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We describe a new algorithm for vector quantization and control. The algorithm, in addi-
tion to generating a discrete representation of input data by means of Voronoi polyhedra,
also generates a tesselation associated with these polyhedra. The tesselation corresponds
to a graph which connects neighbouring Voronoi polyhedra and, hence, reflects neighbor-
hood relationships of the embedding space of the data. The algorithm can be estended to
approzimate through ‘raining’ arbitrary functions defined on the data points. The tesse-
lation allows one to speed up the ‘training’ through cooperative learning involving nearest,
next-nearest, etc. Voronoi polyhedra, reducing the range of cooperation progressively dur-
ing training. The algorithm produces a table look-up program, assigning optimally tables
to inputs and generating rapidly optimal table eniries. The eniries can be compler data
structures, e.g., combinations of scalars, vectors, and tensors. The use of the algorithm
has been demonstrated for time series prediction, surpassing existing algorithms, and for
visuo-motor control of an industrial robot, e.g., for precise end effector position con-
trol. We will attempt to demonstrate by the time of the lecture also an application of
the algorithm for visuo-motor control of a pneumatically driven robot arm, a Bridgestone
‘RUBBERTUATOR’. This light-weight robot, capable of compliant motion, can be oper-
ated in contact with humans. The presented algorithm can acquire the complez response
characteristics of this arm through training and, thereby, allows accurate and swift control
of pneumatic robot motion.

The Control Problem Addressed

In our lecture we want to introduce a novel algorithm for time series prediction and control tasks..
We want to provide an overview of the key aspects of this algorithm. For this purpose we de-
scribe the algorithm in the context of a particular control problem, namely visuo-motor control of a
pneumatically driven robot arm.

The algorithm we seek, in its simplest ramification, should move the end-effector of a multi-jointed
robot arm to specified positions v in the robots 3-dimensional, finite work space V', i.e., v € V. In
its simplest form, the N angles 6,,8;,...0x at the robots /N joints need to be specified such as to
achieve the desired position v of the arms end, i.e., one needs to learn the vector valued function
V(é‘), where § represents the N-dimensional column vector (61,0, ...,0n)T. In case of N = 3 the
functional dependence represented by v(#) is unique (actually, for wide intervals from which values
for 8;,7 = 1,2,...,N can be taken, the function can assume two or more discrete branches), for
N > 3 a continuum of possibilities exists to realize end effector positions v. In the latter case one
wants to select & such that certain conditions are met, e.g., that the arm reaches around obstacles.
The issues involved are discussed at length in [1].
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Why a Learning Scheme is Needed

The control problem just stated can be solved by means of conventional robot algorithms. The
situation becomes more difficult, and more interesting from our perspective, in case that the control
signals actually employed do not specify directly the joint angles. An example is a novel robot arm
design which moves arm joints pneumatically through pairs of tubes: inflating and deflating the tubes
leads to forces along the tubes which, hence, can move the joints according to the same agonist-
antagonist principle realized in the familiar muscle-joint systems of vertebrates. The advantage of
such systems is that the motion of joint j is controlled by two pressure variables, the average pressure
P; in the two tubes and the pressure difference Ap; between the two tubes. Pressure difference drives
the joints, average pressure controls the force with which the motion is executed. This latter feature
allows operation at low average pressures and, thereby, allows one to carry out compliant motion of
the arm. This makes such robots suitable for operation in fragile environments, in particular, allows
direct contact with human operators. The price to be paid for this advantage is that the response
of the arm to signals (p1,52,...,pn)7 and (Ap1,Apy,...,Apn)T cannot be described by ‘a priori’
known mathematical equations, but rather must be acquired heuristically. One expects that the
response characteristsics change during the life time of an arm through wear, after replacements of
parts and, in particular, are subject to hysteretic effects.

