Contemporary Mathematics
Volume 172, 1994

On well-posed problems for connecting
orbits in dynamical systems

W-J. BEYN

ABSTRACT. We develop formulations of well-posed problems for orbits
which connect steady states to periodic orbits or periodic orbits to each
other in a dynamical system. It turns out that the property of asymptotic
phase on the periodic side plays a crucial role for the resulting boundary
value problem on the real line. Our approach is closely related to a paper
by Hale and Lin [HaLi 86] where Liapunov—Schmidt type methods and as-
sociated bifurcation functions have been developed for periodic—to—periodic
connections in functional differential equations. In our formulation we avo-
id any non— autonomous transformation of the independent variable and
we keep the periodic orbits as part of the problem. The boundary value
problems thus obtained, are directly amenable to numerical approximation
schemes on finite intervals.

1. Introduction

In this introduction we consider the general case of two compact invariant
manifolds which are connected by an orbit of a given parametrized dynamical
system. Our aim here is to establish a relation between the dimensions of the
unstable manifolds of the invariant manifolds and the number of parameters for
which we expect such a connecting orbit to occur generically. We will also outline
how the formulation of a well-posed problem should look like for connecting
orbits of this general type.

While these considerations will be mainly nonrigorous the main body of the
paper is designed to provide the analytical details for the special case in which the
connected manifolds are stationary points or periodic orbits. We are particularly
interested in the formulation of well-posed boundary value problems which can
be tackled numerically.
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Consider a parametrized dynamical system
(1.1) = f(z,A), z(t)eR™, XeRP

where f : R™ xRP — R™ is assumed to be sufficiently smooth. In many instances
it will be convenient to work with the variables z = (z,A) € R™*? and to rewrite
(1.1) as

(1.2) z=g(2), glz,2)={f(z,A),0)
Any compact invariant set M C R™*P of this system is trivially foliated
(13) M= J (M0)x (A

A€A

where A C RP is compact and the M()\) are compact invariant sets of the system

(L.1).

Let M;,M_ C R™ be two such compact invariant sets and let z(t) =
(z(t), A(?)), t € R be asolution of (1.2). Then the orbit v = {(z(t), A(t)) : t € R}
will be called a connecting orbit from M_ to M, if

(1.4) dist (2(¢),M1) —» 0 as t — +oo.
In particular, the o~ and w-limit sets satisfy
(1.5) a(y) C M_, w(y) C M.

In case a(vy) = w(y) we call ¥ a homoclinic orbit and a heteroclinic orbit
otherwise.

Of course we may rephrase (1.4) as
dist (z(t), ML(A(0))) =0 as t — +oo

where My ()) are the sets in the decomposition of My corresponding to (1.3).

Now let us assume in addition, that My are smooth invariant manifolds of
dimension m4. + p where my. is the dimension of the menifolds My ()) in the
decomposition (1.3). We want to determine the number p of parameters for which
we expect the connecting orbits above to be isolated and stable phenomena in
the system (1.1). In this case we also expect the connecting orbits to occur in a
generic sense.

Let My(X), A € A, have stable and unstable manifolds My,(A), Myi,(A)
which are of dimension m+. + mys and my. + mq, respectively and let these
be independent of A € A (e.g. let M, ()) have a hyperbolic structure, see [Irw
80], [HPS 77]). Then we have m = my. + m4s + m4, and

¥ C M-uNMys where M_y, = | (M_u(A)x{A}), My = | (Mys(N) x{A}).
A A
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M_,, and M, are in fact center—unstable resp. center-stable manifolds for the
system (1.2).

We expect v to be an isolated connecting orbit if
(1.6) Tz(t)M—u n Tz(t)M+s = dz(t)7Y = Span {Z(t)} forall teR

holds for the tangent spaces at z(t). Moreover, the connecting orbit should persist
in p—parameter systems if the intersection is transversal, i.e.

(1.7) Moy + Ty My, = R™.
Counting dimensions we obtain from (1.6) and (1.7)

p+m_y+mo.+mys+myec+p—l=m+p
and thus

(1.8) P=Miy—M_y —Mm_.+ 1.

We notice that this relation also makes sense in the framework of partial
differential evolution equations provided the center and center—unstable mani-
folds are finite dimensional. Further, it can easily be seen, that any of the three
statements (1.6) to (1.8) is implied by the other two.

In the steady case we have m_. = m;. = 0 and (1.8) is the relation discussed
in [Bey 90a). In cases where periodics are involved the right hand side of (1.8)
turns out to be the negative of the index as defined in [HaLi 86]. In the general
case we define the index of the connecting orbit as

ind () =m_,+m_.—1-—my,

and this turns out to be the Fredholm index of some suitable linearization around
v (see Proposition 2.8).

If ind (y)+p = 0, i.e. (1.8) holds, then we set up a well-posed problem for v. In
the case ind (y) + p < 0 we should add another —ind (-y) — p parameters in order
to have a well-posed problem while in case ind (y)+p > O there is a (p+ind (7))~
dimensional manifold of connecting orbits and we may add p+ind () conditions
for its parametrization.

In the following let us assume that z(t) = (x(t), A(t)) is an orbit connecting
M_ to M, and let (1.6)—(1.8) hold. In view of the general theory of asymptotic
stability with rate constants ([Fen 74], [Fen 77]) we look for solutions y_ and y,
of

(1.9) ¥+ = f(y+, A)
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which lie on M4 () and which have the same asymptotic phase as z(t), i.e.
for some € > 0

(1.10) () -y ()] = O(™) as ¢ — %oo.

Altogether, {(1.2) and (1.9) comprises a set of 3m + p differential equations for
which we need an appropriate number of boundary conditions. We use a scalar
condition which fixes the phase of the triple (z,y_,yy)

(1.11) U(z,y—,y4+,A) =0
and some equation which specifies that (y4(0), ) is in My
(1.12) Ny (y+(0), A) = 0.

The last are m — m_. +m — m, . equations. In (1.10) we require that z(0) lies
in the fiber which is in asymptotic phase with y4(0) and which has dimension
m.s and m_, respectively. Therefore we get a total of

M_g+Mm_c+miy+mec+142m—m_.—myc=3m+my,—m_,—m_.+1

boundary conditions which is precisely 3m + p by (1.8).

In general it can be very difficult to set up the equation (1.12) because it
requires the knowledge of the manifolds M (A). In this paper we are mainly
interested in the case where y_ is a steady state and y; = y is a periodic orbit.
For appropriate € > 0 define the spaces

Zy(€) = {(z,y) : x € C(R,R™) is bounded, y € C(R,R™) is 1-periodic and
le(t) — (Ol < C e for ¢2 0},

Zi(€) = {(z.y) : (z,y) € Zo, (2.,9) € Zo}

with norms

(2, 9)l|z, = sup [|z(@)]| + sup [ly(t)]] + sup e [Jz(t) — y(2)]],
teR teR 20

1z 9z, = 1z, ¥l 2, + (2, 9)]]z,-

We include the period T as an unknown in the connecting orbit problem and
write it in the following form

z~Tf(z,\)
(1.13) 0=F(z,y,T\A\)= | 9-Tf(y,)) | =0
U(z,y,T, )

where F maps Z;(€) x R x RP into Zg(e) x R.

In the case of two periodic orbits y_ and y, we have to determine both periods
T_ and Ty and we split up x into z_ on R_ and z on R, . In some appropriate
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spaces we then consider the equation
i - —T_f(z_,A) T
3./— - T_f(y-—,)\)
j:+ - T+f(£l!+, ’\)
U+ — T4 fly+,A)

z1(0) —z_(0)
_‘IJ(:C_,y_, L5 y+7T—7 T+’A)J

(114) 0IF(.’E_,,y_,.'E.f.,y_’_,T._,T_f_,A):

For both cases we will show in Section 3 that regular solutions of these operator
equations (i.e. solutions at which the linearization is homeomorphic) are directly
related to the transversal intersection of the manifolds M_, and M, above.
In Section 2 we provide the necessary preparations about linear systems, in
particular a result on a special type of exponential trichotomies (compare [HaLi
86], [ChLi 90]).

