
GISMO—gene identification using a support vector
machine for ORF classification
Lutz Krause*, Alice C. McHardy1, Tim W. Nattkemper, Alfred Pühler, Jens Stoye

and Folker Meyer2

Center for Biotechnology, Bielefeld University (CeBiTec), D-33594 Bielefeld, Germany, 1Bioinformatics and Pattern
Discovery Group, IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA and 2Mathematics and
Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA

Received September 4, 2006; Revised November 22, 2006; Accepted November 24, 2006

ABSTRACT

We present the novel prokaryotic gene finder
GISMO, which combines searches for protein family
domains with composition-based classification
based on a support vector machine. GISMO is highly
accurate; exhibiting high sensitivity and specificity
in gene identification. We found that it performs well
for complete prokaryotic chromosomes, irrespec-
tive of their GC content, and also for plasmids as
short as 10 kb, short genes and for genes with
atypical sequence composition. Using GISMO, we
found several thousand new predictions for the
published genomes that are supported by extrinsic
evidence, which strongly suggest that these are
very likely biologically active genes. The source
code for GISMO is freely available under the GPL
license.

INTRODUCTION

Since the mid-1990s, automated gene finders for prokaryotic
genome sequences have become available that allow the
unsupervised discovery of genes from raw genomic sequence
(1–9). This accomplishment, accompanied by impressive
values of accuracy, has made prokaryotic gene prediction
one of the showcases of computational biology. Subsequent
developments have focused mostly on the introduction of
novel techniques to more accurately capture sequence
composition (4), modeling of the gene structure (7,10) and
development of models that allow the unsupervised discovery
of multiple gene classes (8,11).

Because of the high accuracy initially reported for most
programs, some might consider prokaryotic gene prediction
solved, but from the point of a practitioner, this is not quite
the case yet. For some programs the predictive accuracy
is uncertain, as they have not been re-evaluated since the

original evaluation on a handful of genomes. The recent
development of techniques that improve predictions by com-
bining the output of multiple programs (6,12,13) shows that
accuracy can be increased. Another issue is that some pro-
grams are only accessible via a web interface, which for gen-
ome projects—due to the confidentiality of the data—is
frequently not an option.

Here we describe our novel gene finder GISMO (Gene
Identification using a Support Vector Machine for ORF clas-
sification), which is freely available under the GPL license.
GISMO has high classification accuracy: it is very sensitive,
meaning that it identifies most known genes, and specific,
i.e. it produces reliable predictions. Our program combines
a hidden Markov model (HMM)-based search for protein
domains with a support vector machine (SVM) to identify
coding regions based on sequence composition. An advantage
of the HMM-based search for protein domains compared
with pair-wise sequence searches is the higher accuracy in
discriminating between signal and noise for protein family
members (14). Also, genes with new orderings of known pro-
tein domains can be detected easily. An SVM classifier is
constructed for composition-based identification of protein-
encoding genes. The SVM is a machine learning technique
with a strong theoretical foundation (15,16) that has been
used to improve classification accuracy in biological applica-
tions such as the detection of protein family members
(17–19), RNA and DNA binding proteins (20), and the func-
tional classification of gene expression data (21). The SVM is
a maximum margin classifier that can solve non-linear
classification problems by learning an optimally separating
hyperplane in a higher-dimensional feature space. By use of
non-linear kernel functions such as a Gaussian kernel,
complex and non-linear decision functions can be learned
by the SVM. Even if items of one class are clustered in
multiple separate sub-regions in the input space they can be
clearly separated from the other class (Figure 1). The learnt
hyperplane allows accurate discrimination between classes
that cannot be separated linearly in the input space, as
may be the case when phenomena such as horizontal
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gene transfer, translational selection and leading/lagging
strand biases influence the sequence composition of genes
(22–24).

GISMO was evaluated with 165 prokaryotic chromosomes
and 223 plasmid sequences. For the chromosomal sequences,
GISMO identified 94.3% of the genes (98.9% for genes with
annotated function), and 94.3% of its predictions corre-
sponded to annotated genes. Several thousand of the new pre-
dictions for the published genomes are supported by extrinsic
evidence, suggesting that these very probably are biologically
active genes that are missing in the annotations. We also
address some of the most challenging problems for prokar-
yotic gene finders, including the correct identification of
short genes (7,25) and of genes with atypical sequence com-
position and the prediction of genes when only little sequence
material is available, as in the case of extrachromosomal
replicons. The composition-based SVM, which uses vectors
of sequence composition in the (low-dimensional) space of
codon usage, is well suited for these tasks and achieved the
highest classification accuracy for all cases when compared
with two other popular, freely available programs. GISMO
predictions for the 165 genomic sequences are available for
download in GFF at http://www.CeBiTec.Uni-Bielefeld.DE/
groups/brf/software/gismo.