The RUBBERTUATOR - A Pneumatically Driven Robot

To master the control of a pneumatically driven robot arm is a worthwhile challenge in two respects.
First, the mentioned robot, presently built by Bridgestone under the brand name ‘RUBBERTUA-
TOR’, through its light weight, its relatively low price and its capacity for compliant motion and
direct robot-human contact, might constitute a new robot generation for which control programs
need to be furnished; presently, the robot is controlled through a feed-back cycle involving joint
angle sensors, the control being slow and relatively imprecise. Second, the close analogy between the
joint motions of the RUBBERTUATOR and biclogical vertebrates opens the possibility that through
mastering this robot system we may gain understanding on animal motion, a subject matter which
from a theoretical perspective is still ill understood.

How can one obtain information on the response characteristics of the robot arm. We have
suggested earlier (see [1] and references quoted therein) to employ a pair of stereo cameras. We have
demonstrated in conjunction with an industrial robot (PUMA 560, see [2]) that the signals from
the two camera backplanes can be employed for the purpose, i.e., a robot-camera-computer system
learns, in fact, to control the arm solely on account of camera images.

Employing a Linear Feedback Loop

At this point a rather straight forward concept of utmost practical importance needs to be introduced,
the linearly controlled feed-back loop. The idea is that rather than to learn directly the precise
relationship between joint angles (or other control signals) and end effector positions one learns such
relationship only approximately and only for a coarse set {vs, s € A} of end effector position, i.e.,
one learns a set of joint angles 9_;, s € A for some set A (to be specified later) such that

vs = v(8s) (1)
and assigns the remaining control to linear feed-back loops which are based on the expansion

v e D)y (As (Viarget — V(n__l))) @

where A is the Jacobian tensor 96 /0v evaluated at the locations 8, s € A. This expansion attempts
to move the end effector to the target location ving by linearly correcting the joint angles or account
of the remaining deviation Viage: — v"~!). Repeated application of (2) starting with v = v(0s)
leads to a series of end effector positions v(), v(¥) ... which approaches Viarget for suitable Ag.
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Schemes for acquiring 65 and A, have been presented in [1] and their capacity for real applications
has been demonstrated in [2,3]. Rather than learning 6s, s € A on a very fine mesh A one can learn 6,
and Ag on a coarse mesh. For the control of the end effector position of a PUMA 560 through stereo
cameras a few hundred mesh points suffice [2,3]. Further control, e.g., grasping motions, require
submeshes, which (using a corresponding principle) can be limited to significantly less than hundred
mesh points [4]. Obviously, the mesh points must be judiciously chosen, a subject matter which
constitutes another important aspect of the algorithm.

Vector Quantization Scheme

In fact, the choice of mesh points is the most cardinal part of the proposed algorithm as we like to
explain now. This part of the algorithms entails two aspects, the aspect of a vector quantization
algorithm and the aspect of a graph matching algorithm. We like to explain these two aspects now.

The control algorithm suggested here actually generates, in a training period, a table look-up
program. Our discussion above has been mainly concerned with the generation of the table entries.
The following discussion is concerned with the assignement of table entries to control tasks. In case
of end effector control the tasks can be designated simply by the target positions viage:. However,
the algorithm can be applied to more general tasks.

The essential property which we require for the task space V is the existence of a distance metric,
i.e., for all u,v € V exists a real, positive, etc. distance d(u,v) such that a small d(u,v) (in most
cases) implies that the tasks u and v are similar, a large d(u, v) implies that the tasks are dissimilar.
The algorithm determines now a set {vs,s € A} of points vs € V which assign table entries, labelled
by s € A to tasks. This assignment works as follows. The table entry, labelled s, is connected with
the Voronoi polyhedron

Vori(s) = {v € V|Vr € A,r #5,d(vs,v) < d(vr,V)} (3)

The Voronoi polyhedra provide a complete partition of the task space V, i.e., V = UgeaVor(s).
Hence, any v € V can be assigned to a table entry s(v), specified through the label s of the Voronoi
polyhedron to which v belongs. {The fact, that a v may belong to several Voronoi polyhedra is not
a nuisance, but rather a great benefit, as we will see shortly.) The question arises how the ‘centers’
vs of the Voronoi polyhedra should be chosen. A suitable criterion is to choose the centers according
to the distribution of tasks P(v) encountered in a training episode, i.e., to select more centers in
regions of V where P(v) is large and vice versa. A possible criterion would be to assign {vs,s € A}
such that

E({ve,s € A}) = [dvP(v)d(v,vs) (4)

assumes a minimum. Such criteria are well-known in the theory of vector quantization algorithms
(for a more detailed discussion and references see [1]). We will explain below how the minimization
of (4) is achieved. Details can be also found in [5].

