Chem. Ber. 118, 4415-4425 (1985)

Temperatur- und Lösungsmitteleinfluß auf die ¹H-NMR-Spektren von 2-Thia-10,11-diaza[3.2]metacyclophan-10-en

Uwe Dittrich und Hans-Friedrich Grützmacher*

Fakultät für Chemie der Universität Bielefeld, Universitätsstraße, D-4800 Bielefeld

Eingegangen am 25. Januar 1985

2-Thia-10,11-diaza[3.2]metacyclophan-10-en (1) liegt nach dem 1 H-NMR-Spektrum in CDCl₃ als 2:1-Gemisch der syn- und anti-Konformation vor, 2-Thia[3.2]metacyclophan-10-en (2) und 2-Thia[3.2]metacyclophan (3) dagegen einheitlich in der anti-Konformation. Aus der Temperaturabhängigkeit der 1 H-NMR-Spektren von 1 werden freie Aktivierungsenthalpien der Konformationsumwandlungen $\Delta G^{+}_{anti\rightarrow anti} = 56.7 \pm 1.0 \text{ kJ mol}^{-1}$ und $\Delta G^{+}_{syn\rightarrow anti} = 56.3 \pm 1.0 \text{ kJ mol}^{-1}$ erhalten. Bei der gegenseitigen Umwandlung der Enantiomeren eines Konformeren wird jeweils das andere durchlaufen. – In Aceton oder Acetonitril liegt 1 einheitlich als syn-Konformeres vor. In CDCl₃/[D₆]Aceton bzw. CDCl₃/[D₃]Acetonitril läßt sich die Gleichgewichtsverschiebung zugunsten syn-1 1 H-NMR-spektroskopisch gut verfolgen. Zusätze von Hexachloraceton oder Di-tert-butylketon zu einer CDCl₃-Lösung von 1 haben keinen Effekt. Es wird gezeigt, daß diese Lösungsmittelabhängigkeit des Konformerengleichgewichts von 1 durch eine spezifische Solvatation bewirkt wird, bei der ein Lösungsmittelmolekül in die Molekülhöhle der syn-Konformation eingelagert wird. 2 und 3 zeigen diesen Lösungsmitteleffekt nicht.

Temperature and Solvent Effects on the ¹H NMR Spectra of 2-Thia-10,11-diaza[3.2]metacyclophan-10-ene

2-Thia-10,11-diaza[3.2]metacyclophan-10-ene (1) exists in CDCl₃ as a 2:1 mixture of the syn- and anti-conformers, whereas 2-thia[3.2]metacyclophan-10-ene (2) and 2-thia-[2.3]metacyclophane (3) are pure anti-conformers as shown by their ¹H NMR spectra. The free activation enthalpies of the conformational flipping of $1 \Delta G_{syn-anti}^+ = 56.7 \pm 1.0$ kJ mol⁻¹ and $\Delta G_{syn-anti}^+ = 56.3 \pm 1.0$ kJ mol⁻¹ are obtained by temperature-dependent ¹H NMR spectra, and it is shown that the mutual interconversion of the enantiomers of one conformer occurs via the other conformer. — 1 exists in acetone and acetonitrile as the pure syn-conformer. In CDCl₃/[D₆]acetone or CDCl₃/[D₃]acetonitrile the shift of the equilibrium composition in favor of syn-1 can easily be followed by ¹H NMR. The addition of hexachloroacetone or di-tert-butyl ketone to a solution of 1 in CDCl₃ has no effect. It is shown, that this solvent effect on the conformational equilibrium of 1 is due to a specific solvation and inclusion of a solvent molecule into the molecular cage formed by the syn-conformers of 1, 2 and 3 do not show this solvent effect.

Metacyclophane mit zwei- und dreigliedrigen Brücken zeigen interessante konformative Effekte¹. Diese werden auch für das in der voranstehenden Arbeit² beschriebene 2-Thia-10,11-diaza[3.2]metacyclophan-10-en (1) beobachtet, das nach Aussage des ¹H-NMR-Spektrums (Abb. 1) in CDCl₃-Lösung als Gemisch

der syn- und anti-Konformation vorliegt. Der Einfluß der Azobrücke im Heterametacyclophan 1 auf die Flexibilität und Konformation wird in dieser Arbeit näher untersucht und mit verwandten Metacyclophanen verglichen.

