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ABSTRACT

We consider systems of m nonlinear equations in m + p unknowns
which have p-dimensional solution manifolds. It is well-known that
the Gauss-Newton method converges locally and quadratically to
regular points on this manifold. We investigate in detail the map-
ping which transfers the starting point to its limit on the manifold.
This mapping is shown to be smooth of one order less than the
given system. Moreover, we find that the Gauss-Newton method
induces a foliation of the neighborhood of the manifold into smooth
submanifolds. These submanifolds are of dimension m, they are
invariant under the Gauss-Newton iteration, and they have or-
thogonal intersections with the solution manifold.

1. INTRODUCTION

We consider a nonlinear system of m equations in m + p unknowns
Fv) =0 (1.1)
where F € CK+(R™+P, R™), k = 1. Let © € R™** be a regular solution of (1.1),
ie.
F2) =0 Rank(F'(v)) = m
503
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In a neighborhood of # we want to analyze the behavior of the Gauss-Newton
method

v, = 1(v,) T(v) = v — F'(v)*Fv) (1.2)

Here F'(v)* denotes the pseudo-inverse of F'(v).

It is well-known that the intersection of the solution set M = F~'(0) with a
neighborhood of © forms a p-dimensional C**'-submanifold of %" *” and that it
may be written as the graph of a C**!-function

W N(F'(3)) — N(F'(D)" s = w.(s)

see, €.g., Rheinboldt [10]. It is also well-known that the Gauss-Newton method
(1.2) converges quadratically to a certain limit in this manifold

lim v, =: T.(v,)
provided v, is sufficiently close to v, cf. Deuflhard and Heindl [3], Allgower and
Georg [1}.

In continuation methods the Gauss-Newton method or one of its modifications
is often used as a corrector iteration (see [11], [1], [4], [7], [2}). Therefore, it is
important to know whether small perturbations of the predictor v, lead to small
perturbations of the corrector T.(v,). We will show that T, is in fact a C*-function
in case of the Gauss-Newton method. This is not obvious, since the Gauss-Newton
method involves an implicit parametrization of the solution manifold. It generates
a sequence which ultimately approaches the solution in a normal direction.

Other corrector methods use for parametrization an explicit equation of the
form

G(u,vy) = 0 GR™P X RmHP s RP (1.3)

and then try to solve the quadratic system (1.1), (1.3) for ». E.g., for the pseudo-
arclength method (see [9]) the solutions of (1.3) form a hyperplane orthogonal to
a previous secant or tangent and for the simplified Gauss-Newton method (i.e.,
T(v) = v — F'(vy)* F(v), see [11]) they form the m-dimensional subspace orthog-
onal to N(F'(v,)). The smooth dependence of the solutions of (1.1), (1.3) on the
predictor v, is then an easy consequence of the implicit function theorem.

One way of studying the smoothness of the map T. is via an analysis of the
set of all points v, which under the Gauss-Newton method converge to a fixed
solution of (1.1). In Section 3 we will show that these sets are in fact C*-manifolds
of dimension m which intersect the solution manifold orthogonally. In this way we
obtain a foliation of the space into T-invariant smooth submanifolds. In a certain
sense this provides us with a complete picture of the relations between starting and
limit values.

Such invariant foliations also appear in the theory of stable and unstable
manifolds of diffeomorphisms (see Fenichel [5, 6]), but we notice that the Gauss-
Newton operator is, in general, not a diffeomorphism. E.g., in the linear case it
1s in fact a projection.

Let us finally remark that the behavior of the Gauss-Newton method and its
invariant manifolds becomes much more complicated in the neighborhood of sin-
gular points, e.g., near simple bifurcation points. Here only partial results, such
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as the existence of small convergence cones around the branches (see [1, 9, 8]),
are known. This case is currently under investigation.

2. DIFFERENTIABILITY OF THE OPERATOR T,

Let us first review the classical results on the convergence of the Gauss-Newton
method. Without loss of generality we assume that the regular solution of (1.1) is
v = 0.

