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Numerical Methods for Dynamical
Systems

Wolf-Jiirgen Beyn

These lectures are intended to give a survey of numerical methods for an-
alyzing dynamical systems. The growing interest in these systems, in par-
ticular in their chaotic behaviour, has stimulated an immense amount of
theoretical as well as numerical investigation. Therefore we restrict our-
selves to a few typical phenomena which are only first steps to chaos, but
whose numerical properties are fairly well understood. Among the topics
covered are the numerical computation of invariant sets such as stationary
points, periodic orbits and tori, the transitions between these objects in
parametrized systems and the analysis of the longtime behaviour of nu-
merical trajectories which are generated with sufficiently small step-size.In
particular, we discuss in some detail the numerical computation of singular
points and of homoclinic orbits via defining equations.

5.1 Basic phenomena and numerical problems

In this chapter we discuss some basic notions and results from dynamical
systems theory. These will help us in motivating the numerical questions
relevant in this context. Since there is a vast literature on the subject, we
do not attempt to give complete references, but rather follow our personal
view. In many cases the references cited may be taken as a starting point

for further study.
As some general references for the numerical part we quote here the

monographs by Kubiéek and Marek[63], Rheinboldt[80], Seydel[87] and the
special volumes Kiipper, Mittelmann and Weber{65], Kiipper, Seydel and

Troger[66] and J. of Comp. Appl. Math. 26 (1989).

5.1.1 Dynamical systems

We consider the time dependence of a system which can be described by
an N-dimensional state vector

u(t) = (ur(t),...,un(t)) € RY, t e R.
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Fig. 5.1. Time diagram

We will also assume that the function u(t) is determined by a dynamical
system, i.e., a first order autonomous ordinary differential equation

u(t) = flu(t)). (1.1)

Here the function f : RY — RY describes the mechanism of the underlying
system and we assume it to be sufficiently smooth. The unique solution of
the initial value problem

@ = f(u), u(0) =u® e RN (1.2)

exists in some maximal open interval J(u®) C R. It will be denoted by u(t)
or ®(¢,u’) or ®(t,u’, f), if the dependence on u° or f is of importance.
For fixed ¢, the map

u® — ®(¢,u)

is called the t-flow of the system (1.1). This notion is made clear in fluid
dynamics (cf. Kreiss and Lorenz[62], Chapter 1.2). There f(u) denotes the
velocity field at position u, so that a particle starting at position u? at time
t = 0 will be at position ®(t,u°) at time ¢. Correspondingly, the curve

v(u®) = {®(t,u°) : t € J(u0)} (1.3)

is called the orbit or the trajectory of u°.

There are essentially two ways of visualizing the solutions of (1.2), either
in a time diagram, where u(t) or some functional of it is plotted versus
time, or in a phase diagram, where the orbits are drawn (see Figures 5.1
and 5.2). The basic problem in dynamical systems is to describe the
asymptotic behaviour

®(t,u®) - ?ast —
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Fig. 5.2. Phase diagram

for as many initial values u° as possible. In some sense this asymptotic
behaviour is captured by the w-limit set

w(u®) = {v e RY : ®(ty,u’) — v as k — oo for some sequence #;, — oo}
The simplest case occurs if the solution becomes stationary, i.e.
®(t,u’) = T as t — oo.

Then obviously w(u®) = {u} and f(@) = 0. This case is shown in Figures
5.1 and 5.2. Any vector 7 € IRY which satisfies f(@) = 0 is called a
stationary point or a steady state.

5.1.2 Two numerical approaches

The numerical analysis of the longtime behaviour of the flow @ usually
follows two complementary approaches:

Methods of type I (sometimes called direct methods)

Set up and solve numerically so-called defining equations for possible w-

limit sets of (1.1).
For example, set up the stationary system f(v) = 0 and use Newton’s

method
o™ = o — [f(™)] T (). (1.4)

It is well-known, that this method converges locally; i.e., the sequence v.vill
converge to some stationary point @, if v° is sufficiently close to ¥ and if

f'(%@) is nonsingular . (1.5)
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Once a stationary point has been found, we may also determine its stability
characteristics. If, in addition, the system has parameters we may continue
this point into a branch of stationary points and detect singular points at
which the stability characteristics change (see section 5.1.5 below).