MATERIALS AND METHODS

Datasets

The annotation and genomic sequence of 165 bacterial and
archaeal chromosomes were downloaded from EMBL (26),
and 223 plasmids longer than 10 kb were downloaded from
NCBI (http://www.ncbi.nlm.nih.gov/). Annotated genes
tagged as pseudogenes or not corresponding to an open read-
ing frame (beginning with a start codon, ending with an in-
frame stop codon, no internal stop codon) were excluded
from the reference set of annotated genes. Sets of function-
known genes were created based on the gene product descrip-
tion. All genes supported by evidence, such as an annotated
function or gene product, noted sequence conservation, or
experimental support, were included in these sets. Short
genes were defined as genes with <300 bp of sequence. Puta-
tive horizontally transferred genes were obtained for 57 gen-
omes from HGT-DB (27), all having >100 genes predicted
horizontally transferred. The sequences used in this study as

well as tables with evaluation details are available at http://
www.CeBiTec.Uni-Bielefeld.DE/groups/brf/software/gismo.

Gene-finding algorithm

GISMO proceeds in three phases: (i) an initial search for
extrinsic support with HMM profiles of protein domains,
(ii) the training and application of an SVM-based intrinsic
classifier, and (iii) the merger of the different sources of evi-
dence and prediction of optimal start sites.

In the first phase, the forward and reverse strand of the
DNA sequence are translated in all three reading frames, and
the translations are searched for protein domains contained
in the Pfam-A database (28). Significant hits to the protein
domain models (e-value <0.01) are mapped onto the open
reading frames (ORFs) at the appropriate position in the
genomic sequence. These ORFs constitute the initial set of
domain-supported genes.

In the next phase, a composition-based SVM classifier is
trained and applied for gene identification. All genes carrying
a strongly supported domain motif (e-value <10�40) are used
as training instances for the CDS (coding sequence) class, and
ORFs located in the ‘shadow’ of these genes are used as the
training items for the non-coding ORF (nORF) class. More
specifically, shadow ORFs are used that are located on
another frame with an overlap of >90 bp with a domain-
supported gene. As input to the SVM classifier, all ORFs
are represented as vectors of sequence composition features.
We evaluated 10 feature types for their suitability as input:
oligonucleotides of length 3–9, amino acids and di-amino
acids, and a combination of codons and amino acids.

Vectors of sequence composition features are composed
from different sequence features F. In the case of oligonu-
cleotide features each F is the list of all words of one chosen
length k over the alphabet of all nucleotides {a,c,g,t} (for k ¼
3: F ¼ aaa,aac,..,ttt; for k ¼ 4: F ¼ aaaa,aaac, . . . , tttt). For
the amino acid and di-amino acid feature type each F is
defined in an analogous way: Here, F is the list of all
amino acids and di-amino acids, respectively (F ¼
Ala,Arg, . . . , Val for the amino acid feature type; F ¼
AlaAla, AlaArg, . . . , ValVal for the di-amino acid feature
type). Now, let fi be the feature at position i in one F. To rep-
resent each ORF x by a vector v ¼ (v1, . . . , vc) of sequence
composition features, we evaluate the frequencies of all
fi in x.

Figure 1. Class boundaries learned by the SVM with different kernel functions. Circles and crosses represent instances of a toy example training set. Colored
regions indicate the two classes learned by three example SVM applications. (A) A linear decision function learned with a linear kernel. (B) A polynomial kernel
allows realization of a polynomial separating surface. (C) With a Gaussian kernel the SVM can learn disjoint decision functions that surround a multitude of
‘islands’ of items from the same class (30).
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For the oligonucleotide feature type, only ‘in-frame’
oligonucleotides, i.e. oligonucleotides beginning at positions
1,4,7,. . . of x, are considered to account for the 3-periodicity
of the genetic code. vi is the in-frame frequency of oligonu-
cleotide fi in x, divided by the normalization factor r:

vi ¼
frequency of oligonucleotide f i at position 1‚4‚7‚ . . .of x

r

The normalization factor r for an ORF of length n is r ¼n/
3 for k ¼ 3, r ¼ n/3�1 for k 2 {4,5,6,} and r ¼n/3�2 for k 2
{7,8,9}.

For the (di-) amino acid feature type, vi are defined as:

vi ¼
frequency ofðdi-Þ amino acid f i in the translated sequence of x

r

where fi is the (di-) amino acid at position i in F, and the nor-
malization factor r for an ORF of length n is r ¼ n/3 for
amino acids and r ¼ n/3�1 for di-amino acids.

