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Abstract. In field emission experiments with spin polarized electrons a magnetic field is 
superposed on the electric emission field to define the preferred spin direction.The mot ion 
of the polarization vector in these fields was calculated for rays emanating from individual 
points of the emitter by integrating the equation of motion and taking into account rela- 
tivistic terms. There is a slight shift of the polarization vector from its initial direction. If the 
initial polarization is aligned with the magnetic field and the emission tip is sufficiently well 
centred in the magnetic field, the tilting of the polarization vector for a beam of electrons 
starting not too far from the tip apex is less than 10 ~ 

Index Headings: Field emission of electrons - Electron spin polarization 

In recent experiments electron spin polarization 
(ESP) of field emitted electrons has been detected 
[1 4]. The emitter in these investigations is located 
in a magnetic field which defines the preferred spin 
direction. In front of the emitter the electric field 
required for field emission (FE) is superposed on the 
magnetic field. If the ESP varies in a not undefined 
manner after the emission process, it is possible to 
investigate the spin distribution in the electronic 
states of the emitter or the spin dependence of the 
emission process. In this paper we report  on some 
calculations of the ESP variation in the fields in front 
of the emitter for rays emanating from individual 
points of the emitter. Effects in the tunnel barrier are 
not taken into account. The calculations were made 
on the IBM 360/91 at IPP. 

Description of the ESP Variation 

The ESP can be described by the polarization vector 
P. For a single electron represented by a wave packet 
]~p) P is defined in the rest system by the expectation 
value of the polarization operator a formed from the 

Pauli matrices 

P : = < a ) -  <lp/lp) ' a=(~  (1) 

Correspondingly, the average polarization vector of 
an ensemble of electrons in states I tr with nearly 
the same momentum (e.g. a beam of electrons) is 
given in the centre of mass system by 

P = < a > -  i __ i 
E <~lto,> E ~ (2) 
i i 

<~il~r[lP/> 
P , : -  , x~:  = <~1~,>, 

where P: = LPI < 1 is the degree of polarization, and 
/~:= PIP is the preferred spin direction. 
In electric and magnetic fields the vector P will move. 
If these fields are macroscopic, i.e. if their variation in 
space and time is small relative to the extent of a 
wave packet, a classical equation of motion is valid 
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[5], i.e. 

d 
dt P(t)= - t o  x P(t), (3) 

where to is the spin precession vector, and co = [tol is 
the spin precession frequency. If the motion of P is 
observed in the instantaneous rest system, which 
does not rotate relative to the laboratory system, and 
if the time t, the velocity v, the electric field E and the 
magnetic induction B are measured in the laboratory 
system, according to [6], to obeys the equations 

to = to(v, E, B) (4a) 

= ~QI(B; v) + O 2 ( B ,  v) + (23 (E, V), 

~2 1= e B(a+ 7 - 1 ) = - - t o L ( a y +  l) 
m (4b) 

~ . ~ 2 _ ~  - e (vB) v ( l _  y_l)  a 
m /32 

e v x E  a + y - t g / 2  
~'~3 = C 2 1 ' m l + y -  

where c is the velocity of light, m is the rest mass of 
the electron, e is the electron charge, v=lvl, y-~ 
= ( 1 - v 2 / c 2 )  1/2, coL = --(e/m)y -1 B is the Larmor 
frequency, and toL = coLB/B, B = IBI, 9 ~ 2.002 is the 
g-factor of the free electron, a = (9 - 2)/2 ~ 10- 3 is the 
g-factor anomaly. 
According to (3) and (4a, b), P is P = const, for an 
ensemble of electrons with the same trajectory. For  
electrons with different trajectories, the vectors P~ 
defined for !0artial ensembles l i) with the same trajec- 
tory will, in general, move differently. The average 
polarization has to be formed at each time t according 
to (2). With (2) it follows that P(t + A t)< P(t). 
For v ~ c (non-relativistic limit) ~22 and f2 a can be 
neglected relative to g2~. If, in addition, B is constant 
in time and space, the following solution of (3), 
(4a, b) is obtained 