Beim unsubstituierten [2.2] Metacyclophan ist bisher nur die anti-Konformation bekannt, ebenso bei [2.2]Metacyclophan-1-en und -1,9-dien¹⁾. Diese anti-Formen können im ¹H-NMR-Spektrum durch eine Hochfeld-Verschiebung des Signals des inneren Protons H_i (s. auch anti-1) leicht erkannt werden. Die syn-Konformation liegt aber bei einigen Derivaten des [2.2] Metacyclophans vor, in denen H_i durch einen größeren Rest ersetzt worden ist¹⁾. Dies steht mit der Vorstellung in Einklang, daß die anti-Konformation die stabilere Form ist. Es ist daher überraschend, daß für [3.3] Metacyclophan bei Raumtemperatur ausschließlich die syn-Konformation ¹H-NMR-spektroskopisch nachgewiesen werden kann³; allerdings wurde eine Temperaturabhängigkeit der NMR-Spektren nicht untersucht. Ebenso liegt 2,11-Dithia[3,3]metacyclophan nach neueren Untersuchungen4) fast ausschließlich in der syn-Form vor, und die im 1H-NMR-Spektrum zu beobachtende Beweglichkeit beschränkt sich auf ein Durchschwingen der Thiabrücken. Für in 2-Stellung substituierte [3.2] Metacyclophane ist dagegen aus der Temperaturabhängigkeit der ¹H-NMR-Spektren auf eine Umwandlung der beiden anti-Konformationen ineinander geschlossen worden⁵⁾; es bleibt aber unklar, ob dabei die syn-Konformation beteiligt ist. Ähnliche konformative Bewegungen werden auch für 2-Thia[3,2]metacyclophan (3) diskutiert⁶. Auch in diesem Fall läßt sich die syn-Konformation im ¹H-NMR-Spektrum nicht direkt nachweisen.

1) Temperaturabhängigkeit der ¹H-NMR-Spektren von 1

Das bei 220 K in CDCl₃ aufgenommene 300-MHz-¹H-NMR-Spektrum von 1 ist in Abb. 1 den Spektren von 2-Thia[3.2]metacyclophan-10-en (2) und 2-Thia[3.2]metacyclophan (3) gegenübergestellt⁷⁾. 2 zeigt für das innere Proton H_i nur ein Signal bei $\delta = 6.17$, das durch Kopplung mit den *meta*-ständigen Protonen zu einem Triplett fein aufgespalten ist.

Demnach liegt 2 in CD₂Cl₂ bei 220 K konformativ einheitlich vor. Für 3 ist bekannt⁶, daß es unter diesen Bedingungen einheitlich in der *anti*-Konformation vorliegt.

Eine sichere Zuordnung der bevorzugten Konformation von 2 ist allein anhand des NMR-Spektrums schwierig. Das gesättigte Ringsystem des 2-Thia[3.2]metacyclophans (3) in der *anti*-Konformation liefert im 300-MHz-¹H-NMR-Spektrum für das innere Proton H_i ein Signal bei $\delta = 5.15$ und für die Protonen der CH₂S-Gruppe der *starren* S-haltigen Brücke das für eine *anti*-Konformation typische Signal¹⁾ eines AB-Systems bei $\delta = 3.47$ und 3.84 (J = -13.4 Hz), in sehr guter Übereinstimmung mit den Literaturwerten⁶⁾. Demgegenüber ist bei 2 das Signal für H_i im 300-MHz-¹H-NMR-Spektrum nach $\delta = 6.17$ verschoben und das Signal

Chem. Ber. 118 (1985)

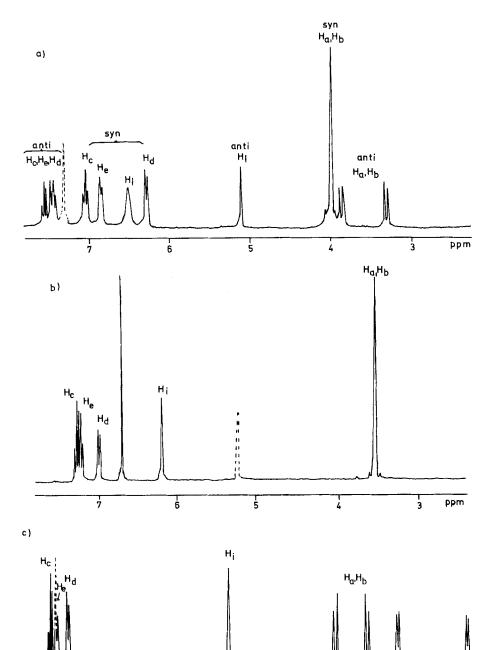


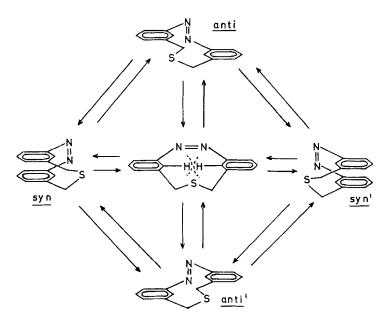
Abb. 1. 300-MHz-¹H-NMR-Spektren (Bruker AM 300) von a) 2-Thia-10,11-diaza[3.2]metacyclophan-10-en (1, CDCl₃, 220 K) b) 2-Thia[3.2]metacyclophan-10-en (2, CD₂Cl₂, 220 K) c) 2-Thia[3.2]metacyclophan (3, CDCl₃, 220 K)