We found that 64-dimensional vectors of relative codon
frequencies (i.e. in-frame oligonucleotide trimers) allow the
most accurate discrimination between genes and nORFs and
are particularly well suited for the identification of short
genes and the training of accurate classifiers for plasmid
sequences. The SVM classifier is trained with a Gaussian
kernel function (30). Therefore, all CDS and nORFs from
the training set are implicitly mapped from the input space
of sequence composition to the feature space determined by
the Gaussian kernel. In this feature space a hyperplane is
learned by the SVM that optimally separates all training
ORFs from the two classes. A suitable Gaussian kernel para-
meter g and SVM parameter C (see the following section
‘support vector machine algorithm’) are determined in a
grid search of the parameter space by fivefold cross-
validation on the training set: The training set is partitioned
into five subsamples. In five steps one sample is retained as
the validation set, and an SVM is trained on all remaining
samples. In each step the validation set is classified with
the trained SVM, and the achieved classification accuracy
is measured. The cross-validation process is repeated in
a grid search for different values for the Gaussian kernel
parameter g and for the SVM parameter C. Finally, values
for g and C that result in the best classification accuracy are
chosen.

Subsequently, all ORFs longer than a specified minimum
length (set by the user) are extracted from the genomic
sequence and represented by a sequence composition vector.
These sequence composition vectors are mapped to the fea-
ture space determined by the Gaussian kernel. A class is
assigned to each vector depending on its relative location
with respect to the learned separating hyperplane. Based on
the distance to the learned hyperplane, an additional score,
called the SVM-score, can be calculated and used to classify
a novel item in one of the two classes (see the SVM algorithm
below).

In the third phase, domain- and composition-supported
CDSs are combined into one set. Gene starts are adjusted

from the ‘longest possible coding sequence’ to alternative
positions. All predictions supported by strong evidence for
the existence of a protein domain (e-value <0.01) or charac-
teristic CDS sequence composition (SVM-score >�0.1) are
kept. CDS candidates supported by weaker evidence
are removed if they overlap more than 50 bp with a reliable
candidate.

SVM algorithm

The SVM (15,16) is a supervised learning algorithm with a
strong theoretical foundation and high classification accuracy
for many applications. SVMs can learn accurate classifiers for
data sets that cannot be linearly separated in the input space
(30). This is achieved by the choice of a suitable kernel func-
tion to transform the input data into another feature space
where it is easier to compute an accurate classification
(Figure 1). By learning the optimal separating hyperplane
in this feature space, a non-linear classifier can be learned
in the original input space. In the case of GISMO, each
item of the training set (CDSs and nORFs) is represented
by a vector v of its sequence composition features. Given
a training set of m vectors vj ¼ (v1, . . . , vc)j (1<j<m) with
known class labels yj 2 f þ 1‚ � 1g(+1 for CDS, �1 for
nORF), the SVM in training learns a hyperplane (w, b) that
optimally separates the items of the two classes. The vector
w that is learned by an SVM is defined as

w ¼
Xm

j¼1

ajyjvj‚

where aj are weights that are assigned to each vj during train-
ing. b is a scalar (29). With a learned hyperplane (w, b), a
query vector v (an ORF represented by its vector of sequence
composition) can be classified based on the decision value
(the svm-score):

dðvÞ ¼
Xm

j¼1

ajyjkðv‚vjÞ þ b‚

where k(v, vj) is a kernel function (29). In the case of GISMO,
k (v, vj) is the Gaussian kernel: k(v, vj) ¼ e�gkv-vjk2

.
In other words: To calculate the decision value d(v), v is

compared with the sequence composition vj of each training
ORF using the Gaussian kernel function. If v is more ‘similar’
to the CDSs from the training set a positive score is obtained,
otherwise d(v) is negative. Depending on whether d(v) is lar-
ger than or smaller than 0, items are usually classified into
one of the two classes by the SVM. To increase the sensitivity
of GISMO, a relaxed cut-off is used—an ORF is classified as
CDS if d(v) > �0.6; otherwise it is classified as nORF.

The weights aj that are learned during training may be
bounded by a finite value C. Therefore, the SVM parameter
C influences the generalization ability of the learned classi-
fier. If C is set to a small value, outlying training items are
misclassified (29); this approach can be used to reduce over-
fitting in the case of small training sets. If C has a finite value,
the resulting classifier is called a ‘soft margin SVM’ (29).

With a Gaussian kernel disjoint decision functions can be
realized (30). The Gaussian kernel parameter g influences
the local behavior of the learned decision boundary. Setting
a value for g is a tradeoff between a well-fitted or more
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generalized decision boundary. A large value for g results in
irregular and noisy decision boundaries that are well fit to the
training data with more disjoint clusters. A small value for g ,
on the other hand, results in smooth and stable boundaries
that avoid overfitting and are more robust (30). With a poly-
nomial kernel a polynomial separating surface is learned in
the input space (Figure 1).