Methods of type II (sometimes called indirect methods)

Solve the initial value problem (1.2) by some numerical integration method.
In the simplest case this may be a one-step method with constant step size
h

w1 = p(h,u"), n=0,1,2,..., u° € RY. (1.6)

For example ¢(h,u) = u + hf(u) in the case of Euler’s method. The
mapping ¢(h,-) is the discrete h-flow, which is taken as an approximation
of the continuous h-flow ®(h,-). A method of order p is obtained, if

o(h,v) = ®(h,v) + O(hP™) (1.7)

holds uniformly in some bounded set Q ¢ IRY which contains the forward
orbit {®(¢,u%) : ¢t > 0}. If, in addition, ¢(h,-) has a uniform Lipschitz
constant L in €2, then classical estimates of the global discretization error
are of the form (see e.g. Isaacson and Keller[52])

llu(nh) — u™|} < C hPelmh, (1.8)

Clearly, these estimates becomes useless if L > 0 and nh > 1. One
might then ask, if there are systems for which (1.8) can be shown to hold
with L = 0 or even L < 0. This is in fact the case (see e.g. Stetter[93,
Chapter 3.5]), however, the assumptions on the system usually require
that all trajectories converge to one and the same stable stationary point.
If we are also interested in unstable phenomena, then there will be some
exponential divergence of trajectories (at least locally) and (1.8) cannot
hold with L < 0. Therefore, we think, one should rather ask completely
different questions, such as the following:

— Define the discrete w-limit set of the numerical sequence u™ from (1.6)
as

wp(u®)={v € R": u™ — v as k — oo for some sequence ng — 00}
Can anything be said about the distance between w(u®) and wh(u)?

— Can we obtain the estimate (1.8) with L < 0 if we allow different
initial values for the discrete and the continuous trajectories?
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Fig. 5.3. Phase diagrams of 2-dimensional linear systems

This topic will be taken up in the last chapter. There we will concentrate
on some positive answers for sufficiently small A. We notice, however,
that there is also a growing literature which discusses the failures in the
asymptotic behaviour of the numerical sequence u™ if h increases (see e.g.,
Brezzi, Fujii and Ushiki[17], Sanz-Serna[85], Stuart [96], Iserles, Peplow
and Stuart[53]). Indirect methods usually provide some information on
the global behaviour of trajectories for a few initial values. In contrast to
this, direct methods only give some local information, which, however, is
valid for a solid neighbourhood of initial values. In the following we will

be concerned with these direct methods.

5.1.3 Some examples

The following three examples have been selected in order to demonstrate
certain dynamic features and the typical structure of large dynamical sys-
tems (N > 1). A great variety of further examples can be found in the
books cited at the beginning of this chapter.
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Example 1

t=y, g=1+y—z>+azy. (1.9)
This is a seemingly simple example in 2 dimensions with u = (z,y). There

are two stationary points (—1,0) and (1, 0).

Example 2 The linear two-dimensional system

d:Au,A=(Z 2) (1.10)

The phase portrait depends on the eigenvalues of A

ft = %(T'I‘:{:\/TTZ—LlDet), Tr =a+d, Det =ad—bc

and the various cases are best shown in a Tr-Det diagram as in Figure 5.3
(see Hirsch see Smale[48], Chapter 5). The two lines shown will be used in
later examples.

Example 3 Diffusion-reaction systems

vt = Dvgg + g(z,v), 0<z <1, t>0
v(z,0) = v0(z), 0<z<1
U(O,t) = Y0, 'U(].,t) =1, t 2 0.

Here v(x,t) € R" is a vector describing the concentrations of n reactants
at time t and location z € [0,1]. The reaction term g couples the various
concentrations (in the case of bimolecular reactions it is a quadratic term
in v), while D is a diagonal matrix containing the diffusion coefficients.
The standard method of lines approach introduces a spatial grid z; =iAz,
Az =1/(m + 1) and approximates the parabolic system above by

vi(z,t) = (A!B)“ZD(v(a:,'_l,t)— (1.11)
2u(z;, t) + v(zig1, 1)) + gz, v(xs, 1), i = 1,...m.

Here v(zo,t) and v(zm41,t) are replaced by the given boundary values.
Introducing the vector

u(t) = (v(r1,t),...,v(Tm,t)) € R™"

yields a dynamical system of the form (1.1) where the Jacobian f’(u) is a
large matrix with tridiagonal block structure
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Fig. 5.4. A periodic orbit and an invariant torus

fllu) = =~ .

This example opens up the road to partial differential equations and
it suggests that direct numerical methods should take advantage of the

sparsity of f'(u).