Theorem 2.1: Let 0 € R™*7 be a regular zero of F € C** 1 (R™+#, ™) with
k = 1. Then there exist open neighborhoods V, C V, of 0 € ®™*» and a C*+1-
function

w.V, O N(F'Y) — N(F'%)*  F:= F(0)

with the following properties
(1) w.(0) = 0, wi(0) = 0 and

VN EF0) = {s + w.(s)s €V, N NF)}

(i) For each v, € V|, the Gauss-Newton sequence v,, = T7(v,) exists, lies in
V. and converges to some limit T.(v,) € V, N F~1(0). For some a < 1 and for
all n > 0, v, € V, the following estimates hold

o, = Tulv)l, = Ca®  |F(v)l, = Co® 2.1

The geometrical situation of Theorem 2.1 is illustrated in Figure 1 for the
casem = 2,p = 1.

Our basic result is

Theorem 2.2: Under the assumptions of Theorem 2.1 and for sufficiently

small V,, we have T, € CHV,, R™ 7).

In this section we will give an elementary proof of this Theorem for the case
k = 1.

Let us first. notice that Rank F'® = m implies that F'(v) has constant rank
m throughout some neighborhood of 0. Calling this neighborhood V, again we
obtain

F’(‘U)+ = F’(r’)T(F’(zf)F'(;,)T)*1 vEV,
and thus F'(')Jr e C"(Vl, o‘ﬁnl"'p.m+p).

Our next observation is that (2.1) implies the uniform convergence

sup ”T”(U()) - Tz(z’())”z’—) 0 as n— x>

=

and hence the continuity of T...
We show that also the derivatives T”’ converge uniformly on V,, to some

bounded continuous function

. Gpm+pan+
Ax.V() — \R / p

By a familiar result from analysis this implies that T, is continuously differentiable
in V() Wlth T; = Ax.
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Figure 1 Geometry in the neighborhood of a regular point.

By the chain rule we have for v € V,

n—1

(@ = T @) T'w) = [] T(T) (22)
Here and in what follows we use the convention that in a matrix product
[[A =4, -4
the factors are multiplied from the left with increasing index.

From (1.2) we obtain for v € V,

T'(v) = P(v) — S(v) (2.3)
where

S(v) = (div F'(‘t’)+) F(v)

and

P(v) =1 — F'(v)*F'(v) (2.4)
is the orthogonal projector onto N(F'(v)).

Using this expression and Theorem 2.1 we see that the factors in (2.2) are

small perturbations of the projector P(T.(v)). For such a product the following
Lemma is useful.
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Lemama 2.3: Let O € A9 be an orthogonal projector and let E, € R4 |
€ N be matrices satisfying

ni= S IE], < =

i=0

Then the product A, = 117, (Q + E;) converges to some A, € %94 and the
following holds

"

“Am - AHHZ = ez"l 2 ||El”2 fOI' m=n (25)

(I - QA =10 (2.6)
Proof: We let v; = |E;|, and show that for m = n

SE{mIIu+mﬁ (2.7)

- j=n i=j+1

The proof is by induction on m. For m = n (2.7) is trivial. Now suppose that (2.7)
is true for some m, then we can estimate as follows

ni

[Tw+E)-0

i=n

m

(Q + E,.1) (H (Q + E) - Q) +E, .0

e+

[Tw+E)-0

i=n

2

i=n

= (1 + T]erl) E {"1; n (l + T‘I)} + Mrn+ 1

j=n i=j+1

= ’2 {"ﬂ;‘ ”H (1 + 7]:')}

j=un i=j+1

The limit

o=1lim[] (1 + )

n—x =0

exists since we have a convergent majorant

In[](1+mn)= E)IH(I + )= =

i=0 =0

In particular, o = e". Now we use (2.7) to estimate for m > n

14, — Al = H 1_1 (Q + E) - Q+Q—I}H(Q+Ei)

i=n+1 (=80 2

A

i=n+1 i=0

lﬁ(Q+M—Qk“ﬂQ+@m

+—@—ua[y9+m”

m m

o2 X mtmo=ot X,

j=n+1 j=n

This proves (2.5) and hence the convergence of A,,.
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Finally, we have

n—1

W‘Qmm:W—meﬂQ+m

=m0

=0 2

from which (2.6) follows in the limit n — =,
We can now complete the
Proof (Theorem 2.2, k = 1): Apply Lemma 2.3 to the projector