P o x t o  
P(t) = sincot + Po coscot 

co 

to(toPo) (5) 
-~- 0) 2 (1 - -  COStot) , 

where Po: = P(0) and to = toL(1 + a) ~ toL' 
For  P ox  to=t=0 it is convenient to rewrite (5) by 
introducing the three orthogonal unit vectors 

63: = to~co = B/B 

s =/3 o • 63; /3 0 =eo/Po (6) 

~: = 63 x c~ = / %  - 63(63fo)  �9 

This yields 

P(0 = (ePo)(d sin co t + ~coscot) + 63(63Po), (7) 

This representation shows that P precesses about to, 
i.e. about B, with the frequency co. The component of 
P in the to direction is thereby constant. In the non- 
relativistic limit a motion of P is therefore only 
caused by magnetic fields transverse to P. The 
tilting angle 

. :  - r (e(t), Po) (8) 

thereby has the maximum value 

" m a x  = 2. ~ (P, to) = 2arc cos (63/?). (9) 

The following example illustrates the motion of P in 
a transverse magnetic field: for a homogeneous field 
with induction B =  0.1 mT (order of magnitude of 
the earth's field) co is co = 1.76 x 107 s-  ~. Let there be 
an ensemble of electrons moving in the field B with 
the velocity v = 0.1c (energy 2.57 keV) and the initial 
polarization Po = 1 perpendicular to B. The electrons 
transverse a distance of 1 m in 3.3 x 10 _8 s; on this 
path P is tilted 0 . 5 8 t a d = 3 3  ~ This motion is 
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Fig. l. Velocity and electric field strength along the trajectory of a 
field emitted electron 
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independent of the direction of the ve/ocity becanse 
B is homogeneous. 
In field-emission experiments with polarized electrons 
the quantities governing ~o in (4a, b) have the following 
limits: B >  10 naT, v<0.15c, E < 5  • 107 V/cm (see 
Fig. 1). The terms ~2, ~3 in (3), (4a, b) are therefore 
small relative to g2~. The foregoing remarks on the 
case of the non-relativistic limit thus also apply 
approximately to the motion of the polarization 
vector P in a FE experiment. Our calculations were 
made to detemnne the influence of $22, ~3 and of a 
space dependence of B. The interesting quantity in 
these calculation is the tilting angle because usually 
B 0 and Po are aligned in the symmetry axis of the 
emission arrangement. The precession about the 
symmetry axis is included in the calculations but is 
not shown in the results. 
If ~a  and O 3 are not neglected and B is space 
dependent, B, E, and v have to be known for all 
points of individual electron trajectories in order to 
solve the equation of motion (3), (4a, b). 

Method of Calculation 

In the numerical treatment three types of fields 
rotational symmetric with respect to the z-axis are 
taken for B. They are expressed by giving the axial 
component B~(z) on the z-axis of a zylindrical 
coordinate system, r, z: 

Homogeneous field: 

Bz(z) -~ B0 = const. (10) 

Bell-shaped field: 

Bz(z) = Bo/(1 + z2/D2); D: Bz(D ) = Bo/2. (11) 

Solenoid field: 

Bz(z) = B0 [1/4 + R2/L2]  1/2 

.{_ z + L / 2  z - L ~ 2  } (12) 

[(z + L/2) 2 + RZ] I/2 - [ ( z -L /2 )  2 + R2] u2- 

with R the radius and L the length of the solenoid. 

For points near the axis, this condition being well 
satisfied here, the radial component Br(r , z) is de- 
scribed by a series expansion according to [7] 

(-  
st(r ,  z ) =  - _ ~ z ~ -  I~(z ) (~3) 

In front of the tip E is essentially governed by the 
geometry of the emitter surface. For the tip shape we 

Q(r,z) 

L l v l l  I I I..,IA . . )L. IFM .,~"~L.,F---- 

10-s cm (EQUIPOTENTIAL PLANE) 

Fig. 2. Tip-model according to Dyke et al. E 8] 

use the model of Dyke et al. [8]: The emission 
surface is an equipotential surface which is formed 
in front of a cone with an apex angle r/whose point is 
the centre of a sphere of radius 0s (see Fig. 2). The 
electric potential of this sphere-on-orthogonal-cone 
is zero. V~ is the electric potential of an equipotential 
Surface serving as anode at a pole distance of 0a >> Qs 
from the centre of the sphere. The potential V of E is 
then given in plane polar coordinates ~, O with the 
centre of the sphere as origin and the cone direction 
as zero direction (see Fig. 2) by 