5.1.4 Fundamental notations and results

At the beginning of this chapter we referred to a few books on numerical
methods for dynamical systems. Similarly, we mention here some mono-
graphs on the theory of dynamical systems Hale[44], Arnold[5], Hirsch and
Smale[48], Irwin[51], Chow and Hale[20], Guckenheimer and Holmes[43],
Amann[3]. These will be freely used without giving the particular refer-

ence at any instant. N
Given a dynamical system (1.1), an arbitrary set M C R"™ is called

wnvariant if
®(t,u’) € M for all t € R whenever u’ € M.

If this holds only for ¢ > 0, then M is called positively invariant. It ?s
easily seen that any w-limit set w(u%) is invariant and closed. Hence it is

also compact, if the positive trajectory stays bounded.
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Fig. 5.5. Stability of a compact invariant set

The most frequent compact invariant sets next to stationary points are
periodic orbits and invariant tori (see Figure 5.4). Suppose that &(T,u’) =
u? for some 7 > 0 and that 7 is the smallest number with this property.
Then

y(u®) = {®(t,u): 0 <t < T}

is a periodic orbit of period 7" and we have

d(t+T,v) = ®(t,v) forall teR, vey(u°).
An invariant torus is of the form

M ={P(©1,07):0<0; <27,0 <0, < 2r}
where P: R? - R" is 2m-periodic in ©, and O, and where

®(t, P(©)) = P(25(t,09)), t e R,0 = (0,02)

for some mapping ®,¢. Notice that the invariant set M can no longer be
parametrized by time. Some nontrivial dynamics on M remains, given by
the reduced flow ®p(¢,-).

Let M C R" be some compact invariant set. This set can only be
“observed” in a real system, i.e., in mathematical terms it appears asan w-
limit set for sufficiently many initial values, if it attracts nearby trajectories
or at least if it keeps them close. This motivates the following definition.

The set M is called stable (compare Figure 5.5), if for any neighbour-
hood U of M there exists another neighbourhood V of M such that

u €V = &(t,u’) € U for all t> 0.
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Fig. 5.6. Global phase diagram for example 1

M is called unstable, if it is not stable. Finally, M is called asymptotically
stable if it is stable and if there exists a neighbourhood U of M such that

ud € U = dist(®(¢,u’), M) - 0 as t — oc.

The basic stability result for stationary points is

Theorem 1.1. Let @ € RY be a stationary point of & = f(u). Then T is
asymptotically stable if Re u < 0 for all eigenvalues u € C of f'(u), and it
is unstable, if Re p > 0 for at least one eigenvalue of f'(%).

As a consequence, we find for our example 2(see Figure 5.3) that the
origin is asymptotically stable, if (Tr, Det) is in the open upper left quad-
rant, and it is unstable if Tr > 0 or Det < 0. The center occuring on the
semi-axis Tr = 0, Det > 0 is stable but not asymptotically stable.

The stationary point @ € RY of (1.1) is called hyperbolic, if f'(u) has
10 eigenvalue on the imaginary axis. In this case the phase diagram of the
nonlinear system resembles at least locally that of the linearized system

according to the following theorem.

Theorem 1.2. (Hartman, Grobman). Let © € RN be a hyperbolic sta-
tionary point. The flows of & = f(u) and & = f'(@)u are locally flow equiv-
alent, more precisely there exists a homeomorphism h from some neigh-

bourhood of 0 onto some neighbourhood of @ such that

(1, h(u0), f) = h(B(t,u°, f'(w))) = h(et! @uP).
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Fig. 5.7. Global phase diagram for example 1(-)

Let us apply these results to example 1 in 5.1.3. We have

! — 0 1 — ) — -
fl(z,y) = ( w4y 1tz ), Tr=1+z, Det = 2z — y.

Hence, Tr = 0, Det = =2 at (x,y) = (~1,0) and Tr = 2, Det = 2 at
(z,y) = (1,0).

Therefore, (—1,0) is a saddle and (1,0) is a spiral source. The global
phase diagram is shown in Figure 5.6. We have included in Figure 5.7 the
slightly modified example

Example 1(-)

=y, y=1-2y—2z%+ay. (1.12)
Here, (—1,0) remains a saddle, but (1,0) has turned into a spiral sink.

5.1.5 Parameters and bifurcations

In this section we consider dynamical systems with one parameter A,
@ = f(u,A). (1.13)

Changing the parameter may drive the system from one asymptotic be-
haviour to another. At certain values of A one type of invariant set (e.8.,
a stationary point) may loose its asymptotical stability and a new type of
invariant set (e.g., a periodic orbit) may be created which takes over the
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stability. In a loose sense these are the so-called bifurcations. There need
not be an exchange of stability at a bifurcation. However, in applications
this is the most important effect.