Q= PT.()) =1~ F(L@) F(TL) veV,
and the matrices (see (2.3))
E =T (T() - Q@ = P(T'(v)) = P(T(v)) — S(T'(v))
From F € C? and the regularity of # = 0 we find that P(v) is Lipschitz in V,, and
that d/doF'(v)* is uniformly bounded in V.. Hence, Theorem 2.1 yields
IEN, = CUIT'(v) = Tl + IF(T(0)lh) = Co™

foralli € N and v € V,,.

From (2.5) we obtain that A,(v) := T"'(v), v € V, is a uniform Cauchy
sequence. Moreover, A, (v) is uniformly bounded

'

ol = 110+ 18R = 1] 0 + ca)

(=1

Therefore., A, converges uniformly to some continuous bounded function A.:
" g
V, — frrrrer tand Theorem 2.2 is proved.

Remark 2.4: Equation (2.6) implies
R(T’.(v)) C N(F'(T.(v)))

This 1s very natural. since T, is in fact a map from %" "7 onto the manifold M =
V. N F1(0) which has the tangent space N(F'(T.(v))) at T.(v).

It is now tempting to establish 7, € C* via the uniform convergence of the
derivatives

Ty  j=1,..., k as n—x

However, this involves further differentiation of (2.2) and becomes rather awkward.
We will therefore present a different approach in the next section which will allow
us to obtain T, from the implicit function theorem and which will give further
insight into the behavior of the Gauss-Newton method.

3. INVARIANT MANIFOLDS FOR THE GAUSS-NEWTON OPERATOR

Let us reverse the question from Section 1. i.e., instead of asking for the limit

T.(v) for a given v we would like to determine for a given solution (see Theorem
2.1)

v.(s) =5+ wo(s) seU :=V NNFY
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the set of corresponding initial values
M, = {v € VyT(v) = v.(s)} 3.1

From this definition we see that M, is positively invariant under the Gauss-Newton
operator 7. More precisely, we will show that M| is an m-dimensional C*-manifold
which is a graph over N(F'")* and has tangent space N(F'(v.(s)))* at v, (s) (sce
Figure 2).

In fact,

U m

sl

defines a smooth foliation of the neighborhood V,, into T-invariant submanifolds.

Foliations of this type are generally known for stable and unstable manifolds
of smooth invariant, hyperbolic manifolds of diffeomorphisms, see Fenichel [5, 6].
In our case the invariant manifold is the solution manifold M = V, N F~1(0) and
its stable manifold is a full neighborhood of © = 0. However, the GN-operator T
is, in general, not a diffeomorphism. This prevents the application of the abstract
results. On the other hand, we have a very special situation here, since the dynamics
of T on the invariant manifold is trivial and since the manifold strongly attracts
nearby points. This will admit for a rather simple proof.

Without loss of generality we again assume @ = 0 and consequently w_(0)
= 0. For a fixed p € (0, 1) we consider the space of sequences in ®”*” which
decay like p”

S = Wubpen:p "lul,  is bounded for n € N}

N(F*)

Figure 2 Invariant foliation induced by the Gauss-Newton method.
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For brevity, we will write u, instead of {tt,},en- S, becomes a Banach space under
the norm

||u-\‘>”6’ = Sup{pk”““n”z:n € N}

Of course, any norm in "' *» other than | -{, leads to an equivalent norm in §,,
Finally, we abbreviate the orthogonal projectors (see (2.4))

P, = P(v,(s)) =1 — F'(v.A(s)) " F'(v.(s)) P, = P0) =1~ F"F"
Our idea is to apply the implicit function theorem to the following equation
I'(uy, w,s) =0 (3.2)
where the operator
IS, x N(Py) X N(Py)* — §, X N(Py)
is defined by