Measures of accuracy

By comparing the predicted genes with the annotated genes,
one can determine the number of correct gene predictions
(tp), the number of false gene predictions (fp), the number
of genes that were not found (fn), and the number of correctly
classified nORFs (tn).

Classification accuracy is measured by the sensitivity Sn ¼
tp

tpþfn
(percentage of correctly identified genes) and specificity

Sp ¼ tp
tpþfp

(percentage of correct predictions). The correlation

coefficient Cor ¼ ðN·Sn·Sp � tpÞ/½ðN·Sn�tpÞ· ðN·Sp�tpÞ�1/2

describes the agreement of predictions and annotation with
a single value in the range of [�1,1], where N ¼ tp + fp +
tn + fn. Only predictions and annotated CDSs with >90 bp
were included in the analysis. The accuracy for predicting
translation start sites was not evaluated. To predict translation
start sites GISMO uses GS-Finder, which already has been
found to be very accurate (31).

The receiver operating characteristic (ROC) (32) was used
to evaluate the suitability of different kernel functions for
gene identification with the sequence composition-based
SVM classifier. Calculation of the ROC allows a comparison
of different methods independent of an individual threshold
setting used to discriminate between items of two classes.
The ROC value corresponds to the area under a curve of
the sensitivity versus the false positive prediction rate [fp/
(fp + tn)] across the range of threshold settings. We here
use the ROC0.1, which corresponds to the area under the ROC
curve up to a false positive prediction rate of 10%.

Accuracy of different kernels for different types of
genomes

The SVM for the composition-based identification of genes
can be combined with a number of kernel functions that
learn different types of discriminatory functions in the input
space of sequence composition (Figure 1). We evaluated
the classification accuracy achievable with different kernel
functions for the genomes of four organisms in detail. For
each of these organisms, different properties are most pro-
nounced in genomic sequence composition. The 5.5 Mb gen-
ome of Escherichia coli O157:H7 contains a 1.4 Mb large

O157:H7-specific region, which has mostly been acquired
by lateral transfer (33). Half of this region corresponds to
24 prophages and prophage-like elements. The codon usage
of E.coli is also influenced by translational selection. In the
space of codon usage, E.coli genes separate into three classes,
containing horizontally acquired, typical, or highly expressed
genes (23). The genome of Treponema pallidum has a strong
strand-specific bias in codon usage, shows little evidence of
translation selection (22), and contains 76 horizontally trans-
ferred genes according to HGT-DB. The codon usage of
Chlamydia trachomatis genes reflects a complex mixture of
influences, the strongest being leading/lagging strand differ-
ences and translational selection (34). Its pronounced synteny
to the C. pneumonia genome is considered evidence of a
minimal foreign gene uptake (35). The codon usage of Buch-
nera aphidicola is generally very uniform, although a slight
leading/lagging strand bias is detectable (36). B.aphidicola
is a close relative of E.coli but has a reduced genome that
contains only a subset of 564 of the E.coli genes (37). It
does not contain horizontally acquired genes, according to
HGT-DB.

For all genomes the highest classification accuracy is
achieved with one of the non-linear kernel functions
(Table 1). Only for E.coli O157:H7 are the ROC0.1 values
obtained with the linear and polynomial kernel the same.
The most accurate classification for E.coli O157:H7 is
achieved with the Gaussian kernel. This shows that the Gaus-
sian kernel is well suited for gene prediction in genomes with
distinct gene classes. For the prediction of the genes most
strongly influenced by the leading/lagging strand bias of
the T.pallidum genome, both the polynomial and the Gaus-
sian kernel allow a more accurate prediction. Even for the
very homogeneous B.aphidicola genome where there is little
variation in codon usage, the classification accuracy
improves with the non-linear kernels. These results show
how a non-linear model for genes in the codon usage space
can improve the classification accuracy compared to a linear
classifier.

Overall the obtained differences in ROC values between
linear and non-linear kernels are low. Yet, owing to the high
number of ORFs, even small differences in ROC values may
indicate a considerable change in accuracy. ROC values can
be interpreted as the probability that when randomly picking
one positive and one negative item, the classifier will assign
a higher score to the positive item than to the negative. In the
optimal case, with a ROC value of 1, in 100% of cases a
higher score will be assigned to the positive item. For an
average genome with 3 Mb and �3000 ORFs, a change in
ROC of, say, 0.01 reflects a difference of 30 ORFs that are
correctly classified.