Chem. Ber. 118 (1985)

ppm

der Protonen der CH_2SCH_2 -Brücke zu einem Singulett bei $\delta = 3.58$ verschmolzen, wie es für eine syn-Konformation mit beweglicher S-haltiger Brücke erwartet werden kann^{1,8)}. Gegen eine svn-Konformation von 2 spricht aber die Lage der Signale der übrigen drei Protonen an den aromatischen Ringen (Dubletts mit Feinaufspaltung bei $\delta \approx 7.01$ und ≈ 7.25 , Triplett bei ≈ 7.31), die mit denen für die anti-Konformation von 3 ($\delta \approx 7.11, 7.26, 7.34$) bis auf eine geringfügige Verschiebung des zur Doppelbindung ortho-ständigen Protons übereinstimmt. Für eine syn-Konformation ist jedoch eine deutliche Verschiebung dieser Signale von 2 zu höherem Feld zu erwarten¹⁾. Demnach liegt 2 in CD₂Cl₂-Lösung ebenfalls in der anti-Konformation vor, und die starke Verschiebung des Signals für Hi um ca. 1 ppm gegenüber 3 muß auf ein Auseinanderschieben der Benzolringe in der stufenförmigen anti-Konformation zurückgeführt werden, das durch die starre Ethenobrücke bewirkt wird. Ähnliche Effekte sind aus den NMR-Spektren des [2.2] Metacyclophan-9-ens bekannt¹⁾. Das Auftreten eines Singuletts für die Protonen der CH₂SCH₂-Brücke bedeutet dann aber, daß die beiden Enantiomeren von anti-2 rasch äquilibrieren.

Bei 3 erfolgt eine schnelle Umwandlung der beiden *anti*-Konformationen erst bei höheren Temperaturen⁶.


Im Gegensatz zu 2 und 3 läßt das bei 220 K in CDCl₃ aufgenommene ¹H-NMR-Spektrum (Abb. 1) von 1 erkennen, daß ein Gemisch der *syn*- und *anti*-Konformationen im Verhältnis 2:1 vorliegt. 1 ist bisher das einzige konformativ bewegliche Metacyclophan, für das beide Konformationen nebeneinander beobachtet werden können. Bemerkenswerterweise überwiegt dabei der Anteil der *syn*-Konformation.

Eine Zuordnung der Signale für die verschiedenen Protonen der syn- und anti-Konformation, die durch Entkopplungsexperimente gestützt wird, läßt sich wie folgt treffen: Die Signale des AB-Spinsystems bei $\delta=3.28$ und 3.86 entstehen durch die geminale Kopplung $(J=-12.8~{\rm Hz})$ der benzylischen Protonen der starren Thioetherbrücke der anti-Konformation. Für die syn-Konformation liefern diese Protonen dagegen nur ein etwas verbreitertes Singulett bei $\delta=3.99$; offenbar bewirkt ein Durchschwingen der Thioetherbrücke in syn-1 wie bei ähnlichen Metacyclophanderivaten¹⁾ ein Verschmelzen der für das AB-Spinsystem erwarteten Signale. Das auffallende Singulett bei $\delta=5.10$ entspricht dem stark hochfeldverschobenen Signal des inneren Protons H_i der anti-Konformation. H_i der syn-Konformation liefert dagegen ein Singulett bei $\delta=6.50$, das inmitten der Signale der übrigen Protonen H_c , H_d , H_e am aromatischen Ring dieser Konformation liegt. Von diesen Signalen entsteht das Triplett bei $\delta=7.04$ ($J=7.2\pm0.1~{\rm Hz}$) durch H_c , während das Dublett bei