Finally, we treat an example of a point—to—periodic connection from the Lo-
renz system ([Spa 82]). It shows that it is rather straightforward to set up and
solve a boundary value problem which approximates (1.13) on a finite interval.

However, a detailed analysis of the errors involved in this approximation will
be deferred to a subsequent paper.

2. Preliminaries on linear systems

We consider linear differential operators
Lr =13 — A(t)z

where A € C(J,R™™), z € C'(J,R™) and J C R is some interval. By S(t,s),
t,s € J we denote the solution operator of L, i.e.z(t) = S(¢, s)¢ is the solution
of Lz =0, z(s) = &.

In [HaLi 86] the notion of an exponential dichotomy [Cop 78] was generalized
to an exponential trichotomy where a certain center part was allowed to grow or
decay at an exponential rate close to an intermediate value (see also [ChLi 90]).
For the linearizations about point—to—periodic connections this center part will
in fact be bounded in both time directions as in an ordinary dichotomy ({Cop
78], p. 10). This motivates the following definition in which the center part is
required to have an exact exponential behaviour.

DEFINITION 2.1.

L has an ordinary exponential trichotomy on J with exponentsa < v < 3
if there exists a constant K > 0 and projectors P(t), t € J, & = s, ¢, u of rank
m, such that P, + P.+ P, = I in J and such that the following conditions hold
forallt>sin J

(2.1) S(t,s)Pc(s) = Pc()S(t,s), sk =s,c,u
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2 ISEIPI S K NS O] < Ke 0
| 11S(t, $)Po(s)]] < Ke*®=9), ||S(s,t) P.(t)]] < Ke (2.

As in [HaLi 86] we speak of a shifted exponential dichotomy if the center
part is trivial (P. = 0) and of an exponential dichotomy if in addition a <
0<p.

An easy calculation shows that (2.1) holds if and only if P, satisfies Liapunov’s
equation

(2.3) P.= AP, - P.A in J.

Further, if P,(0) = X (0)®(0)7 holds for some matrices X (0), ®(0) € R™ ™= then
we also have

(24)  Pu(t) = X(¢)(t)T where X(t) = S(t,0)X(0), &(t) = 5(0, )7 3(0).

Finally, we notice that if L has an ordinary exponential trichotomy, then so has
the adjoint L* = 2+ A(t)7 with solution operator S*(¢,s) = S(s,t)”, exponents
—fB < —v < —a and projectors P} (t) = P,(t)T, Px(t) = P.(t)T, PX(t) = P,(t).

Shifting the indices in a trichotomy is described in the following lemma which
is straightforward to verify.

LEMMA 2.2.

For v € R let L,z = Lz + yr with solution operator S,(t,s). Then the
following holds

(i) €L,z = L(ez) fort € J,z € C(J,R™)
(i) S, (t,s) = e 5-8(t,s) for t,s € J
(iii) If L has an ordinary exponential trichotomy on J with exponents a < v < 8
then L, has an ordinary exponential trichotomy on J with exponents
a—vy <v-—vy< -+ and the same projectors.

Another important tool is the roughness theorem for exponential dichotomies
([CopT78], p. 34) to which we add some estimates on the projectors which are
useful later on.

PROPOSITION 2.3.

Let L have a shifted exponential dichotomy on J = [r,00) with exponents
a < 3, with constant K and with projectors Ps(t), P,(t),f € J. Assume that
B € C(J,R™™) satisfies

8K2by

(2.5) o

< 1 where by, = sup || B(t) || .
t>T
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Then the perturbed operator Lx = Lz — B(t)z has a shifted exponential dicho-
tomy on J with exponents

&=a+ 2ok <8 =pf—2bK,

with constant K = S K? and with projectors ]NDS(t), INDu (t),t € J which satisty

oQ
26) || Pu(t) — Pu(t) |< 2K K / e~B=lt=sl || B(s) || ds, & = s,u.
PROOF.
It is sufficient to prove this for an exponential dichotomy with « = —f. In

the general case we first shift by v = %(a + ), apply Lemma 2.2 and the known
results and then shift back by v = —3(a + ).
In the case @ = —f the result is proved in [Cop78], p. 34 with the exception of

(2.6). In the proof there, Y(t) = g’(t,r)lgs(r) is constructed as the solution of
the integral equation

(2.7) Yi(t) = (GY1)(t) + S(t, 7)Ps(7),t > 7.

where

(GY)(t) = [ S(t, $)Py(s)B(s)Y; (s)ds — / S(t, 5)Py(s)B(s)Yi (s)ds.
Then Y;(7) = 133(7') turns out to be a projector satisfying
(28) N(P,(r)) = N(Py(r))

We set P, (1) = S(t, )P (1)S(r, 1) = Y1 ()S(r,t), Pu(t) = I — P,(t) fort € J
and find

(2.9) Po(t) — Py(t) = Pu(t)Ps(t) — Py(t)Pu(t).
Using (2.7) and (2.1) we obtain

Pu(t)F?s(t) =P, (t)Y; (t)g‘(f, t) = —/S(t, s)Pu(s)B(s)Yl(s)dsg'(T, t)

o0
—_ f S(t, 5)Pu(5) B(5)S(s, 8) P, (#)ds
t
and thus by the exponential dichotomies

| PP (0) |5 KK [ e(B=206=0) | B(s) || ds.
t
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For the second term in (2.9) we use the formula
t
(2.10) Pu(t)Pult) = / S(t, $)Py(5)B(s) Pu(s)S(s, t)ds

and again the dichotomies to get (2.6). For the proof of (2.10) we notice that
both sides have the value 0 at ¢t = 7 due to {2.8) and both satisfy the same
differential equation as may be easily seen with the help of (2.3).

|

Similar to [Pal 84] we now replace the smallness assumption (2.5) by an asym-
ptotic estimate on the perturbation

(2.11) | B(t) |< Ce™®* for t >0 and some ¢ > 0.

This will be the interesting case with our applications but we notice that it is
easy to derive generalized statements under the assumption B(t) — 0 as ¢ — oc.

PRroroOSITION 2.4.

Let L have a shifted exponential dichotomy on J = [r,00) with exponents
a < f3, with constant K and with projectors Py(t), P,(t),t € J and let B €
C(J,R™™} satisfy (2.11) for some 0 < e < F — .

The the perturbed operator Lz = Lz — B(t)x has a shifted exponential dichtomy
on J with exponents a < Z?, which may be chosen arbitrarily close to o < 8,
and with constants K depending on 52,5. For the projectors ;’s(t),]NJu (t), and
the solution operator S (t,s) the following estimates hold for all t > s in J

(2.12) | Pu(t) - Pot) < Ce™®t k= 5,u

(213) || S(t,s)Ps(s) - S(t,s)Py(s) < C (emertate 4 emrtalt=)

(2.14) I S(s,8)Pu(t) — S(s, ) Pu(t) ||< C(e-53“5<t“5) + et Blt=s)y,
PROOF.

We choose 7, > 7 such that by, = sup || B(t) || satisfies (2.5) and
tZTl
2b K < Min(e, f—a—e¢). From Proposition 2.3 we obtain the shifted exponential
dichotomy for L on J; = [y, 00). Moreover, by (2.6) and (2.11)

t o0
| Pe(t) - Pu(t) £ C / e (Pma)limmesgs / e~ (mesmtmesgs) < e,

T1 t
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For the estimate (2.13) we use the identity

S(t,5)Py(s) — S(t, s)Ps(s) = P, (t><§(t s) = S(t, 5))Po(s)
+ (Py(8) = Py(1))S(t,5)Py(s) + Pu(t)S(t, 5)(Py(s) — Pa(s))-
The last two terms can be estimated by the dichotomies and (2.12). The first

term is zero at t = s and satisfies a linear inhomogenous differential equation
which upon integration gives

~

P.(t)(S(t, s) — S(t, 5) / S(t, @) Py(0) B(0)S(, 5)Ps(5)do.