Table 1. ROC analysis of the classification accuracy achieved with different kernel functions

Organism Accession no. Linear Polynomial Gaussian Dbest-linear

E.coli O157:H7 BA000007 0.960 0.960 0.968 0.008
T.pallidum subsp. Pallidum str. Nichols AE000520 0.920 0.930 0.929 0.010
C.trachomatis D/UW-3/CX AE001273 0.976 0.982 0.987 0.009
B.aphidicola str. APS BA000003 0.986 0.991 0.989 0.005

The ROC0.1 measures the discriminatory power of the SVM in gene identification based on sequence composition with a linear, polynomial or Gaussian
kernel function.
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Validating novel genes by comparative analysis

To validate the novel genes predicted by GISMO for the pub-
lished chromosomes, we tested for conservation of sequence,
location and functional context, which is one of the strongest
indicators of a biologically valid prediction (38). The chro-
mosomal arrangement of the predictions and their surround-
ing genes was compared to the arrangement of homologous
genes in other microbial genomes. Information about gene
clusters in different organisms was obtained from the SEED,
which is a manually curated comparative genomic database
(39). Novel predictions homologous to non-hypothetical
entries in this database (80% of the query sequence aligned
using BLAST), and located in gene clusters conserved bet-
ween two or more organisms (with at least two of the three
adjacent upstream and downstream genes also found in the
neighborhood of the homolog) were categorized as ‘probably
coding’ (Figure 2).

Implementation

GISMO is implemented in Perl using an object-oriented
approach. From the HMMER package (40), hmmpfam is
used to search the Pfam-A database. The parallel execution

of hmmpfam on a high performance computing resource is
facilitated by the use of a DRMAA-compliant interface
(http://www.drmaa.org/). The results of the domain searches
with hmmpfam are parsed with the BioPerl library (41). For
the SVM-based classification the LIBSVM library and python
scripts are utilized (http://www.csie.ntu.edu.tw/~cjlin/libsvm),
which perform the scaling of the input data, cross validation
for model selection, training of the SVM and the SVM-
based classification. The GS-Finder software is used to iden-
tify translation start sites.

RESULTS

Accuracy for prokaryotic chromosomes

The accuracy of GISMO was evaluated with 165 publicly
available complete prokaryotic chromosomes. Overall,
GISMO is both highly sensitive and specific in predicting
prokaryotic genes, with a value of 94.3% for both measure-
ments. For the function-known genes, which are annotated
with either a functional description or experimental evidence,
the sensitivity of GISMO is even 98.9%. We also found that
4336 (16.4%) of the novel GISMO predictions that are not

Figure 2. New candidates for the thiS gene of thiamin biosynthesis in the genomes of seven organisms. Homologous genes of the different organisms are drawn
in the same color. The newly predicted thiS genes (hatched arrows) and homologs of the adjacent genes occur in conserved gene clusters. Genes with no sequence
similarity to any of the displayed genes are colored grey. Overlapping genes are drawn below the continuous line. The displayed annotation is part of the thiamin
biosynthesis pathway annotation of the SEED system, which is maintained and manually curated by human experts (36).

544 Nucleic Acids Research, 2007, Vol. 35, No. 2



contained in the annotations are supported either by a signifi-
cant protein domain motif (2423) or by the presence of
homologs and a conserved genomic context found in the gen-
omes of other organisms (4329, see ‘Identification of novel
genes in the published genomes’ below).

Compared to two other popular gene finders that are freely
available, GISMO is the most accurate (Table 2). Figure 3
shows a Venn diagram of the sets of genes predicted by
GISMO and the gene finders Glimmer and CRITICA. We
point out the high specificity of our program, which
predicts �26 000 additional genes for the 165 chromosomes
in addition to the currently annotated ones, compared with
�115 000 additional predictions for Glimmer. Compared to
CRITICA, which is very specific and produces reliable
assignments, GISMO is more sensitive. GISMO’s gene-
finding accuracy does not seem significantly affected by the
genomic GC content: For 42 genomes with a GC content
>56%, the sensitivity is 93.5% and the specificity 92.9%
(Table 2), <1% (2%) different from the overall accuracy
achieved. For the function-known genes of the 42 GC-rich
genomes, the sensitivity of GISMO is not reduced (99%).