6.27 ($J_{\rm c,d}=7.35$ Hz) dem zur Azogruppe o-ständigen $H_{\rm d}$ und das Dublett bei 6.84 ($J_{\rm c,e}=7.11$ Hz) dem verbleibenden Proton $H_{\rm e}$ zugeordnet wird. Es ist bemerkenswert, daß in syn-1 mit den übereinander gestapelten Benzolringen die Signale der Protonen $H_{\rm c}$, $H_{\rm d}$ und $H_{\rm e}$ am Benzolring in dem vergleichsweise breiten Bereich $\delta=6.2-7.1$ erscheinen. Da die Benzolringe wegen der unterschiedlichen Brücken nicht parallel, sondern schief zueinander angeordnet sind, werden die Protonen an den verschiedenen Positionen offensichtlich deutlich unterschiedlich durch den Anisotropieeffekt der anderen Phenylgruppe beeinflußt. Für anti-1 werden die Signale der Protonen $H_{\rm c}$, $H_{\rm d}$ und $H_{\rm e}$ dagegen in dem engen Bereich bei $\delta=7.4-7.6$ gefunden ($H_{\rm c}$ Triplett $\delta=7.54$, $J=7.5\pm0.1$ Hz; $H_{\rm d}$ Dublett $\delta=7.40$, $J_{\rm c,d}=7.45$ Hz; $H_{\rm c}$ Dublett $\delta=7.44$, $J_{\rm c,e}=7.60$ Hz). Dieser Unterschied in den Signalen der Protonen an den aromatischen Ringen der syn- und anti-Konformation unterstützt die oben getroffene Zuordnung der anti-Konformation für 2.

Das ¹H-NMR-Spektrum von 1 in CDCl₃ ist deutlich temperaturabhängig und zeigt bei Raumtemperatur sehr breite Signale. Bei 290 ± 5 K ist die Koaleszenz der Signale der syn- und anti-Form zu beobachten, die eine schnelle konformative Umwandlung von 1 anzeigt. Ausgehend von der anti-Konformation ist dabei nicht nur ein Umklappen in das syn-Konformere denkbar, sondern ebenso eine über einen planaren Übergangszustand verlaufende Umwandlung direkt in das Enantiomere (anti'-1) des planar-chiralen anti-Konformerenpaares (Schema 1). Analoge Überlegungen gelten für das syn- und syn'-Konformere, die der meso-Form von 1 entsprechen. Auch für andere konformativ bewegliche Metacyclophane ist bisher nicht bekannt¹), welcher Mechanismus für die anti ≠ anti'-Umwandlungen verantwortlich ist.

Schema 1

Chem. Ber. 118 (1985)

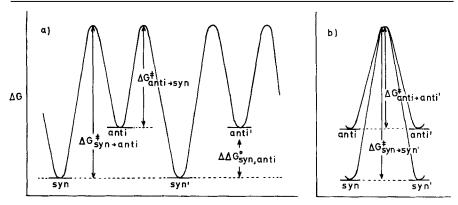


Abb. 2. Freie-Energie-Profil (ΔG) (schematisch) für Konformationsumwandlungen von 1
a) Umwandlungssequenz syn→anti→syn'→anti'.

b) Unabhängige Umwandlung syn→syn' und anti→anti'

Durchläuft das anti-Konformere beim Umklappen in sein anti'-Enantiomeres die syn-Konformation, so ergibt sich das in Abb. 2a) gezeigte Energieprofil für die Isomerisierungsreaktion. In diesem Fall müssen die freien Aktivierungsenthalpien für die Umwandlung anti \rightarrow anti' ($\Delta G^+_{anti}\rightarrow_{anti'}$) und $syn\rightarrow_{anti'}$ ($\Delta G^+_{syn}\rightarrow_{anti'}$) gleich sein, weil der gleiche Übergangszustand durchlaufen wird. Es gilt dann:

$$\begin{array}{lll} \Delta G^{+}_{anti \rightarrow anti'} = \Delta G^{+}_{syn \rightarrow anti'} = \Delta G^{+}_{syn \rightarrow syn'} > \Delta G^{+}_{anti \rightarrow syn} \\ & \text{und} & \Delta \Delta G^{\circ}_{syn,anti} = \Delta G^{+}_{syn \rightarrow anti'} - \Delta G^{+}_{anti \rightarrow syn} \end{array}$$

Ist dagegen die syn-Konformation keine Zwischenstuse der Umwandlung anti—anti', so sind nach dem in Abb. 2b) gezeigten Energieprosil unterschiedliche freie Aktivierungsenthalpien für die Umwandlungen anti—anti' und syn—syn' zu erwarten. Da bei 1 NMR-spektroskopisch nicht nur die gegenseitige Umwandlung der energetisch gleichwertigen anti-Konformationen versolgt werden kann, sondern auch die der ungleichen syn- und anti-Konformationen, ergibt sich hier die Möglichkeit, zwischen beiden Umwandlungsmechanismen experimentell zu unterscheiden.