Again the dichotomies and (2.11) yield the desired result. The proof of (2.14)
proceeds in an analogous way. Finally, we notice that the shifted exponential

dichotomy as well as the estimates (2.12)—(2.14) easily carry over from J, to J.
|

Unlike the case of exponential trichotomies ([HaLi 86|, Lemma 4.3) the exact
exponential behaviour of the center part in an ordinary exponential trichotomy
is generally not preserved under perturbation. The following lemma describes a
specialized situation where this is the case.

LEMMA 2.5.

Let L have an ordinary exponential trichotomy on J = [0, 0o) with exponents
a < v < f and projectors P.(t),k = s, ¢, u. Further assume that P.(t) is of rank
m, = 1 and has the form P.(t) = z(¢)¢(t)? where Lz = 0 and

(2.15) Cre”t <|| 2(t) ||< Coe¥t t € J, C1,Cy >0

Let B € C(J,R™™) satisfy (2.11) for some ¢ < Min(v — o, 8 — v), and assume
that Lo = Lx — B(t)z = 0 has a solution z which satisfies

(2.16) | 2(t) = Z(2) [|< Ce =t e J.

Then L has - an ordinary exponential trichotomy on J with exponents a < v <
ﬂ where @, B may be chosen arbitrarily close to «, ﬂ Moreover, the estimates
(2 12) for k = s,c¢,u and (2 13), (2 14) hold and P (t) can be represented as

P (t) = z(t)v,/;(t) for some 'l,b with L*w 0 and

(2.17) | 9(2) — () < Ce¥ = te J.

Proor.
In a first step we apply Prop. 2.4 to the two shifted exponential dichotomies

of L with exponents a < v, v <  and projectors Q; = P,,Q, = P.+ P, and
R, = P,+P,., R, = P, respectively. Let Q., R, be the corresponding projectors
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for L. We define Es(t) = és(t), }N’u (t)= IN%u(t) so that (2.13), (2.14) and (2.12) for
k = s,u have been proved. Moreover, the range of R,(0) is uniquely determined
and we have R(Q;(0)) C R(R,(0)) with the codimension being m. = 1.

Next we show z(0) ¢ R(Z)s(())). If this is false then
[l 2(0) [ =Il S0, 8)Pe(t)=(t) I< Ke (| 2(2) — Z(¢) [l + || $(£,0)z(0) [|)
< Ke™"H(Ce=9 4+ Ke% || Z(0) [|) — 0 as ¢ — oo
and we arrive at a contradiction.
Thus we have the decomposition
R™ = R(Q,(0)) @ span{Z(0)} ® R(R.(0))
and we let P .(0) be the projector onto span {z( )} If we write P 0) =

(O)d}(O)T where z,b() Z(0) = 1 and let w(t) = S(0, t)Tw(O) then

Pc(t) + Pu(t) + P4(t) = I holds for P () =Z(t )1[1(15) (see (2.4)). Therefore the
estimate (2.12) is also valid for k = c.

Finally, we notice that (e. g. in Euclidean norm)
I Pe(2) [I=I 20w @)™ =1 2t (Il v () |l
so that the estimates in (2.2) are equivalent to
(2.18) | 2t " I, | ¥(s)e** [|< C for t,s € J.
From (2.15) and (2.16) we then find || e™**Z(t) |> ¢ > 0 and hence by (2.12),
(2.16)
C Il () = ¥(t) | <l ™3O0 -~ V)" |

=|| e (Pe(t) — Pe(t)) + e "1 (Z(t) — () (t)T ||
<Celvet, m

We apply Lemma 2.5 to the periodic case. Assume that A(t), t € Ris 1-
periodic and that Lz = # — A(t)x has the simple Floquet multiplier 1 and no
further multipliers on the unit circle. By classical Floquet theory we have a
fundamental matrix of the form

B, 0 0
(Zs(t) z(t) Zu(t)) exp (t ( 0 0 0 )
0 0 B,

where Zs, 2,7, are 1-periodic and where the Floquet exponents, given by the
spectra of B,, B, satisfy for some a < 3

(2.19) Re 0(B;) <a <0< 3< Red(B,).
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Setting (W,(t) ¥(t) Yu(t)) = (Zs (t) 2(t) Z,(¢))T~! we find for the solution
operator

(220)  S(t,s) = Z(t)e 9B W (5)T + 2(t)0(s)T + Z,(t)e!t = Bup, ()T

Therefore L has an ordinary exponential trichotomy on any interval J C R with
exponents a < ¥ = 0 < 8 and with projectors

P.(t) = Z.()¥.()T, k=s,u, P(t) = z(t)y(t)T.

We notice that the projectors P,, P, are always real operators but the matrices
Z, ¥y, K = s,u may be complex in general.

Lemma 2.5 then yields the following

COROLLARY 2.6.

Let L x = & — A(t)x be as above and assume that L = & — A(t)z, A €
C([0, 00), R™™) satisfies

(2.21) I|A(t) — A(t)|| < Ce™¢* for some 0 < € < Min (—a, B)
and that there exists a solution Z of LZ = 0 such that
(2.22) llz2(t) — Z(@)]| < Ce™, t > 0.

Then L has an ordinary exponential trichotomy on [0 co) with exponents & <
0< ﬁ arbitrarily close to a and 3. The projectors Ps, PC, P, satisfy the estimates
(2.12) — (2.14) and we have P,(t) = ()9 (t)T where L* = 0 and

(2.23) () —$(£)|| < Ce™* for ¢ >0.

In the situation of this corollary we consider the differential operator I' :
Z(€) — ZF (¢) defined by

I(z,y) := (Lz, Ly)
with spaces and norms given by

Z$(e) = {(z,y) : z € C([0,00),R™) bounded, y € C([0,00),R™) 1-periodic
() — ()| < Ce~ for ¢ 0},
(2, )|l z+ == sup |lz(®)] +sup |[y(t)]| +sup e“||z(t) — y(),

0 t>0 t=0 t>0

Z{(€) = {{z.v) € 2 (€) : (¢9) € Z ()}
e 9)llzs = 1z )1z + 11 )l
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PROPOSITION 2.7.
Under the assumptions of Corollary 2.6 the operator
T ZHe) = 2 (0), D(z,y) = (Lz, Ly)

is Fredholm of index m ;, which is the number of stable Floquets multipliers of
L. Moreover, for the range and nullspace we have

(2.24) RE) = {0 € 20 [ w7 ol =0}
0
(2.25) N(T') = span {(Z,z), (S(t,0)¢,0) where £ € R(P,(0))}.
REMARK.

In case (r, p) € R(I') we give a representation of a special solution (Z, %) of
I'(z,y) = (r, p) which will be used later on.

PROOGF.

It is enough to show (2.24), (2.25) since this implies codim R(I') = 1 and
dim N(T) = 1+ m..

For (r, p) = (Lz, Ly) € R(T') we obtain in the standard way

1

/ () p(t)dt = / ¥(t)" Ly(t)dt = / @) Ty(t)dt + [w(&)Ty(t)]s = 0.

0

1
Now suppose that (r,p) € Z; (¢) and [ ¥(t)Tp(t)dt = 0 hold. Then there
0

exists a 1-periodic solution § of Ly = p. For example, we may define 3 by

(2.26) PI(0) = S0+ [ S(t,5)Pu(s)pls)ds
0
(2.27) Pe(t)y(t) = 2(2) / w(s)T p(s)ds

(2.28) POTE) = - [ S(t.s)P.ls)ols)as

t
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where £ is the unique solution in R(P;(0)) of the linear system

1 1
(229) (I - S(1,0))€ = / S(1, ) Py(s)p(s)ds = P5(0) / S(1, 8)p(s)ds
0 0

Equation (2.29) guarantees that Ps(t)y(t) is 1-periodic. For P.(t)y(t) the peri-
odicity follows from our assumption while for P,(t)y(¢) it is a consequence of the
relation

S(t+1,s+1)=85(t,s).