Accuracy for short genes

The knowledge of the short genes of an organism is crucial
because many proteins with important cellular functions are
encoded by genes with <300 bp (e.g., regulatory or ribosomal

proteins). Short genes are generally more difficult to identify
than longer genes because their sequence carries less infor-
mation that can be evaluated for classification. Figure 4
shows a comparison of the gene-finding accuracy for GISMO,
Glimmer, and CRITICA for different minimum gene lengths.
The results clearly show that the classification accuracy
decreases with decreasing gene length. For short genes
(<300 bp) GISMO has the highest overall prediction accuracy
of the three programs, with a sensitivity and specificity of
63% and 69%, respectively (Table 3). CRITICA makes
the most reliable predictions but identifies only 46% of the
genes. Glimmer is the most sensitive (72%), but 56% of
the predictions are false. Statistics suggest that a considerable
fraction of the short annotated genes might, in fact, not be
genes (42,43) (also, a large fraction of short genes are anno-
tated as ‘hypothetical protein’), which makes an evaluation
with more reliable gene sets especially important. For the
function-known genes of the short genes, GISMO is also the
most sensitive program, whereby sensitivity increases by
>23% to 86.4%. GISMO thus has the highest overall classifica-
tion accuracy and is the most sensitive program for detec-
tion of function-known short genes.

Identification of horizontally transferred genes

Genes obtained by horizontal gene transfer can possess an
unusual codon usage, base composition, and GC content
(44). Therefore, it can be difficult to identify these genes
based on the evaluation of intrinsic sequence properties. Gen-
erative methods such as Markov chains or hidden Markov
models, which create a mean-based model of sequence com-
position by averaging over the sequence properties of their
training collections, can have difficulties with genes that are
best described by more than one distribution. This issue has
been addressed by the inclusion of an additional model for
the genes with ‘atypical’ sequence composition (8). The
SVM has the convenient feature that it learns to optimally
discriminate the genes from the non-coding ORFs during
the training phase. In an unsupervised fashion, it discovers

Table 2. Gene-finding accuracy for 165 prokaryotic chromosomes

Gene finder Cor Sn (%) Sp (%)

GISMO 0.94 (0.93) 94.3 (93.5) 94.3 (92.9)
Glimmer 0.87 (0.77) 94.0 (89.8) 83.3 (70.0)
CRITICA 0.92 (0.91) 88.8 (87.1) 97.1 (96.2)

The overall agreement of annotation and predictions (Cor), the sensitivity, and
the specificity for the gene finders GISMO, Glimmer and CRITICA are shown.
The values in parentheses are for the subset of GC-rich genomes (GC content >
56%) in the data set.

Figure 3. Comparison of the genes predicted by GISMO and two other gene finders (Glimmer and CRITICA) for 165 prokaryotic chromosomes (with 471 884
annotated genes and 333 259 function-known genes in total). (A) Sensitivity (percentage of identified genes) in predicting genes, whereby the numbers in the
overlapping areas specify the fractions of genes identified by more than one program. The absolute numbers are given in parentheses. (B) Specificity (percentage
of correct predictions) of predictions made by one or more of the programs. The absolute numbers of false predictions are given in parentheses. (C) Sensitivity for
the function-known genes. The number of correct predictions is given in parentheses.
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the shape that is most suitable for discrimination—which can
be non-linear or even disjoint for genes distributed over mul-
tiple clusters in the input space (Figure 1). This property is
convenient for gene prediction, as horizontal gene transfer
is only one of several forces influencing sequence composi-
tion and affecting different genomes to different extents,
and for each case the optimally separating boundaries can
be found anew.

GISMO predicted 91.1% of the probably horizontally
acquired genes with atypical sequence composition that
were obtained from HGT-DB for 57 genomes. Of the
function-known genes with atypical composition, 98.5%
were identified, which is very similar to the overall sensitivity
for prokaryotic chromosomes (98.8%), and significantly
higher than the sensitivity of the other programs (Table 4).

Gene-finding accuracy for plasmids

Short DNA sequences such as plasmids yield only small sets
for the training of intrinsic sequence models. For complex
models with many parameters this situation can lead to over-
fitting and reduced prediction accuracy. GISMO is well suited
for classification based on small training data sets because of
(i) the use of a ‘soft margin,’ which allows the misclassifica-
tion of outliers during training and avoids overfitting of

SVMs, and (ii) the low dimensionality of the input space of
codon usage, which we found to be optimal for gene predic-
tion with a composition-based SVM.

For the 223 plasmid sequences >10 kb, GISMO achieves
an average sensitivity of 89.1% and specificity of 80.3%
and has the highest overall accuracy of the three programs
(Table 5). The sensitivity increases to 96.1% for the function-
known genes of the plasmids. Although this is lower than for
the prokaryotic chromosomes, GISMO is very sensitive and
specific, if one considers the size of the training sets avail-
able. For example, the two IncQ-like antibiotic resistance
plasmids pIE1115 and pIE1130 (44) are the shortest
sequences used in this survey. Both are 10 687 bp long, but
differ in sequence and gene content. For pIE1115, the posi-
tive training set for the SVM consisted of five domain-
supported genes, the negative training set of 60 shadow ORFs.
Eight of the ten annotated genes were correctly identified,
with only three additional predictions. For pIE1130, seven
annotated genes were initially identified by their protein
domain motifs. The training set for the composition-based
classifier consisted of the seven domain-supported genes
and 79 shadow ORFs. The SVM then identified two of the
remaining four annotated genes, with only one additional pre-
diction. That the classifier is able to accurately distinguish
between genes and nORFs is demonstrated by the following
numbers: For pIE1115, 120 of the 123 non-coding ORFs
longer than 90 bp were correctly assigned, and 125 of 126
for pIE1130.