V(o, O)=(VJoa)(Q" + O~-"+ t O-("+ l))P.(cosO) (/4) 

where Pn(cosO) is the Legendre function with n 
chosen such that the function vanishes for O -- re- r//2 
(generally n non-integral). 
To get the surface 

V(Q(O), O) = V(~0, 0)= const. 

of a typical FE tip, according to Vernickel and 
Welter [9] the following parameters are used 

00= 2 x 10 .5 cm 

~ = 1.2 x 1 O- 5 cm 

n=O.11 

0~ = 5 cm 
V~= V(0~, 0) -- 4.31 x 103V. 

Thus V(~, O), and hence E(~, O) = - grad V [and the 
shape V(o(O), O) = V~ of the anode], are determined. 
The emitter potential is V(~o, 0). 
We obtain v[z) and the electron trajectories r(z) 
-= (x(z), y(z)) by integrating the equation of motion 

dp d 
d t -  dt (mTv)=e(E + v x B). (15) 
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As Vo<5kV,  we get v/c<O.t5 and ~ - l < 0 . 0 1 2 .  
Equation (15) can therefore be solved in the non- 
relativistic approximation ), = 1. 
Numerical integration of (15) and (3), (4a, b) was 
performed by a predictor-corrector method. The 
initial conditions were as follows: 
1) The electrons start with velocity v o = 0  on the 
equipotential surface (14a) given above. 
Except for a rotation about the symmetry axis of the 
field (z-axis), the starting points Q on (14a) are given 
by the starting angle 6. Q and the z-axis define the 
starting plane. They are always located in the x - z  
plane of a Cartesian coordinate system whose origin 
is in the centre of the emitter sphere (see Fig. 2). 
2) The centre of symmetry of the magnetic field is 
usually located in the origin of the coordinate 
system, the axis of symmetry in the z-axis; to in- 
vestigate the influence of misalignment, the position 
of the magnetic field can be shifted relative to the 
tip. 
3) At the starting point Q P0 is in the z-direction. The 
tilting of P(t) relative to P0 is given by ~ defined in 
(8) or by tg ~. 
The magnetic induction B o in the centre and the 
starting angle ,9 are varied: Bo from 0 to 5T and 
,9 from 0 ~ to 45 ~ The selected interval for ,9 is typical 
of the emission cone o f a  FE tip [10]. 
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Fig. 3. The tilting angle c~ of the polarization vector P against the 
initial direction (z-axis) for different magnetic field configurations 
as a function of the distance z from the tip. The solenoid field I is 
similar to the configuration used in the experiment of [1,2, 4], the 
Solenoid Field II corresponds to the arrangement used in [3] 
neglecting magnetic shielding. The bell-shaped field can be 
regarded as a field of a solenoid with special shielding. The in- 
fluence of the electric field on ~ is shown in the curve with B = 0 

Results and Discussion 

a) Ideal Adjustment of the Field Axes, Po Aligned 
with B o 

Results of the calculations are shown in Fig. 3-6: In 
the non-relativistic case, neglecting ~2, ~t~3 in (4a), 
there ought not to be any tilting of P in the homo- 
geneous magnetic field under the given starting 
conditions (P0lIBo). Figure 3 shows the rotation 
calculated with allowance for ~2, ~3 for various 
types of magnetic field and the starting angle ,9 = 20 ~ 
(a mean starting angle). The tilting at B ( z ) - 0  is 
ascribed to the influence of the electric field term 
~3,  the tilting at the homogeneous field B(z) = B o to 
the influence of ~2 and f~3- The tilting in both cases 
is less than 0.1 ~ and therefore negligible. The devia- 
tions from the homogeneous field case occur with the 
other types of fields, the bell-shaped and solenoid 
field, when transverse field components Br become 
effective. This behaviour is seen in Fig. 4: B,(z) has 
maximum values at the maxima of the distance r(z) 
of the electron trajectories from the z-axis. At these 
points ~ increases stepwise. 