For the solution 7 of Lz = r we use an analogous set of formulae

(2.30) P,()Z(t) = / S(t, s)P,(s)r(s)ds
(2.31) PL()Z(t) = wi(t) + (1) / B(s)Tr(s)ds
(2.32) Bat)3(t) = / 8)P.(s)r(s)ds,

where w will be determined so that

Z(t) - §(t) = O(e™™).

For the center part we find

P.O)j(t) - BA(8)E() = (=(t) - (1)) /wsﬂp(s
0

+2(t) [ / (%(s)Tp(s) = 9(5)r(s))ds — w} :

The first term behaves like O(e™ ) by (2.22) and our assumption and so does
the second if we set

(2.33) w= [ ()T p(s) = P(s)Tr(s))ds.
0

Notice that (2.33) and r(t) — p(t) = O(e™ ") yield
¥(s)7p(s) — B(s)Tr(s) = (w(s) — (5))p(s) + B(s)" (p(s) — r(s)) = O(e™**)
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and therefore
t

o - [ (5T p(s) — 9(s)Tr(s))ds] < C / emtsds — Clect

0

Thus we have shown

P.(t)9(t) - P(t)&(t) = O(e™).
In particular f P.7 is bounded and by the exponential trichotomy this is also true

for P T and P #. Hence 7 is a bounded solution of Lz = r.

Furthermore, by using (2.13) we obtain
HP (©)F() — Po(t)Z(2)]] < |IS(2,0)€]] +

/ [1S(¢, s)Po()1 llp(s) — r(s)I] + IS (2, 5)Ps(s) = S(t, 5) Py(s)I] |Ir(s)llds

t
< C{eat +/ (e—£s+oz(t—-s) _'_e—et-i—a(t—s))ds} < Ce—et.
0

In a similar way we use (2.14) to show

1P ()5(t) = Pu(®)Z(D)]| < Ce™.

For the proof of (2.25) we first notice that
(,2), (8(2,0)¢,0) € N(T) for ¢ € R(P,(0))

is obvious. Suppose that (z,y) € N(I'), then Ly = 0 and y = cz for some c € R
follows. But the trichotomy of L implies

z(t) = 8(t,0)6 + 7 for some £ € R(P,(0)),8 € R

and
(c = B)=(t) = y(t) — z(t) + BE(E) — 2(1)) + 5(t,0)¢ = O(e™).
Hence ¢ =  and we have the form
(2,9) = c(Z,2) + (S(¢,0)¢,0).
]
Lemma 2.7 will be used for the linerization of initial value problems.

The corresponding result for the boundary value case which uses the spaces
Z\(¢€), Zp(e) from the introduction is given in the following
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PROPOSITION 2.8.

Let the differential operators Lz = & — A(t)z and Lz = & — A(t)z, t € R
satisfy the assumptions of Corollary 2.6. Further assume that z(t) is bounded
for t <0 and

(2.34) A(t) » A_ as t — —oo

where A_ is hyperbolic with stable subspace of dimension m_s and unstable
subspace of dimension m_,, =m — m_,.

Then the operator
T': Zy(€) — Zole), I(z,y) = (Lz, Ly)

is Fredholm of index m_,, — m4, — 1 where my,, is the number of unstable
Floquet multipliers for L.

The operator L has an exponential dichotomy on R_ with projectors Qs (1),
Q..(t) and
(235) N(T) = {(5(t,0)¢,0) + c(3(¢), 2(£)) : c € R, & € R(P,(0)) N R(Qu (0))}-

Moreover, with T*(x,y) = (L*z, L*y) we have that (r, p) € Zo(e) is in R(T) if
and only if the following two conditions are satisfied

1
(2.36) / o) p(t)dt =0 forall ¢ € N(L*)
0
(2.37)
0 00
[ #erra+ [ @)~ o penar =0 forall (7.¢) € M)
% 0
PROOF.

The exponential dichotomy on R_ with projectors Q,, Q. of rank m_, and
m_, follows from (2.34) and the roughness theorem. Since 2 is a bounded solution
of Lz = 0 on R the representation (2.35) is easily obtained as in the previous

proposition.

Now suppose that (r, p) = ['(z,y) € R(T). Then (2.36) is clear and we consider
some (@, ) € N(I'™). It follows that

#(0) € R(P; (0) + PZ(0)) N R(QL(0))
= R(P.(0)T + P(0)") N R(Qs(0)")
= (R(P.(0)") @ span {$(0)}) N R(Q(0)").
From ¢ € N(L*) we obtain ¢ = ci for some c € R and hence by (2.23)

(Z— cp)(t) = (F— @)(t) +c(v — ¥)(t) = O(e™).
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Integration by parts then yields

0
/ F&)Tr(H)dt = F(0)T(0) = (F(0) — eh(0))T2(0) + c(0)Tz(0)

=~ [ @) - cbe) r (Ot + cB0)5(0).

By Proposition 2.7 we may assume (see {2.26)—(2.32))
y =7, z(t) = 2(t) + S(¢,0)¢ for some & € R(P,(0)) and t3> 0.
From (2.31) and (2.33) we then find
$(0)72(0) = wP(0)7Z(0) = w

and hence the assertion (2.37)

o0

(B(t) - W) r(t)dt + o / (¥(s)Tpls) — T(s)"r(s))ds

0

0
| et~ -

(@) Tr(t) — ()T p(t))dt.

For the converse statement let us assume that (r, p) € Z{ (€) satisfies (2.36),
(2.37). We seek a solution (z,y) of I'(z,y) = (r, p) in the form

o B(t) + §(t,00Qu(0)¢, t <0
y="9, 2(t) = {zc(t)+S(tO) P (0)¢, t>0

where 7 is given by (2.26)-(2.29) and Z(t) is defined for ¢ > 0 through (2.30)-
(2.33). For t < 0 we set

/ (t, 8)Qs( s)r(s)ds—/ S(t 5)Qu(s)r(s)ds

and £ will be determined so that z is continuous at 0, i.e.

(2.38) (Qu(0) — P,(0))¢ = Z(0+) — Z(0-).

This equation has a solution if for any 7 satisfying 77 (Q.(0) — Ps(0)) = O we
can show 77 (Z(0+) — 7(0-)) = 0.
Let ¢ = n7z(0) and define

~ S*(t 0)Q50)n_ fort <0
Yit) = { 5*(t,0)P;(0)n+cy(t) fort>0
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1 is in fact continuous at 0 since

$(0+)T = T(0-)T = 77 (P.(0) — Q4(0)) + ()T
=0T (I - P5(0) — P.(0) — (I - Q.(0) + Z(0))4(0)") = 0.

Therefore, 1 is a bounded solution of L*3 = 0 and (1,’[}\, cy) € N(I'*). An appli-
cation of (2.37) yields

0= / BT r(t)dt + / B(OTr () — () p(t)dt

nT [ / t) + P.(0)S(0,t)r(t) — Z(0)(t)  p(t)dt+

0

/ Qs(0 0 t) r(t)dt:|

=" (Z(0-) — Z(0+)).

Let us finally compute the Fredholm index of I'. From the ordinary exponential
trichotomy and (2.24) we get

dim N(T') = dim (R(P4(0) + Pe(0)) N R(Qu(0)))-
Sincez(0) € R(P(0)) N R(Q.(0)) by our assumption we find
dim N(I') = dim (VN W)+ 1 where V = R(P;(0)), W = R(Q.(0)).
Similarly
dim N(I*) = dim (R(P,(0)" + F(0)") N R(Q(0)")) = dim (V- nW™).

The formulae (2.36), (2.37) show that R(T") is the null space of a space of linear
functionals which has dimension dim N(T'*) + 1.
Then we conclude as in [Pal 84]

ind(I'} = dim(V N W) — dim(V nWH)
= dim(V N W) — dim((V + W)*+)
= dim(VNW)—-m+dim(V + W)

=dmV+dmW-m=mis+m_,—-m=m_, —my, — 1.
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3. Characterizations of well-posedness

Throughout this section we assume that we have a T-periodic hyperbolic orbit
7={y(t): t € R}

of the system (1.1) at some A = . Let m,, and m,, denote the number of its
stable and unstable Floquet multipliers respectively.