Comparison with EasyGene and GenemarkS

GISMO was also compared with the HMM-based programs
EasyGene and GenemarkS, considered among the most accu-
rate bacterial gene finders (3,7). The accuracy was evaluated
on a restricted test set as both programs are only accessible
via a public web interface. While GISMO and GenemarkS
automatically derive training sets with genome-specific com-
positional sequence properties, EasyGene can be run only via
its Web interface with pretrained models. Pretrained models
are available only for a limited number of sequenced gen-
omes. Therefore, the performance of GISMO, EasyGene
and GenemarkS was compared for the 25 of the 365 genomic
sequences for which a pretrained EasyGene model was avail-
able. For these 25 genomic sequences, all three programs dis-
play a high accuracy (Table 6). GISMO has the highest
overall accuracy, with an average sensitivity and specificity
of �95%. GenemarkS has the highest average sensitivity
for all genes, whereas EasyGene is most reliable. For the
function-known genes, both GenemarkS and GISMO identify
�99% and thus are 3.4% more sensitive than EasyGene.
EasyGene is more specific (+2.1%) but less sensitive than
GISMO (�4.0%).

Table 3. Accuracy of GISMO, Glimmer and CRITICA in predicting short

genes (<300 bp)

Gene finder Cor Sn Snfk (%) Sp

GISMO 0.64 63.0 86.4 69.0
Glimmer 0.54 72.0 83.7 44.0
CRITICA 0.60 46.0 67.4 84.0

Snfk denotes the sensitivity in detecting function-known genes.

Table 4. Sensitivity in the detection of probably horizontally acquired genes

with atypical sequence composition

Gene finder Sn (%) Snfk (%)

GISMO 91.1 98.5
Glimmer 87.3 94.4
CRITICA 72.8 86.3

Snfk denotes the sensitivity in detecting function-known genes.

Table 5. Gene-finding accuracy for 223 plasmids >10 kb

Gene finder Cor Sn (%) Snfk(%) Sp (%)

GISMO 0.82 89.1 96.1 80.3
Glimmer 0.79 89.3 94.4 74.5
CRITICA 0.58 45.4 55.7 87.3

Snfk denotes the sensitivity in detecting function-known genes.

Figure 4. Sensitivity and specificity of predictions for different gene lengths.
The values for GISMO, CRITICA, and Glimmer are depicted in green, red,
and blue, respectively. (A) Relation of the gene length to the sensitivity and
specificity of the three programs. The sensitivity is displayed as a solid line,
the specificity as a dashed line. (B) Relation of the gene length to the
sensitivity for function-known genes.
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Identification of novel genes in the published genomes

Since the current annotations are missing many important
genes (38), the novel predictions of GISMO were further
investigated. For the 165 genomes used in this survey,
26 454 of the 468 368 GISMO predictions did not match an
annotated gene. A strong indicator for a biologically active
gene is the presence of a significant motif of a Pfam protein
domain. Of the newly predicted genes, 2423 (9.2%) exhibit
such motifs with strong statistical support (E-value <10�10)
and do not overlap with any annotated gene by >10 amino
acids. An additional 4329 (16.4%) new predictions are part
of conserved gene clusters found in the same or similar orders
in other microbial genomes (see Section ‘Material and
Methods’ above). In total, 4336 (16.4%) of the novel
GISMO predictions are supported by external sources of evi-
dence (Pfam hit or a conserved cluster) that suggest that these
predictions are truly biologically active genes. We describe
several interesting examples below:

The thiS gene encodes a sulfur-carrying protein that is
involved in the biosynthesis of thiamin (vitamin B1) (45).
The thiS gene has been identified in a cluster with the thiE,
thiG and thiF genes in a wide range of genomes (46) but is
currently unknown for Clostridium tetani E88, Photobac-
terium profundum SS9, Shigella flexneri 2a 301, Shigella
flexneri 2a 2457T, Wigglesworthia glossinidia, Yersinia
pestis CO92, and Yersinia pestis KIM. For each of these
genomes, GISMO predicted a novel probably-coding gene
with significant homology to known thiS orthologs. The
novel predictions are strongly supported by their genomic
context, which comprises clusters of known genes of thiamin
biosynthesis (Figure 2).