: {T(, + 0.5)) = v.(s) — ty} e)
I u\., W, ‘. — n 7+ ne. 3.3
(.. 5) ( (I~ Py — w )
Suppose that, for given (w, s), we have a solution u, = #(w, 5) of (3.2),
then v, = u, + ©.(s) is a Gauss-Newton sequence with lim,_,. v, = v.(s). The

difference of its starting value v, to the limit v.(s) has the prescribed component
w in the subspace N(P,) = N(F'")*. Therefore, we expect the fiber M, to have
the representation

M, = {v.(s) + dy(w, s):w € W, C N(F'")'} (3.4)
for some neighborhood W, of zero.

Theorem 3.1:  Under the assumptions of Theorem 2.1 the fibers M,, s € U,
are m-dimensional C*-submanifolds which are positively invariant under the Gauss-
Newton iteration. More precisely, for suitable neighborhoods V,, C ®"*7 U, C
N(F'"). W, C N(F'")* these fibers can be represented as in (3.4), where

is a C*-function satisfying

G0, s) =0 fors € U, (3.5)
RIZ2wW,5)] = MP)  22(0.0) = L. .
(M ( s)) NP)  SR(0.0) = (3

Here I_.:N(P,) — 7 *7 is the canonical embedding.
Proof:  From the Lipschitz boundedness of T we find for u, € §, sufficiently
small

Df"“T(“n + I'I(S)) - vx(“)”l

1

p T, + vu(s)) — T(v.(s)lh
= Cp7"lu,fl, = Clluyll,
So F'(u,, w.s) is in fact an element of §, X N(P,). Next, we show that the mapping
H(uy, s) = {T(u, + v.(s)) — vl$)huen

is in C*(), S,) for some neighborhood Q C S, x N(P,)*, which then implies I" €
C*.
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From (1.2) we obtain
T(u, + v.(s5)) — v.(s)
=u, — F'(u, + v.(8))" Flu, + v.(s)) (3.7

1
=u, — F'(u, + v.(s))" L F'(v.(s) + w,) dt u,

Since Fis in C**! we see from this formula that H can be written as a
composition of C* mappings and hence is in C* itself.

For the partial derivative H,(u,, s) we find from (2.3)

Hu(u‘:\" S)h.,v*( = {(P(un + Z/x(S)) - S(un + UT(S)))hn}HE.N (38)
For the operator I" we obtain I" (0, 0, 0) = 0 from (3.3) and from (3.8)
ru(O’ 0, O)h..w = ({Pf)hn - hn+l}nE.N"7 (1 - P(J)hll)

First, suppose that s, € S, is a solution of the homogeneous equation I', (0, 0,
0)hy = 0. Then we have (I — Py)h, = 0 and h, = Pyh, for all n = 0. But 4,

converges to zero, which implies Py4, = 0 and hence h, = 0 and A, = 0.
Next, we solve the inhomogeneous equation

F(0,0, 0hy = (rv.w) €S, X N(Py) (3.9)

Because of ||, = p” the limit

exists and we determine h,, from the linear system
Pyhy = Pyr. (I = Pohy = w
With this &, we set
"2
h, = P, (hn" Z rj) TS n=1
j=0

and easily verity Pyh, — h,,,, = r,. Moreover, for n = 1 we can estimate as follows

F n—2
p—thn”Z = p4n HP(J (h() - E rj) + ”’311”2}

=0
2 ||P0"j”z + “"n‘--:HzJ

Lj=n~-1

IA
=

s
—n E
= —

I
-

]

ol + p"lnmn‘,]
L 1] =
- p

Combining this with

ol = Clirdl + Iwlh) = € ( lIrsfl + HWH;)

I -p
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finally yields
Bty = Clirdl, + 1wl

Therefore, I' (0, 0, 0) is a linear homeomorphism and we can apply the implicit
function theorem. )