In our first step we repeat the construction of the local stable manifold and
its foliation induced by the asymptotic phase by using the results of section 2
and the implicit function theorem. This approach is similar to [Irw 80, Ch. 6,
11) where the time T-map is employed but different from the more standard
approach via the Poincaré map (cf. [Har 64, Ch. IX], (Hal 69, Ch. VI]) and we
take some care in relating these two approaches.

The function %(t) = §(¢t T) is a 1-periodic solution of
(3.1) t=T f(z,\)

and the linear operator

L= dilt. — A(2), A(t):ng (1), M)

has an ordinary exponential trichotomy with projectors P,(t), x = s,¢,u and
solution operator S(t, s).

Let CF (k > 0) denote the 1-periodic C*—functions from R to R™.
We can continue (3(-), T) to (y(-,A), T())) € C} xR, X in some neighbourhood
U(A), by an application of the implicit function theorem to the equation

(3.2) Fi(y,T,\) = (y B J;(’;gy’ ’\)) =0.

Here Fy maps C} x RP*! into CY xR and  : C} — R is a C'-phase condition
satisfying

(3.3) x® =0, X@y#0.

Let '(-, A} denote the t-flow of the scaled system
(3.4) z=TA)f(z,A) ;
and let @*(z,A) = (p*(z,),A) denote the t-flow in R™*7 obtained by adding
A =0 (see (1.2)).
For a suitable neighbourhood V of 5 the local stable set of
M (V. 7)={zeV:¢'(z,) €V
for t >0 and dist (¢*(z,A),5) = 0 as t— oo}
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is known to be an (m,, + 1)-dimensional smooth manifold (cf. [Hal 69, Ch.
VI)). Then the local stable manifolds of the periodic orbits y(A) = {y(¢,A) : t €
R}, A € U(X) can be put together to form an (m,+1+p)-dimensional manifold

My (V)={(z,N) eV =V xUQ) :p'(z,A\) €V for t>0 and
dist (¢"(2,A),7(A)) = 00 as t— oo}
after possibly adjusting V and U()).

Usually, the differentiable structure on M, (V) is defined via the Poincaré
map P with respect to a transversal section

L= {g(o) +n:7€U(0)C R(Ps(o) + Pu(O))}
We have a representation
M, (NNExUMR)) = {@(0) +£+h(£ ), A) : £ € U(0) C R(P:(0)), A € UN)}
where h is a smooth mapping into R(P,(0)) which satisfies (0, A) = 0.

The charts on M, (V) are then given by the inverses of the local parametri-
zations
(35) m(t,€,A) = B ((0) + £ + A, A), A)

where &€ € U(0) C R(P,(0)), A € U(X) and t is in some open interval J C Ry of
length less than 1.

THEOREM 3.1.

Let 7 be a hyperbolic periodic orbit as above and let ¢ < Min (—a, 8) where
a, B are bounds on the real parts of the Floquet exponents as in (2.19).
Then, for £ € R(P,(0)) and A — X sufficiently small the operator equation
z—T f(z, )
?] =T f (ya ’\) =0
P,(0)(z(0) - 3(0)) — &
x(v)
has a unique solution (z4(-,£,A), y(-,A), T(})) in some neighbourhood of
(?](),y(),?) in Zi*_(f) x R SatiSfying
x4 (t,0,)) = 7(t).
The local inverses of the mappings

(3.7)  B(t,&A) = (x4(£,6,2), ), t €U(0), € € U(0) C R(P:(0)), A € U(X)
are admissible charts of the local stable manifold M, (V).

(36) F+ (-’1:1 Y, T’ €7 A) =

PROOF. L
Clearly, F (%,9,7,0,)) = 0 and

Fy : Z(€) x R x R(P,(0)) x R? — Z§ (¢) x R(P:(0)) x R
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is a smooth operator with

[ _f(ga X) i
r
_ 8F+ = ™ —"f(‘:ljﬁ)‘)
(38) K a(x’ Y, T) (yﬂ y7 Ta Oa /\) - PS(O)EO O b
0
L 0 X(® :

where I'(z,y) = (Lz,Ly) and Eyz = z(0). By Proposition 2.7 T has Fredholm
index m and hence by the bordering lemma [Bey 90b] K has Fredholm index

ind (K) = ind(')+ 1~ (m4s +1) =0.

From (2.24) we find

(on) - (5) # o
and moreover from (2.25) and (3.3)
(P S(g)EO X,Oy)) . N(T') = R(P,(0)) xR

is nonsingular. Hence K is a linear homeomorphism and the implicit function
theorem applies to (3.6). Since (3.2) has locally unique solutions the solutions of
(3.6) are of the form

(1‘_1.(-,57 /\)) y('v’\)) T(A)) with € € U(O) C R(PS(O))’ AE U(X)

By the construction of z, and by making U(0),U(}) sufficiently small we
may assume that 3(¢,&,A) = (x4+(¢,£,2),A) € M4(V) holds for all ¢ > 0.

Moreover, by implicit differentiation we obtain

8.’17+ ™
(3.9) ¥ (t,0,%) = S(t,0)P,(0)
and hence
_98 o _ (90) Iirp,o)y 2 (0,0,%)
(3.10) e (0,0,/\)_( 0 ’ a ’ )

has rull rank m;; + 1+ p and 3 is a local immersion.

Using the rank theorem (e.g. [Die 60, Ch. X]) we may write

ﬂ-:O’QOEOOj
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where o is a diffeomorphism from a neighbourhood U C R x R(P,(0)) x R? of
(0,0, ) onto the open unit ball jn R™+s+14P 5, is a diffeomorphism from the
open unit ball in R™*7 onto 3(U) and

E(.’El, . "Tm+s+1+P) = (CEI, e 1mm+s+1+p>07- . ,0) e R™*P,

Therefore, we have a smooth representation of 8717 on the common domain of
existence as

8 lr(t, &, A =05 o ET ooy tom(t, €M)
Furthermore, let 7(z, A) be the unique return time in —J for points of the form
(3.5), then we find the smooth representation

T4 E,N) = (70 B(EEN), Po(0)(9 P4V (B(E € X)) ~T(0)): ).
Thus 3~! is an admissible chart of M (V') near (m(0), X). &

REMARK.
We used the implicit function theorem to construct the foliation of the stable

manifold by asymptotic phase. This has some computational advantages. E.g.
we can compute derivatives of

g(€) = 24(0,€, 1), 9(0) =7(0)

which parametrizes the fiber which is in asymptotic phase with 7(0). Taking
implicit derivatives in (3.6) and using (2.26)-(2.31) one finds

g'(0) = Lir(p,(0)) » P,(0)g"(0) =0 and
P.(0)g" (0)(&1,&) = -T f P.(0)5(0,2) fzo(T(t), M)(S(¢, 001, S(2,0)€2) dt

0
00

. f B.(0)3(0,0) £+ (5(), N(S(2,0)61, 5(t, 0)2) dt
0
for k =c,u and &;,§2 € R(Ps(0)).
Here S and P. denote the solution operator and projectors for the unscaled

linearized problem

K
“‘\

(3.11) g= = (H(t), Ny

We now consider the analogue of Theorem 3.1 for the global stable manifold.

Let Z(t), t > 0 be a solution of (1.1) at A = A such that
dist (Z(t),7) — 0 as t—o00.
We set #(t) = Z(tT) and find for some 1 sufficiently large
(Z(@), X) € Mys(V).
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Taking V sufficiently small we can cover M, (V') by finitely many charts of the
type (3.7), hence for some t

(312) 1Z(2) = 3(t + o)l + ||z(t) — Gt + to)l| = O(e™)
where ¢ < Min (—a, 8) as in (2.19), (2.21).

Without loss of generality we will assume tg = 0. All the assumptions of
Proposition 2.7 are then satisfied with the settings

.4 _of

In the following theorem we make use of the solution operator S and the
projectors P,€7 Kk = 8, c¢,u associated with L.

(yax): Z= iy E= —C—?? —Taf (-’E /\)

THEOREM 3.2.