GISMO also predicted 99 genes encoding ribosomal pro-
teins that are currently missing from the genome annotations.
For example, two novel GISMO predictions for E.coli
CFT073 and Wolinella succinogenes DSM 1740 are very
similar to the ribosomal protein L32 in E.coli K12 and Heli-
cobacter pylori 26695. The homologs of the two novel predic-
tions and their adjacent genes appear in a conserved order in
various organisms (Figure 5). Many of the probably-coding
genes are as short as the ribosomal protein-encoding genes,
a situation that explains why they were missed before. In sum-
mary, our results indicate that a considerable percentage of our
additional predictions are novel and currently unknown
protein-encoding genes that are missing from the annotations.

CONCLUSIONS

The gene finder GISMO presented in this work uses state-of-
the-art techniques from computational biology and machine
learning to accurately predict protein-encoding genes for
prokaryotic genome sequences. Initially, evidence for genes

is compiled by protein-domain searches with profile
HMMs, which are a well-known and highly accurate means
for finding members of protein families and allow a more
accurate discrimination between signal and noise than pair-
wise sequence comparisons. They also allow the detection
of genes that have protein domains in different order from
that of known proteins. An SVM-based classifier is used for
gene prediction based on sequence composition. The SVM is
a machine learning technique that is well suited for prokary-
otic gene prediction because it guarantees the unsupervised
discovery of the shape in the space of sequence composition
that is best suited for discrimination between genes and non-
coding ORFs. The distribution of microbial genes in the
space of sequence composition is affected by various influ-
ences that are pronounced to different extent for different
genomes and thus require a careful and time-consuming anal-
ysis (34,36). The SVM allows the program to learn an accu-
rate classifier, even when the distribution of items in this
space is influenced by various factors such as gene expression
rate, acquisition by horizontal transfer, or leading/lagging
strand-related features. Gene identification for genomes in
all cases was improved with non-linear classification func-
tions, demonstrating the suitability of this approach.

In our extensive evaluation, we found GISMO to be very
accurate. For the prokaryotic chromosomes, GISMO has an
overall sensitivity and specificity of 94.3%. For the genes
annotated with either a function or experimental evidence,
the sensitivity is 98.9%. In comparison with the two popular
programs Glimmer and CRITICA, which are freely available
for a local installation, we found GISMO to be the most accu-
rate also for finding genes shorter than 300 bp, for identifying
genes with atypical sequence composition, and for predicting
genes for short genomic sequences such as plasmid
sequences. What makes this observation even more signifi-
cant is the fact that GISMO is the only one of the three pro-
grams that was not used for annotating any of the genomes
used in the evaluation.

In a comparison of GISMO to EasyGene and GeneMarkS
on 25 genomic sequences, all three programs were very
accurate, but GISMO slightly outperformed the other two in
terms of overall accuracy. Therefore, GISMO presents an

Table 6. Gene-finding accuracy for 25 genomic sequences

Gene finder Cor Sn (%) Snfk(%) Sp (%)

GISMO 0.943 95.1 99.0 94.7
EasyGene 0.930 91.1 95.5 96.8
GenemarkS 0.938 96.0 99.1 93.0

Snfk denotes the sensitivity in detecting function-known genes.

Figure 5. Candidates for missing l32 genes in E.coli CFT073 and
W.Succinogenes DSM. Homologous genes are displayed in the same color.
The novel predictions (hatched arrows) and homologs of the surrounding
genes occur in conserved order in closely related genomes.
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open source alternative to these programs for local use and
integration into genome annotation pipelines.

For the prediction of translation initiation sites, GISMO
uses the GS-Finder software. Since GS-Finder has already
been shown to be very accurate (31), the accuracy of
GISMO in gene start site prediction was not evaluated in
this survey.

For the public genomes, we found several thousand new
predictions that are strongly supported by external evidence
and very likely correspond to real but unannotated genes.
Many of these are short, such as 99 missing ribosomal
protein-encoding genes, a fact that might explain why they
were not found before.

The low-dimensional input space of codon frequencies that
we found to be optimal for gene identification with the SVM-
based compositional classifier allows accurate classification
for short genes, as well as for short genomic sequences
with a low number of available training items. SVMs are
also intrinsically well suited for small data sets because
they avoid overfitting the learned model by using a ‘soft mar-
gin’ in the model optimization step.

GISMO has already been used to predict genes in more
than 20 genome annotation projects, for the reannotation of
genomes as well as in the international effort to annotate a
thousand genomes (39). We hope that our new gene finder
will be widely used in microbial genome annotation and rean-
notation projects and will contribute to the generation of
high-quality annotations.
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