Mit Hilfe der Gutowsky-Gleichung⁹⁾ wird aus der Koaleszenztemperatur $T_c = 290 \pm 5$ K und der Frequenzdifferenz $\delta v = 168.1$ Hz der Protonen der Thioetherbrücke von anti- $1 \Delta G^{\pm}_{anti \rightarrow anti'} = 56.7 \pm 1.0$ kJ mol⁻¹ erhalten. Für das Gleichgewicht der energetisch unterschiedlichen syn- und anti-Konformeren von 1, die in einem Molverhältnis [syn]/[anti] = 2.02 vorliegen, können $\Delta G^{\pm}_{syn \rightarrow anti}$ und $\Delta G^{\pm}_{anti \rightarrow syn}$ nach Shanan-Atadi und Bar-Eli¹⁰⁾ aus den Molenbrüchen der Konformeren, der Frequenzdifferenz δv der Signale einander entsprechender Protonen der syn- und anti-Form und der Koaleszenztemperatur T_c dieser Signale bestimmt werden. Für 1 bieten sich dazu die Signale von H_i in beiden Konformationen mit $\delta v = 419.4$ Hz an, die ebenfalls bei $T_c = 290 \pm 5$ K verschmelzen. Daraus ergibt sich $\Delta G^{\pm}_{syn \rightarrow anti} = 56.3 \pm 1.0$ kJ mol⁻¹, $\Delta G^{\pm}_{anti \rightarrow syn} = 54.6 \pm 1.0$ kJ mol⁻¹ und $\Delta \Delta G^{\circ}_{syn,anti} = 1.7$ kJ mol⁻¹. Der Wert für $\Delta G^{\pm}_{syn \rightarrow anti}$ entspricht sehr gut dem vorher erhaltenen Wert $\Delta G_{anti \rightarrow anti'}$ für die gegenseitige Umwandlung beider anti-

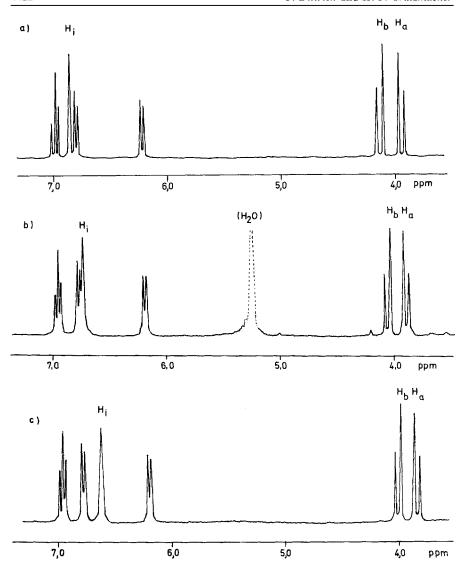
Konformeren. Dies ist ein deutlicher Hinweis auf einen Mechanismus, bei dem beim Umklappvorgang zwischen zwei gleichen Konformationen jeweils die Stufe des anderen Konformeren durchlaufen wird.

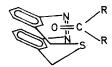
In 2-Stellung substituierte [3.2]Metacyclophane besitzen ein $\Delta G_{anti \rightarrow anti'}^{\pm} =$ 66-70 kJ mol⁻¹⁵). Für 2-Thia[3.2]metacyclophan (3) ergibt sich dagegen aus $T_c = 280 \pm 5 \text{ K}$ und $\delta v = 116.4 \text{ Hz}$ für die Signale der Protonen der Thioetherbrücke $\Delta G^{\pm} = 55.5 \pm 1.0 \text{ kJ mol}^{-1}$ für die anti \rightleftharpoons anti'-Umwandlung, in guter Übereinstimmung mit dem Literaturwert⁶. Der Ersatz von C-2 durch ein S-Atom in der dreigliedrigen Brücke bewirkt somit eine deutliche Verminderung von ΔG⁺, während der Ersatz der Ethanobrücke durch eine Azobrücke beim Übergang von 3 nach 1 zu keiner Veränderung führt. Die Azobrücke in 1 stabilisiert aber offensichtlich gezielt die syn-Konformation, so daß diese stabiler als die anti-Form wird und im Gleichgewichtsgemisch überwiegt. Merkwürdig ist jedoch, daß dieser Effekt bei 2-Thia[3.2]metacyclophan-10-en (2), das ebenfalls eine ungesättigte zweigliedrige Brücke besitzt, nicht gefunden wird. Wie oben ausgeführt wurde, liegt 2 bei 220 K in CD₂Cl₂-Lösung konformativ einheitlich mit hoher Wahrscheinlichkeit in der anti-Form mit schneller Umwandlung beider anti-Enantiomeren vor. Entsprechende Verhältnisse sind bei 2-Thiabenzo[3.2]metacyclophan, in dem an die Ethenobrücke von 2 ein Benzolkern ankondensiert ist, beobachtet worden¹¹⁾. Bei dieser Verbindung erfolgt die Aufspaltung des Signals der CH₂-Protonen der Thioetherbrücke im ¹H-NMR-Spektrum bei 266 K, entsprechend einem $\Delta G_{anti \rightarrow anti'}^{\pm} = 54.8 \text{ kJ mol}^{-1.11}$. Im 300-MHz-¹H-NMR-Spektrum von 2 (in CD₂Cl₂) erfolgt dagegen erst bei 200 K eine Verbreiterung des Signals der CH₂-Protonen mit Anzeichen für eine beginnende Aufspaltung, so daß für 2 $\Delta G_{anti \rightarrow anti'}^{\pm}$ < 38 kJ mol⁻¹ erhalten wird. Möglicherweise erfolgt daher die Umwandlung der anti-Konformeren bei 2 nach einem anderen Mechanismus als bei 1.