Under the assumptions above (Z,5, T,0, ) € Z; () x R x R(P,(0)) x R? is a
solution of the operator equation

&~ Tf(x, )
(3.14) Fyi(z,y,T.§,\) = 138(0)3;(07)1]0_(?;(/(\)))) _e | =0
x(y)

This equation has a unique solution
(:E-ﬁ-("gs )‘)7 y(aA)a T()\)) € Zi{—(f) x R

in some neighbourhood of (z,7,T) which depends smoothly on (£, ) in some
neighbourhood of (0, \).

The local inverse of
(3.15) B(t,€,)) = (z+(t,,A),A), t € U(0), £ € U(0) C R(P5(0)), A€ UN)
is an admissible chart of the global stable manifold

(3.16) My, ={(z,2) e R™ x U(A): dist (¢*(z,A), ¥(A)) =0 as t — oo}.

ProOF.

We are brief here because the implicit function theorem applies as in the proof
of Theorem 3.1 with (7,7) replaced by (Z,%) and P, by P;.

The analogue of (3.10) is

op o _ (Z0) Ipp 98 (0,0,X)
srex 0N =7y g 5 G0Y)

so that 3 is again a local immersion. The same is then true for E = ®*cf where
we take £ so large that the image of 3 is in M (V). As in the proof Theorem 3.1
# is an admissible chart of the local stable manifold. Therefore, ! = 3~ o®! is
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admissible for the global stable manifold, because the differentiable structure on
M, is defined by the charts of the local stable manifold transferred backwards
in time by the flow. B

Now let (Z(t),)), ¢ € R be an orbit connecting a hyperbolic steady state
y_(}) with stability indices m_s, m-_,, to the hyperbolic periodic orbit 7.

Again, y_(\) is contained in a smooth manifold of steady states
{y-(N) : A e UM}

which have the same stability indices and we can form the global unstable ma-

nifold
(3.17) M_, = {(z,\) eR™ x U\) : p*(z,A) = y—(A) as t — —oc}.
We set Z(t) = 2(tT), t € R and
of _ ~
L= — - 5‘5 (.’E,)\)

so that  has an exponential dichotomy on R_ with projectors Qs, Q. and an or-
dinary exponential trichotomy on Ry with projectors P, P,., P, (see Proposition

2.8).

Similar to Theorem 3.2 we may parametrize M_,, near (Z(0),)) by

B(t,m,A) = (2 (0,7, 1), A), n € U(0) C R(Qu{0)), A€ UA).

Here z_(-,n,\) is the solution of

& —T(A)f(z,A) B
(3.18) F-(z,m, ) = (Qu(O)(:v(O) Z 2 (0)) - n) =0

obtained from the implicit function theorem in a neighbourhood of z =

Zg_, 1 =0, X=X in the space of bounded C 1_functions (cf. [Bey 90b]).

Using z_(-,7, A) and z4(-,§,A) from Theorem 3.2 we define the (m x p) ma-

trices
o —
(3.19) Ei(t) = = (£,0,X), t € Re.
oA
These satisfy the variational equations
O s v O
(20) BT L @B =fENTMN+T g @X) in ks
subject to

Qu(0)E_(0) = 0, Py(0)EL(0)=0

and

E.(t)= g—i (t, ) + O(e™") as ¢t — 0.
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Here T'(A) and Y (*) =
rentiation

(-,X), can be obtained from (3.2) by implicit diffe-

S

(3.21) LY = fGNT' N +T -g @), X @Y =0.

The tangent spaces at z(0) = (Z(0), A) can now be written as

(3.22a) TroyM-w = {(n+ E_(0)X\, X) : n € R(Qu(0), A € RP}

(3.22b) TaoyMys = {(€+ E+(0)A + ¢ T(0),)) : £ € R(P;(0)), A €R?, c €R}.

With these preparations we can state the main result.

THEOREM 3.3.
As above let 7 = {F(t) = §(tT) : t € R} be a T-periodic hyperbolic orbit at

X = X and let Z(t) = (Z(t),X) = (F(tT), \) be an orbit connecting a hyperbolic
steady state y_ (X) to 7. Further, let ¥ € C!(Z;(¢) x RP*1 R) be given such that
ov

T Ox

Then the following conditions are equivalent.

(3.23) ¥(z,75,T,2) =0 5T, %) &+ — (T,5,1,2) §#0.

(i) The manifolds M_,, and M, intersect transversely in the strong sense that
forallteR

(324) TE(t)M—u + TE(t)M-{-s = Rm-{-p) TE(t)M—u n Tg(t)M+5 = Span {E(t)}
(ii) The linear mapping |

(3.25) B(n,€,)) = £ —n + (E+(0) — E_(0))A

is a bijection from R(Q.(0)) x R(P;(0)) x RP into R™.

(i) (%,%,T,2\) € Zi(e) x RP*! is a regular solution of the system (1.13), ie.
F'(Z,5,T,X) : Zi(€e) x RP — Zp(e) x R is a linear homeomorphism.

ProoF. (i) = (ii)

From (3.24) we obtain the relation (see (1.8))
(3.26) P=Myy—M_y+1

and this holds iff B is given~by a quadratic matrix. Suppose B(n,€,A) = 0 for
some 1 € R(Q,(0)), & € R(Ps(0)), A € R?. Then

E+E(OMN) = (n+E_(0)A\\) € Tz(o)M—u n Tz(o)M+s
holds and by (3.24) £ =7 = ¢ Z(0) for some ¢ € R. But Z(0) ¢ R(P,(0)) so that
c =0 and £ = 1 = 0 follows.

(i) = (i)
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The linearized flow 38;'15 (Z(t)) maps the tangent spaces at Z(0) onto those at
z(t), hence it is sufficient to prove (3.24) at t = 0. Moreover, (3.26) follows from

(ii) so that we need only prove the second relation in (3.24).
Suppose (z, A) € Ts0)M—_u N T(0) M5 holds, then from (3.22) we obtain

z =1+ E_(0)A=¢+ EL(0)A+ cZ(0)
for suitable &,m,A. With 77 = 7 — ¢ T(0) € R(Qx(0)) we find B(m,&,\) =0 and
hence £ =0, A =0, z =n=cz(0).
(if) = (iii)

By our assumptions (Z, 7,7, X) is a solution of (1.13). For the derivative at this
point (which we abbreviate as (-)) we find

T
F'()= —fwN T % @
gy FO 20

where ['(z,y) = (EJ}, Ly). By Proposition 2.8 T has Fredholm index m_, —my—
1 and from (3.26) we obtain with the help of the bordering lemma ([Bey 90a})
that F'(-) has Fredholm index 0.

Suppose F'(:)(z,y,T,A) = 0 for some (ac,.y) € Zi(e), T € R, A € RP. By (3.3)
we can choose ¢ € R such that ¥ = y — ¢ ¥ satisfies X' (7)y = 0.

Using this and the equation

e Of 5
Ly-Tf@ AN =T 35 (T, A)A

we find that (y,7T") and (g—g (-, XA, T'(X)A) satisfy the same system (see (3.21))
and hence

. By, ~ L
(3.27) y=ci+ -ﬁ% (0N, T =T (A

We define £ = P,(0)z(0) and Z(t) = z(t) — S(t,0)¢ — ¢ z(t) for t > 0 so that
F(t) — () = =(t) — y(t) — §(£,0)¢ = O(e™)
and P,(0)Z(0) = 0.

Therefore, (Z,7) € Z; (€) and we have shown, with the operator F; from (3.14),

that
OF, - 8F,
: ) 7T = - ) A
s V@S == 53 0
where (-) denotes evaluation at (Z,%,T', 0, X). Thus we obtain Z(t) = E4 (t)A and

(3.28) 2(0) = € 4+ ¢ T(0) + By (0)A.
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In a similar way we set = Q,(0)z(0), v(t) = z(t) — S(¢,0)n (¢ < 0) and
find v(t) = E_(t)X by using equation (3.18) for z_(-,1,)). Now we combine
z(0) =n+ E_(0)A and (3.28) to get

B(n - ¢ #(0),€,)) = 0.