There exist zero-neighborhoods & C S, W, C N(P,) and U, C N(P,)" and
a function o, € C*(W, x U,, Q) which satisfies #,(0, 0) = 0 and for all w € W,
se l,

I'(u,, w,s) =0 u, € ) &y = dc(w, s)
Let us first prove (3.5), (3.6). From the definition (3.3) we have
F(O, 0, S) - ({T('{’.L(S)) - 1’1(5)};16.\‘~ 0) = (0’ 0)
hence by the uniqueness of the implicit function @.(0, s) = 0. Differentiating the
implicit equation with respect to w at w = (0 we find

0.0, 5, +1.0,0,5)=0 forY, = % (0, s)

More explicitly,
PY, - Y ., =10 forn = ()
(I ~ P)Y, — I =0
Since Y, = P,Y, converges to zero, we have that Y|, solves the system
PY,=10 (I - P)Y, = 1_ (3.10)
For ||[P, — Pl <1 this system has the unique solution
Yo=(I - (P, = P)) L.

Notice that ||P, — P,[, < | implies that the subspaces N(P,) and R(P,) are com-
plementary.

Since /.. has rank m the same holds for Y,,. Therefore, we obtain R(Y,) =
N(P,). In case s = 0 we even have Y, = [_..
Next, we consider the C* mapping

DP:W, x Uy — Rty O(w, s) = v.(s) + &y(w, s)
Using (2.3) we obtain
D0,0) =0 DO, Nw,5) =Iw+ v.(0)s =w+s

Hence, @ is a local C* diffeomorphism and we can choose neighborhoods W, C
W,. U, C U, with the following properties. The mapping

O:W, x U, -V,

is diffeomorphic, V, is contained in V, and v.:U, > ®R"*" is one-to-one (see
Theorem 2.1).

We claim that the representation (3.4) holds for the fibers M,, s € U, from
(3.1) with V, in place of V,. For a given v € M, with v € V,, s € U, we find
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T.(v) = v.(s) and there exists a unique pair (w, §) € W,, x U, satisfying d(w, §)
= . By our construction of &, we also have T.(v) = v,($). Thus, v.,(s) = ©v,(5)
and s = §, from which our assertion follows.

We can now easily complete the

Proof (Theorem 2.2): At the end of the proof of Theorem 3.1 we found

that, for v in some sufficiently small neighborhood,
T.(v) = v.(s)

where (w, s) satisfies ®(w, s) = ». If we let Q be the projection from N(P,) x
N(Py)* onto its second factor, we may, therefore, write

T, = v,0Qod"!

Thus, the smoothness of T, follows from the smoothness of v, and @ .

Remark 3.2: a. The results of [5, 6] suggest that the local foliation of the
regular solution manifold can in fact be generalized to compact submanifolds, e.g.,
in the case of one parameter to a closed arc of the regular solution curve. However,
we have not considered the technical details in the proof of such a result.

b. The implicit function theorem also guarantees the unique solvability of the
variational equation

I' (e, w.s)h, = (r. ) Yy E NP, r. € Sp
for [lu J|,.. [wil>. ||s|l, sufficiently small. More explicitly, this system reads
hoor = T'(u, + v (s)Hh, — r, n=20 (3.11)
(I = P)hy = v (3.12)
Noticing that T'(u, + v.(s)) = P, + E, where E, = O(p") we find from (3.11)

hu+l = II—II (P\ + Ei)h() - IZ ( I_[ (Px + Er)) ry

i=10 j=0 f=j+1

Now Lemma 2.3 may be used to conclude that h, — A_h, — r, as n — =, where

A =T+ E) uzzfﬁga+mﬁ
i=0 F=0 \i=j+

Since (I — P)A, = 0 and ({ — P,)r. = 0 we can achieve i, € S, if we determine

h, from the linear equations (3.12) and P,A, h, — P,r, = 0. These linear equations

are uniquely solvable if s is sufficiently small (see (3.10)). We see that in the direct

approach of Section 2 we had to solve variational equations of the general type

(3.11), while with the implicit function theorem only a very special case had to be

considered, see (3.9).
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