
The current simulation uses an approach which models the synaptic interactions between tectal and
pretectal neurons in a reduced, low-dimensional parameter space (Fig. 4, 5). This makes it possible
to apply learning algorithms for optimizing the prey recognition performance. Since an essential step
in this process is the figure-ground separation, we expect that this work will also provide valuable
insights for solving the segmentation task described in the previous paragraph.
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Fig. 5: Simulated Activity. Upper: response
Fig. 4: Sketch of the synaptic interactions to prey, Lower: response to predator. White
between tectal and pretectal neuro ns. pixels indicate strong excitation, black pixels

inhibition.

5 Experimental Environment

The previous research relies heavily on extensive computer simulation, since reconfiguring a robot
or a sensory system is more easily done if the system still is implemented in software instead of
in hardware. However, many aspects of real systems cannot be modelled faithfully enough, or
simulations would become too complicated and slow. Therefore, it is of central importance to study
the performance of algorithms also for actual hardware implementations and to set up facilities
with which neural networks can be interfaced easily and flexibly with commercial robot and vision
hardware [17, 9]. To this end we have set up a robot laboratory comprising a PUMA 562 robot
arm with 6 degrees of freedom and an image processing facility consisting of two ANDROX 1CS400
Boards. An important consideration was to overcome the limitations of the commercially available
robot controllers with respect to computational power and especially to the transparency of their
programming languages. In our implementation we chose to employ a Unix workstation to directly
control the robot in real-time via a high speed communication link.

Fig. 6 illustrates the main hardware components of our installation. The Puma 6 DOF manip-
ulator is connected to the Unimation Controller (Mark II1, bottom left) which itself contains several
controllers. The separate servo controllers for each revolute joint are commanded by a main controller
CPU. This CPU usually runs the industrial robot software VAL II which is rather inflexible for our
purpose, as it does not support control by an auxiliary computer. To achieve real-time control through
an Unix workstation we employed the powerful software package RCCL/RCI (Robot-Control-C—
Library and Real-time Control Interface) [10]. The Unix workstation is a SUN SparcStation, which
hosts some interfacing hardware and two image processing boards (ICS-400, Androx Inc.), each
based on four digital signal processors. These boards provide sufficient computing power for fast

data extraction and preprocessing. .
All subsystems are directed by a control program (“planning task”), written and executed as an
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Fig. 6: The main hardware components of the robot system.

Fig. 7: View of the experimental set-up.

ordinary C program in a Unix environment. The program issues motion requests to the trajectory
control level. The control task is executed periodically at a high priority and is responsible for
reading input data, generating intermediate joint setpoints, and carrying out a “watchdog” function
(collision avoidance).

For the neural network simulations and for graphics output we use several RS/6000 workstations
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which can communicate with the SUN and access the robot interface and the vision system via
remote procedure calls.

Currently we use the system for testing the networks described in the previous sections with real
images. To generate reproducible training images of known hand postures, we currently employ an
articulated wooden model of a human hand. This model is mounted as "end effector” (Fig. 7) to the
robot and can be moved under program control, thereby providing rather realistic images of hand
shapes of known orientation.

6 Visually Guided Manipulator Movements

Recently we have integrated several of the previously described components into a system which
allows to guide the motions of a robot manipulator by human hand movements that are performed
in front of a camera. The system makes use of a so-far hand-optimized segmentation preprocessing
stage that is implemented on the graphics processors of the ICS400-subsystem and that can perform
segmentation and image centering in close-to-real-time. The resulting images form the input of
a laplacian edge detection stage followed by a logarithmic intensity compression and a gaussian
filtering stage. These preprocessing steps reduce the input dimensionality of the signal from 19200
(the number of pixels used) to 36. The resulting feature vector is fed to an LLM-network that has
been trained with similar feature vectors obtained from hand images generated with the wooden
hand model described in the previous section. Using these data, the network was trained to estimate
the robot joint angles that gave rise to the observed hand orientation. The trained network can then
be used to control the orientation of the robot manipulator such that it follows the orientation shown
in novel hand images (Fig. 8). Even though trained with the wooden hand model only, the network
is able to generalize to other hand shapes, such as the hand of a human operator, if these are not
too different from the model. Currently we are about to improve this generalization ability of the
network and to prepare it for controlling a hydraulically operated three-finger manipulator currently
under development in the collaborating group of Prof. Pfeiffer at Technical University, Munich.

Fig. 8: Recognition of orientation of wooden hand replica from camera image (left: input image; center:
after preprocessing; right: hand posture corresponding to recognized orientation).

7 Learning Basis Movements

The work described in the previous sections used supervised learning to achieve the desired perfor-
mance. However, there will be many aspects of grasping movements that cannot be easily ”taught”
by supervised methods based on visual images alone. The reason is that important information,
such as reaction and friction forces, are not available in a visual image. This makes it necessary
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Fig.9: Learning to grasp an object in computer simulation. Shown is a two-jaw gripper with four optical
sensors (the matrix at bottom left encodes the position of the gripper with respect to the object).

to complement the present approach by unsupervised reinforcement learning methods that enable
the robot to learn the use of such sensory information by trial and error [1]. However, a common
problem of reinforcement learning methods is their low speed due to the enormously large search
space in which learning takes place. This has limited existing demonstrations to rather small sys-
tems. Though important for their conceptual contribution, they are still far from what is needed
to solve e.g. most tasks of interest in robotics. To overcome this difficulty, we have investigated
strategies to decompose the full task into a set of simpler subtasks, such that these subtasks can be
learnt separately and that the solutions for the subtasks can then serve as basis elements to span
the solution space of the entire task [18]. Learning then can proceed as a two-step process: first,
reinforcement learning is used to solve each of the subtasks individually. Then, a first guess for an
approximated solution of an instance of the overall task is formed by a suitable superposition of the
solutions to the subtasks. Finally reinforcement learning is used to further refine the approximate
solution. We have explored the feasability of this approach using the classical maze-learning task,
which is a widely used "benchmark problem” for studying reinforcement learning algorithms [16)].
The results are reported in [18]. More recently, we have been able to demonstrate the feasability
of this method for the harder task of learning to grasp a rectangular object, using a (simulated)
two-jaw gripper that has only 4 optical sensors that are able to discriminate distinct parts of the
object (Fig. 9). In this more complex situation, a phenomenon termed ”perceptual aliasing” [19)
occurs: as a consequence of the very restricted sensory information the state of the world cannot
be uniquely recovered from the available sensor information alone. Previous approaches have found
this to be a significant difficulty for ordinary reinforcement learning schemes; however, preliminary
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experiments indicate that our approach can cope with this difficulty and may even be able to exploit
this phenomenon to improve its generalization ability for new situations.

8 Outlook

This paper has reported some of our work to develop neural network components to control robot
grasping movements. So far, our strategy has mainly focused on the extraction of relevant control
information, such as orientation and posture, from visual images and on the investigation of network
architectures for combining several neural modules into a larger system. With the availability of an
articulated multi-fingered hand in the near future, we will be able to use these components to control
complex movements of the manipulator from visual images of a human hand. This seems to be a
necessary and also realistic first step towards more intelligent robots that can be taught instead of
programmed how to interact dextrously with their environment.
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