From assumption (ii} and (3.27) we conclude A =0, £ =0, n = c %0), T =
0, z = c¢T and y = ¢ §. An application of (3.23) finally yields ¢ = 0 and
z=0, y=0.

(iii) = (i)

We know that F’(-)} has Fredholm index 0, hence by Proposition 2.8 and the
bordering lemma we have

O0=ind D)+p=m_y —myy,—1+p

i.e. (3.26) holds.
Now assume B(7,£,) = 0 and define

T =T'(X), A y(t) = t, M)A + ¢ y(t)

E)N (
" E, ()X + S(,0)¢ + ¢ Z(t) for ¢>0
z(t) = - ]
E_(t)A+ S(t,0n+c T(t) for t <0
where ¢ will be determined later on.

Using B(n,¢, \) = 0 we see that z is continuous at 0 and in fact (z,y) € Z;(e).
Moreover, the equation (3.20) yields

r(;)-r (o) (j )0

Finally, by (3.23) we can determine ¢ so that

ov
- 0= = T+ & (A
- On 3 Out ST 20
Then (x,y, T, )) is in the null space of F'(-) and we conclude
£=0,y=0,T=0, A=0. In particular, { + ¢ % (0) = 0 = 1 + ¢ F(0) and
£ =0, ¢ =0 because Z(0) ¢ R(P;(0)). &

REMARK.

We can easily rewrite the nonsingularity of the matrix B in an equivalent form
using the adjoint operator I'* from Proposition 2.8. If B is nonsingular then
necessarily

(3.29) R(Q.(0)) N R(P, (0)) = {0}.
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Therefore
dim N(T'*) = —ind (') =m4, —m_, +1=p

and we can find a basis of the form

(5) (%) (%)

where L* ¢; = 0 and ¢;(t) = O(e™¢t) for i = 2,...,p. Setting p; = v we find
from the proof of Proposition 2.8 that the columns of ®(0) := (p1(0),... ,©(0))
form a basis of

(R(P,(0)) + R(Q.(0)))*. Then the nonsingularity of B reduces to the nonsingu-
larity of the (p x p)-matrix

(3.30) A = ®(0)T(E,(0) — E_(0)).

This is the derivative with respect to A of some generalized Melnikov—type func-
tion

O(0)T(24(0,0, ) — x_(0,0, \)).
Of course, for the way back from the nonsingularity of A to that of B we need
to assume conditions (3.29) and (3.26).

It is now quite straightforward to develop an anlogue of Theorem 3.3 for periodic—
to—periodic connections. However, there are a few differences due to the fact that
there is no simple scaling of the time axis which is suitable for both periodic
orbits. This is the reason for the delicate nonautonomous transformations in [Ha
Li 86]. Of course, the split formulation (1.14) is also some kind of nonautonomous
transformation. But its treatment is more convenient, it is closer to numerical
approximation schemes and it is easily covered by the theory developed so far.

Let (Z(t), ), t € R be an orbit connecting a T_ periodic hyperbolic orbit
{§_(t) : t € R} to a T,—periodic one {7, (t) : t € R}. We introduce the scaled
functions

T+(t) =92 (tTy), T4 (t) =Z(tT4+) for te Ry
and the differential operators

d = Of - 7 d — Of -

—_— - = (G, A), Ly = — =T1 == (Tx, A

dt Ty Oz (y;t: )s + dt + 9z (x:ta )

with solution operators S4 and Sy respectively. L_ and L _ have ordinary expo-
nential trichotomies on R_ and we denote the corresponding projectors by Q.
and

QK.) kK=s¢C1uU.

Ly=

The unstable manifold M_,, is of the form

M_, = {(z,)) € R™ x U(X) : dist (p'(z,X), 7-(X)) =0 as t — —oo}
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where y_()) = {y_(t,A) : t € R} are T_()\)-periodic orbits and y_(-,A) =7_.
M _,, can be parametrized by (z_(t,n,A), A) is a way analogous to Theorem 3.2.

We will also assume that the phase conditions x1 (compare (3.2)) for yu (-, A)
have been chosen in such a way that

T(t) — o (t) = Oe M) as t — +o0

holds. Finally, the spaces Z; (¢), Zg (¢) are defined analogously to Z; (¢), Zg (¢)
and € is chosen such that [—e, €] contains no real parts of the Floquet exponents

of v+ (X).

THEOREM 3.4.

Let Z(t) = (z(t), A) be a periodic-to—periodic connecting orbit as above and
assume that ¥ € CY(Z; (€) x Z] (¢) x RP*2, R) satisfies

lI’(U) =0 for u= (f—7§~1:f+7y+7T.—3T+1X)
(3.31) ov . . oV . oV . v

(‘h—-(ﬁ)m—ﬂL ‘a—y‘:(ﬂ)y_ E("’J)ir-i- é‘y:(ﬂ)?-q-#o

Then the following conditions are equivalent.

(i) The manifolds M_, and M, intersect transversely along Z(t) in the strong
sense (3.24)

(ii) The linear mapping
B(e,n,&A) = c T (0) + €& — 1+ (E4(0) = E_(0))A
is a bijection from R x R(Q,(0)) x R(P,(0)) x R? into R™

(ili) % is a regular solution in Z;"(€) x Z; (¢) x RP*2 of the operator equation
(1.14).

ProOOF.

Since the proof is quite similar to that of Theorem 3.3 we only sketch the main
differences.

(3.22a) becomes
Ts0) Mou = {(n+ E-(0)A+ ¢ T (0),)) : n € R(Qu(0)), A € R?, c € R}
and the relation (3.26) changes to (cf. (1.8))
(3.32) P =My — M_y.
From this the equivalence of (i) and (ii) follows immediately.

Let us assume (ii) and calculate



CONNECTING ORBITS 159

- @D 0 T (E M)
| 0
_f(g—ax) 0 -T_ %)Z\ @_,X)
F,(_) . 0 _f(f-h ’\) ~__’T—+ %§ (§+7X)
W= 0 r,
0 ~fH.,A) T4 -S—§ (F4s A)
-E, O Ey © 0 0 0
|72 @) sy (@ g (@ ) @

where Ty (z,y) = (Ly z,L+ y). The Fredholm index of F'(%) is zero due to
(3.32) and Theorem 3.2.
Letu = (z_,y_,2+,y+, -, T4, ) be in the null space of F'(%). Then we choose
.c+ such that

Xy (Fe)(yr —cx ¥) =0
and obtain as in (3.27)

Yo :C§0+ %y)% (aX)As I, :T;(X)A for 0=+,—.

The analogue of (3.28) is
25(0) =&s + ¢ T (0) + E,(O)A, 0= +,—,
where £, = P,(0)z4(0) and £ = Q,(0)z_(0).
From the equality =, (0) = z_(0) we find
Bles — e £, €1, A) =0

and hence ¢y =c_,&_ =0, £ =0, A= 0. Finally, using the last row in F'(u)
and assumption (3.31) we end up withcy =c_ =0and z, =0, yo =0, T, =
0(c=+,-).

For the converse statement we notice that (3.32) is a consequence of ind (F'(7)) =
0 and Theorem 3.2.

Assuming B(c,n,£, ) = 0 we define Ty =T (M)A and
24(t) = E(OA+ 5, (£, 006 + (c+0) 7 (t), t >0,
9 _ .
ve(®)= S @A+ (43 Ty ()
z_(t) = E_@A+S_(t,0p+CT (), t <0,
O, —y L ~n
y-()= = EDA+TE (1),

where ¢ is determined in such a way that the last row of F”(u) applied to
u=(z_,y_,z4,y+,1—, T4, A) vanishes.
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Then u € N(F'(u)) and the assertion follows from u = 0 and % (0) ¢ R(Ps(0),
z (0) £ R(Qu(0)). ®

This theorem holds also in the case p = 0 which e.g. occurs for a homoclinic
periodic connection (see (3.32)). Then there are no parameters in the system
(1.1) and all the statements involving X trivialize in an obvious way.