2) Lösungsmitteleffekte auf das Konformationsgleichgewicht von 1

Wechselt man von CDCl₃ als Lösungsmittel zu [D₆]Aceton, [D₄]Methanol oder [D₃]Acetonitril, so lassen sich im ¹H-NMR-Spektrum bei Raumtemperatur ausschließlich die der syn-Konformation von 1 zugehörenden Signale beobachten. Wie aus dem in Abb. 3 gezeigten Spektrum in [D₆]Aceton und der Gegenüberstellung der chemischen Verschiebungen der Protonen von syn-1 in [D₆]Aceton und CDCl₃ ersichtlich ist, erfolgt in Aceton eine Aufspaltung des Signals der CH₂-Gruppen der Thioetherbrücke zu einem AB-Spin-System und eine gegenüber den übrigen Signalen überproportionale Tieffeldverschiebung des Signals für das innere Proton H_i. Aus den temperaturabhängigen Spektren mit einer Koaleszenztemperatur $T_c = 300 \pm 5$ K und $\delta v = 54$ Hz für die CH₂-Signale im 300-MHz-¹H-NMR-Spektrum wird $\Delta G_{syn \to syn'}^{+} = 61.1 \pm 1.0$ kJ mol⁻¹ erhalten. Die gleichen Effekte werden auch bei Aufnahme der NMR-Spektren in [D₄]Methanol und [D₃]Acetonitril beobachtet, allerdings fehlt bei letzterem die ausgeprägte Tieffeldverschiebung des H_i-Signals.

Diese Beobachtungen zeigen, daß zwischen 1 und Aceton, Methanol oder Acetonitril eine spezifische Solvatation oder Komplexbildung erfolgt, die die syn-




Abb. 3. Lösungsmitteleinfluß auf das 300-MHz-¹H-NMR-Spektrum (Bruker AM 300) von 1
a) In [D₆]Aceton (240 K)
b) in [D₄]Methanol (240 K)
c) in [D₃]Acetonitril (240 K)

Konformation stabilisiert, ein Durchschwingen der Thioetherbrücke unterbindet, die freie Aktivierungsenthalpie für das Umklappen der syn-Form erhöht sowie durch eine räumlich nahe Zuordnung des inneren Protons von syn-1 zur CO-Gruppe des Acetons eine besondere Verschiebung des H_i-Signals bewirkt. Dies läßt sich mit der Einlagerung der CO-Gruppe eines Lösungsmittelmoleküls in die

	$\delta(CDCl_3)$	$\delta((CD_3)_2CO)$	$\delta(CD_3OD)$	$\delta(CD_3CN)$
Ha	3.99	3.94	3.89	3.88
H_b		4.12	4.06	4.00
H_i	6.50	6.86	6.74	6.64
H_c	7.04	6.98	6.96	6.96
H_d	6.27	6.22	6.19	6.21
He	6.84	6.80	6.78	6.77

Tab. 1. Chemische Verschiebung (ppm) der Protonen im ¹H-NMR-Spektrum von 1 für verschiedene Lösungsmittel

"Molekülhöhle" erklären, die bei syn-1 aus der Azo- und Thioetherbrücke gebildet wird.