Learning a Neighborhood Graph

So far the algorithm assigning table entries to tasks has been of a rather conventional vector quanti-
zation type. A crucial new feature of the algorithm is that a graph is being developed, the nodes of
which are the elements of A, the edges being defined below. This graph can be exploited to enhance
training results and training speeds. In fact, without exploiting such graph structures many control
problems cannot be learned (see [1,2,3]). Also the gain in training speed can be very considerable (see
[1,2,3]). The assignement of edges can be achieved in principle (a practical algorithm is presented in
[3]) as follows. One considers so-called second order Voronoi polyhedra defined through

Vory(r,s) = {veE V|Vt e At ¢ {rs},dv,ve) <d(v,vt) A vs) < d(v,vt)} (5)
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One assigns now edges between all pairs of nodes (r,s) the associated second order Voronoi poly-
hedra (5) of which are not empty. One obtains, thereby, a graph which reflects the neighborhood
relationships of the first order Voronoi polyhedra (4).

Unfortunately, actual algorithms [5] can achieve assignements of edges only if the volume of the
second order Voronoi diagrams is large enough, a condition which is not necessarily met in Euclidean
tasks spaces of dimension three or larger. However, the algorithm presented in 5] usually captures
a large fraction of neighborhood relationships through edge assignement.

A particularly straightforward interpretation of the graph described above can be given in case
of a two-dimensional Euclidean space. In this case the Voronoi polyhedra are actually polygons and
the structure of edges are the dual of these polygons, called the Delaunay tesselation.

We like to comment finally on the reason why the graph structure described can improve the
generation of table entries for control tasks. The reason is that the edges of the graph structure
connect those tables which are closest with respect to the metric of the task space. The edges provide
a hierarchy of nearest neighbors, next nearest neighbors (connected through at least two edges), etc.
During training one can asume then that tables, which are neighboring, have to learn similar entries.
One can exploit this by incorporating a cooperative learning scheme involving nearest, next-nearest,
etc. Voronoi polyhedra, reducing the range of cooperation progressively to achieve asymptotically an
optimal resolution of table content.

Summary

The algorithm described above in the context of a control problem, has the important feature that
it employs a nodes vs, s € A together with a self-generated graph (edges between nodes). Previous
algorithm (the extended Kohonen algorithm, see [1]) employed a lattice of nodes (which also corre-
sponds to a node—edge, i.e., graph, structure) which was fixed ‘a priori’. The new algorithm ‘learns’
the topology (neighborhood relationships) of the task space and, hence, does not require that the
topology of the task space is known before hand and it can deal with complex topologies, like those
of disjoint task spaces of mixed dimensionalities.

The algorithm can also be used in a somewhat simpler context of time series prediction. In
this case the input data, corresponding to the tasks in the aforementioned example, are time series
y(t1),y(ta),...,y(ts) of a function y(¢), and the algorithm is asked to ‘predict’ the function value
Y(tn+1)stny1 > ti,tg,...1,. The problem, in principle, corresponds to learning to approximate
the function ¥ = y(#n41) for vector-valued arguments ¥; = (y(t1),y(t2),...,y(ta))T. We have
developed a suitable learning rule for this purpose and applied it succesfully to a function y(t)
described by the Mackey-Glass equation [6]. This application will be presented in our lecture, in
particularly, it will be demonstrated that the algorithm compares very favourably with existing
algorithms, e.g., those of Moody and Darken and of Lapedes and Farber.

The algorithm is described in detail in 5}, the original report, as well as in [2-4, 6-7).
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