Figure 5 shows a surprising result: c~ only depends 
slightly on the magnetic induction B 0 in the centre, if 
one neglects the scattering of ~ at low values of B o 
(the reason for this scattering, especially at Solenoid I, 
is that the periodicity in r(z) is of the order of the 
solenoid length). On the other hand, the dependence 
on the starting angle `9, shown in Fig. 6, is strong. 
This behaviour is due to the fact that the maxima of 
r(z), and hence the maxima in Br(z), become larger 
with decreasing B o and increasing ,9 (see Fig. 7). The 
cited results are performed for a tip with constant 
radius ~0 = 2  x 10 .5 cm. If ~0 decreases (increases) 
E(~, O) is changed, and if B o is constant the electron 
trajectories are shifted to smaller (larger) r(z). 
Correspondingly the tilting of P decreases (increases). 
For  comparison, in Fig. 7 the maxima of r(z) and of 
Br(z) and e(z) are also given for a smaller tip and the 
same electric field strength at the tip (Qo=3.7 
x 10-6cm, Qs=2.0x  t0-6Gm, n=0.21, Vo=3.86 
x 103 V), a tip typical of field ion microscopy. A 
decrease (increase) of the work function should have 
a similar effect as the decrease (increase) of fro mention- 
ed above, because for a constant emitter current a work 
function change can be simulated by a change of Qo 
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Fig. 4. Magnetic induction B=(z) on the z-axis, distance r(z) of the electron trajectory from the z-axis, radial component B~(z) of the magnetic 
induction on the electron trajectory, tilting e(z) of the polarization vector P against his initial direction (z-axis) 

with the other  constants  fixed and because an initial 
velocity Vo of the order  of 10 8 c m s  - t  is not  im- 
por tant .  Calcula t ions  with v o = v r (the Fermi  velocity) 
have shown that  initial velocities of this order  can be 
neglected. 

b) Misalignment of the Field Axes, Magnetization 
Errors 

First  it is pos tu la ted  that  Po has no c o m p o n e n t  
perpendicular  to B o (no magnet iza t ion  error). Mis- 
a l ignment  of  the axes of the electric and magnet ic  

field relative to one another  will have an effect when 
the electron trajectories are thereby shifted to 
regions with larger Br. Correspondingly,  there are 
no not iceable effects in the mot ion  of P(t) when the 
tip axis (the electric field axis) is tilted towards  the 
magnet ic  field axis and the centre of the tip comes  to 
rest on the magnet ic  field axis. The  posi t ion of the 
start ing points  and the electric field relative to the 
magnet ic  field thereby does not  appreciably  change, 
i.e. the trajectories are only slightly shifted c o m p a r e d  
with the case of ideal adjustment .  
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Critical, on the other hand, is lateral misalignment, 
i.e. lateral shifting of the tip axis towards the magnetic 
field axis. The electron trajectories are shifted to 
regions with larger B,. Figure 8 shows the influence 
of a shift of the tip in the symmetry plane of two 
solenoid fields. Particularly in the case of the small 
coil (Solenoid I) lateral misalignment of a quantity 
that is realistic for experiments leads to appreciable 
tilting of P. This effect will be enlarged at higher 
magnetic inductions. 

If Po has a component P~ perpendicular to B o 
(magnetization error), P precesses about B o according 
to (7). The influence of g2 2, D 3 is negligible for a not 
too small transverse component P~. 
In the calculations it is always the motion of the 
polarization vector P for rays emanating from 
individual points of the emitter that is determined. If 
the whole emission cone of a FE tip is considered in 
an experiment, as mentioned above, it is necessary 
to average over the emission characteristics of the 
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emitter according to (2) in order to estimate the 
depolarization ( 1 -  (P(t))/Po) and the mean tilting 
angle (e)  of the average polarization vector (P(t)) 
relative to Po. 

Conclusions 

To summarize, it can be stated that the ESP in FE 
experiments is not appreciably influenced by the 

electric and magnetic fields in front of the FE tip 
when there is magnetic saturation of the emitter 
(P0 and Bo aligned) and sufficiently good centring of 
the FE tip in the magnetic field. This agrees with the 
results of the experiments by Miiller et al. [3]. 
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