Die Gleichgewichtsverschiebung bei 1 zugunsten der syn-Form läßt sich gut mit einer ¹H-NMR-Spektrensequenz verfolgen, bei der im Lösungsmittelgemisch mit CDCl₃ der Anteil an [D₆]Aceton bzw. [D₃]Acetonitril erhöht wird. Ein Auftragen des Verhältnisses [syn-1]/[anti-1] gegen den Molenbruch X des Acetons bzw. Acetonitrils im Lösungsmittelgemisch ergibt den in Abb. 4 gezeigten Verlauf. Ein Zusatz von Hexachloraceton zur CDCl₃-Lösung von 1 bewirkt dagegen keine Stabilisierung der syn-Konformation, sondern hat eher einen gegenteiligen Effekt. Ein Zusatz von Di-tert-butylketon bringt keine Änderung im ¹H-NMR-Spektrum mit sich.

Aus dem sehr ähnlichen Verlauf der Kurven in Abb. 4 für Aceton und Acetonitril einerseits und dem abweichenden Kurvenverlauf für Hexachloraceton oder

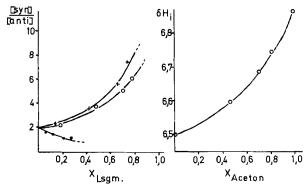


Abb. 4. Abhängigkeit des syn-anti-Konformerengleichgewichts und der chemischen Verschiebung von H_i in 1 von der Zusammensetzung des Lösungsmittels $(-\times -\times -\times \text{Aceton}; -\circ -\circ -\text{Acetonitril}; -\bullet -\bullet -\text{Hexachloraceton})$

Chem. Ber. 118 (1985)

fehlenden Einfluß von Di-tert-butylketon andererseits folgt, daß die spezifische Solvatation von syn-1 nicht allein durch polare Effekte ausgelöst wird, sondern entscheidend auch durch die sterischen Verhältnisse bestimmt wird. Eine Einlagerung eines Lösungsmittelmoleküls in die Molekülhöhle von syn-1 steht damit im Einklang.

Im Fall des $[D_6]$ Acetonzusatzes zur CDCl₃-Lösung von 1 beobachtet man nicht nur eine Verschiebung des $syn \rightleftharpoons anti$ -Gleichgewichtes, sondern mit steigendem Acetonanteil auch eine zunehmende Tieffeldverschiebung des Signals von H_i . (Wegen der unterschiedlichen Anisotropie-Effekte der CO- und CN-Gruppe kann dies bei Zusatz von Acetonitril nicht beobachtet werden.) Beide Verschiebungen zeigen, daß zwischen syn-1 und Aceton (bzw. Acetonitril) ein Gleichgewicht gemäß Gl. (1) besteht.

$$syn-1 + nCH3COCH3 \iff (syn-1, nCH3COCH3)$$

$$(\triangleq A) \qquad (\triangleq syn-1 A_n)$$
(1)

$$K = \frac{[syn-1 A_n]}{[syn-1][A]^n}$$
 (2)

$$\Delta \delta = a \frac{[syn-1 A_n]}{[syn-1]} \tag{3}$$

$$\Delta \delta = a \times K \times [A]^n \tag{4}$$

$$\log \Delta \delta = \log(a \times K) + n \log[A] \tag{5}$$

Die Anzahl n der an der Komplexbildung beteiligten Acetonmoleküle läßt sich unter der Annahme abschätzen, daß zwischen freiem syn-1 und komplexierten syn-Konformeren (syn-1 $A_n)$ schnelle Gleichgewichtseinstellung erfolgt und daß die Lage des H_i -Signals im 1H -NMR-Spektrum deswegen dem Mittel aus beiden Formen entspricht. Für die Änderung $\Delta\delta$ des H_i -Signals gilt dann Gl. (3). Durch Einsetzen von (3) in (2), Umformen und Logarithmieren wird Gl. (5) erhalten, nach der n aus der Steigung der Geraden beim Auftragen von log $\Delta\delta$ nach log [A] erhalten werden kann (Abb. 5).

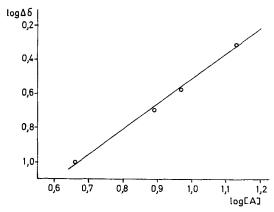


Abb. 5. Bestimmung der Anzahl n der Acetonmoleküle im Lösungsmittelkomplex von 1

Der so erhaltene Wert von n = 1.18 stimmt wiederum gut mit der Vorstellung überein, daß gerade ein Acetonmolekül pro Cyclophanmolekül komplexiert wird.