Suppose in the homoclinic case that we can find a section X with Poincaré map
P such that successive intersections of the orbit with ¥ are obtained by an appli-
cation of P. Then it can be shown that the transversality conditions of Theorem
3.4 hold if and only if the points of intersection with ¥ are transversal homoclinic
points of the map P (see e.g. [Pal 88] for an analysis of transversal homoclinic
points). By this shooting type approach we have reduced the computation of
homoclinic periodic connections to that of homoclinic points of maps. However,
in the general homoclinic case it is not clear whether such a reduction is possible
and we expect that one still has to tackle infinite boundary value problems of
the form (1.14) in a numerical calculation.

4. A numerical example

In the well-posed formulations of section 3 the boundary conditions for the
connecting orbits are hidden in the function spaces used.

For a numerical approximation we replace (—o0, c0) by some large interval J =
(T_,T,) and we have to introduce finite boundary conditions at T_ and T7.

In the case of stationary connecting orbits it is well-known how to set up these
boundary conditions and how to estimate the errors involved, see [Bey 90a, Bey
90b, DoFr 89, FrDo 91, Kuz 90, Sch 93a, Sch 93b). To our knowledge there are
no numerical approaches to the periodic case and we will treat here only the
point—to—periodic connection, i.e. equation (1.13).

We consider the following system of differential equations

(4.1) i=f(z,A\), t€J=[T_,T4]
(4.2) y=T f(y,A), t €[0,1]
(4.3) T=0, A=0.

Here we have 2m + p+ 1 variables u = (z,y,T, \) and we need the same number
of boundary conditions. We assume these to be of the following form

(4.4) B_(2(T-),\) =0

(4.5) | By (&(T3),3(0),X) = 0
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(4.6) Yy(z,y, T,A) =0

(4.7) y(1) —9(0) =0
where B_ : R™? — R™-s and By : R?™+P —, R™+u11 define the asymptotic
boundary conditions at T_ and T and v, acts as a scalar phase condition.

The number of boundary conditions is
Meos+Myy +2+m=2m —m_, +My, +2
which coincides with 2m + p + 1 unter the assumption (3.26) (see Theorem 3.3).

The condition (4.4) requires z(7-) to lie in some approximation to the unstable
manifolds of the steady states x_{\) and a good choice are projection boundary
conditions (see [Bey 90a))

(48) B_(z,\) = V;(\)(z -2 ()

where the rows of V (A\) € R™-+" depend smoothly on A and span the stable
subspace of 3L (z_(A), M), ie.
of
oz
for some G_(\) € R™-="™~¢ with Re 0(G_-(A)) < 0.

When z_ ()) is known, the matrix V() can easily be computed by an eigenvalue
solver combined with a normalization procedure ([Bey 90a], [ChKu 93]).

Vs(A) 5= (2-(A),A) = G-(NV:(})

Similarly, we should choose B, in such a way that B;(-,y(0,A),A) = 0 is an
approximation to the fiber of dimension m, s which is in asymptotic phase with
y(0, A). Here, as in section 3, we denote by y(:, A) the 1-periodic solutions of
(4.2) with T = T(}\) fixed by some suitable phase condition. The analogoue of
(4.8) then is

(49) By (z(T4),y(0), A) = Vau(0, A)(=(T4) — y(0))

where V, (¢, A) € R™+++1.™ solves the adjoint variational equation

- of , .
(410 V==V T0 5 4NN
(4.11) Vu(1,A) = G4 (A\Vi(0,)) for some G (A) € RM+utlmiutt

with |u] < 1 for all eigenvalues p of G (A).
Notice that the spectrum of G, ()) includes the trivial Floquet multiplier 1 and
that the rows of V,,(¢,A) should span the same space as those of

T
Ve(t,A) = (e"t B:/éga‘;l(ta ’\)T)

which is obtained from the Floquet decomposition (2.20).
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Since y(, A) is itself a result of the computation it is unrealistic to assume that
V.(-, A) is known a-priori. One way out of this dilemma is to attach the va-
riational equation (4.10) to the system (4.1)-(4.3) and to add some boundary
conditions for V derived from the invariance condition (4.11). However, this
blows up to the dimension of the boundary vaiue problem by m - (m, + 1) and
is thus very costly.

In the example below we will use a simpler device, where (4.9) is replaced by
(4.12) By (2(T4),y(0), A) = Va(z(T4) — 9(0))

and V, € Rm+utlm js an approximation to V,,(0, A) obtained by solving (4.10),
(4.11) with a periodic orbit y(-, A) for an initial guess A. Of course, some accuracy
is lost in this approach.

As an example we treat the well-known Lorenz equations (see [Spa 82])
(413) :i?l = 0’(:32 - GL’]), iig =A L1 — T —I1T3, i’g =T1x2 — ba’IgA

For ¢ > b+ 1 this system has a subcritical Hopf bifurcation from the nontrivial
steady states

Ex(A) = (A=) £bA- 1)) A-1), A>1
at
o(o+b+3)
o—b—-1 "~
The periodic orbits 72 (A) shrinking to £1(X) at Ay have two-dimensional stable
manifolds (my, =m,, = 1) and there is apparently a specific value

A=Ag =

Agq = )\A(O,b) < Ay

at which the one-dimensional unstable manifold of the origin meets these stable
manifolds, see [Spa 82, pp. 32-47] and in particular [Kuz 91, Lecture 7] for a
nice illustration. (3.26) yields p = 1 and so we expect this point to periodic
connection to be a stable one parameter phenomenon. For A < A, the unstable
manifold is attracted towards §_(A) or £1()) while for A > A4 it becomes part
of the strange attractor. However, it is not clear whether A4 is the precise value
at which the strange invariant set becomes attracting.

Figures 1 and 2 show the different fate of two trajectories started on the linearized
unstable manifold of the origin at values

A =2405 <Ag <A =24.06, 0 =10, b= —2—

The trajectory with initial values

£(0) = (0.00435, 0.009, 0)
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and T, = —T_ = 0.8667 was taken as initial approximation for the connecting
orbit. Then a periodic orbit was computed with values

—~

A =2406, T =0.677,
g(1) = (—6.116, —4.799, 23.07)

and a suitably normalized V,, was found from (4.10), (4.11) to be

- (0, 0769, 1
V““‘(l, 2.916, o)'

The phase condition (4.6) was simply
(4.14) y3(0) — (A —1) = 0.

With these initial data the boundary value problem (4.1)-(4.7), (4.12) was solved
with tolerance 1072 by the code DO2RAF (NAG-library, Oxford). The third
component of the solutions x and y is shown in Figure 3 and the A—value is

Aa = 24.05790.

A good initial approximation is crucial in this example because the periodic orbit
is close to the Hopf point and the periodic boundary value problem allows for
the trivial solution 7' = 0, y constant.

Finally, in Figure 4 we show two further point—to—periodic connections obtained
by increasing the parameter b. The continuation with respect to this parameter
turns out to be rather sensitive. This is a well-known phenomenon due to the
fact that the rigid phase condition (4.14) is not well-suited for mesh adaptation.
Good alternatives are integral phase conditions [FrDo 91] or the use of the Gauss—
Newton method [Deu 84]. In view of the theoretical results of section 3 it is clearly
acceptable to have phase conditions which involve both the connecting and the
periodic orbit.
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FIGURE 1A. Unstable manifold of the origin at Ag = 24.05, first com-
ponent plotted over the time interval [0, 4]
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FIGURE 1B. The same as Figure 1a but with time interval [0, 200]
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FIGURE 1C. The same as Figure 1b but plotted in phase space
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FIGURE 2A. Unstable manifold of the origin at A; = 24.06, first com-
ponent plotted over the time interval [0, 200]

FIGURE 2B. The same as Figure 2a but plotted in phase space
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FIGURE 3. Third component of connecting and periodic orbit obtai-
ned numerically at A, = 24.05790
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FIGURE 4. Third component of connecting and periodic orbits by
continuation with respect to the parameter b.
(b,2a) = (5, 24.05790), (3.1, 26.16990), (4.0, 31.29453)