Eine Komplexbildung zwischen Cyclophanen und neutralen Molekülen bzw. Metall-Ionen durch Inklusion ist wiederholt beobachtet worden und wird wegen der Beziehungen zur Wirkungsweise von Enzymen eingehend untersucht¹²⁾. Hierbei handelt es sich jedoch um Cyclophane mit großen Ringen und vergleichsweise großen Hohlräumen, in die die Wirtsmoleküle eingelagert werden. Unseres Wissens ist 1 bisher das einzige "kleine" Cyclophan, für das eine Komplexierung mit neutralen Molekülen in Form einer spezifischen Solvatisierung unter Stabilisierung der syn-Konformation nachgewiesen wurde. Dabei erscheint es möglich, daß der hohe Anteil an syn-Konformeren in einer Chloroform-Lösung von 1 bereits durch Ein- oder Anlagerung eines CDCl₂-Moleküls bedingt wird. Ebenso sollte geprüft werden, ob die Bevorzugung der syn-Konformation bei [3.3] Metacyclophan³⁾ und dem 2,11-Dithiaderivat⁴⁾ durch entsprechende spezifische Solvatationseffekte verursacht wird. Im Fall der [3.2] Metacyclophane 2 und 3 konnten im Gegensatz zu 1 keine besonderen Lösungsmitteleffekte bei der ¹H-NMR-Spektroskopie beobachtet werden. Sowohl 2 als auch 3 liegen stets konformativ einheitlich in der anti-Form vor. Dies läßt vermuten, daß für die Wechselwirkung zwischen dem Cyclophan 1 und geeigneten polaren Molekülen die Anwesenheit der Azobrücke notwendig ist.

Herrn Dipl.-Chem. Th. Wippermann danken wir herzlich für die Aufnahme der NMR-Spektren und Frau A. Mülverstedt für freundliche Hilfe bei der Synthese der Vergleichssubstanzen. Dem Fonds der Chemischen Industrie sind wir für die finanzielle Unterstützung dieser Arbeit dankbar.

115, 107 (1983).

¹⁾ R. H. Mitchell in Cyclophanes (Ed. P. M. Keehn und St. M. Rosenfeld), Vol. 1, Kap. 4, Academic Press Inc., London, New York 1983.

²⁾ U. Dittrich und H.-F. Grützmacher, Chem. Ber. 118, 4404 (1985), vorstehend.

T. Otsubo, M. Kitasawa und S. Misumi, Bull. Chem. Soc. Jpn. 52, 1515 (1979).
 W. Anker, G. W. Bushnell und R. H. Mitchell, Can. J. Chem. 57, 3080 (1979).

⁵⁾ R. W. Griffin jr. und R. A. Coburn, J. Am. Chem. Soc. **89**, 4638 (1967).

⁶ T. Sato, M. Wakabayashi, K. Hata und M. Kainosho, Tetrahedron 27, 2737 (1971).

² kann aus (Z)-3,3'-Bis(brommethyl)stilben (H. Blaschke, C. E. Ramey, I. Calder und V. Boekelheide, J. Am. Chem. Soc. 92, 3675 (1970)) durch Umsetzen mit Thioacetamid in einer Verdünnungsapparatur in der üblichen Weise erhalten werden. Wegen der leichten Isomerisierung des (\hat{Z}) -Stilbenderivats in das (E)-Isomere muß die Umsetzung jedoch mit vergleichsweise kurzer Reaktionszeit durchgeführt werden. Nach Chromatographie (Kieselgel 60, Toluol/Aceton 3:1) farbloses Öl, das im Kühlschrank erstarrt. Ausb. 5%. — MS: m/z = 238 (48%, M $^{+}$), 204 (69), 203 (100), 202 (58), 191 (43), 189 (25), 178 (12), 165 (7), 101 (27). — 1 H-NMR s. Abb. 1.

C₁₆H₁₄S Ber. 238.0816 Gef. 238.0829 (MS) 8) R. H. Mitchell, K. S. Weerawarna und G. W. Bushnell, Tetrahedron Lett. 25, 907 (1984).

⁹⁾ H. S. Gutowsky und C. H. Holm, J. Chem. Phys. 25, 1228 (1956). 10) H. Shanan-Atadi und K. H. Bar-Eli, J. Phys. Chem. 74, 961 (1970).

¹¹⁾ E. Hammerschmidt und F. Vögtle, Chem. Ber. 113, 1125 (1980). 12) 12a) K. Odashima und K. Koga in Cyclophanes (Ed. P. M. Keehn and St. M. Rosenfeld), Vol. 2, Kap. 11, Academic Press Inc., London, New York 1984. — 12b) I. Tabushi und K. Yamamura, Top. Curr. Chem. 113, 145 (1983). — 12c) Y. Murahami, Top. Curr. Chem.