We briefly review here the various bifurcation phenomena in one parame-
ter systems which connect stationary points, periodic orbits and tori. In
Table 5.1 some typical stability assignments are shown using the following
conventions (cf. Doedel and Kernevez|28]).

stable stationary points
——————————————— unstable stationary points
© s s e 00000 0 stable periodic orbits

© 000000000 unstable periodic orbits

@ ) @ @ stable tori

For a numerical analysis of these bifurcations we are confronted with
the following tasks:

~ detect a bifurcation point while following a branch of invariant objects

~ accurately locate the bifurcation point by a defining equation

— create a good initial approximation for starting a branch of the new
invariant objects (branch switching).

It has been pointed out by Seydel[87], Chapter 5.3, that in many practical
problems the accurate location of bifuration points is not really necessary
(some interpolation on the branch will be sufficient). However, it becomes
important if we introduce a second parameter and try to follow a branch
of bifurcation points. On such a branch we may well encounter a new
bifurcation — a so-called codimension 2 singularity — and all the above
questions arise again. We will treat in this paper only one such codimension
2 singularity - the so-called Takens-Bogdanov singularity or B-point (see
e.g. Fiedler[34]). Even higher singularities have been detected for example
by Khibnik, Bykov and Yablonskii{58], De Dier, Roose and Van Rompay|[23]
and Khibnik[59].
Let us finally add an example of a torus bifurcation.

Example 4
T =r(A-— 7‘2), @1 =a>0, (‘.)2 = b. (1.14)

Here ®,,©, are assumed to be 27-periodic, i.e., ©1,02 € Sor := B/ZWE.
For the r-equation an asymptotically stable stationary point V' bifurcates
from the origin at A = 0. If we transform (1.14) into Cartesian coordinates

via

(z,y,2) = ((1 — rcos ©2) cos ©1, (1 +7cosO2)sinO;, rsin ©s)
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bifurcation diagram bifurcation name
\\“\\ saddle node or turning point
\ a parabola-like branch
_’/ of stationary solutions
u
[ R Hopf bifurcation
3 a branch of periodic orbits
eo®0 e created out of stationary solutions
[ ] ¢ *
L
‘ ————————
s** " turning point of period orbits
o a parabola-like branch of
< periodic orbits
o
© 0o o
e ®*® homoclinic bifurcation
. ° a branch of periodic orbits
° attaining infinite period
~2T, o o . - .
o’ period doubling bifurcation
. a branch of periodic orbits with

o o .T. e o 060000 o o approximately doubled period

created out of a periodic orbit

@ torus bifurcation
a branch of invariant tori
created out of a periodic orbit

Table 5.1. Various bifurcation phenomena
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we find that the periodic orbit
{(cos(at),sin(at),0) : 0 < ¢ < 2x/a}

bifurcates at A = 0 into an asymptotically stable torus

{(1 - VA cos ©3) cos O,
(1+ VX cos®,) sin®;, VA sin@,): 0< Oy, Oy < 271'}.

3.2 The direct computation of stationary points, periodic

orbits and more general invariant manifolds

5.2.1 Stationary points

The basic features of Newton’s method for solving the stationary equa-
tion f(u) = 0 have already been mentioned in 1.2. We notice here that
the nonsingularity assumption on f'(%) (see (1.5)) is slightly weaker then
the hyperbolicity assumption which guarantees the persistence of the local
phase diagram (Theorem 1.2). Further details on Newton’s method, up-
date methods and methods for following branches can be found in Ortega
and Rheinboldt[74], Stoer and Bulirsch[95], Rheinboldt[80] Seydel[87] and
Allgower and Georg[1] The stability of @ can be analysed by calculating
the eigenvalues of f/(%) (see Theorem 1.1).

5.2.2 Periodic orbits

In order to compute a periodic orbit we have to find a period T' > 0 and a
solution u(t) € RN of the boundary value problem

u = f(u), t €[0,T], u(0)=u(T). (2.1)

Since T is one of the unknowns we introduce the scaled function v(t) =
u(tT"), t € [0,1], for which we have the boundary value problem

o=T f(v), t€[0,1] (2.2)

v(0) — v(1) = 0. (2.3)

Here we have N + 1 unknowns v(t), T, but only N boundary cor}dit-ions. In
fact, if v(t) is a solution of (2.2, 2.3), then we can extend it 1-periodically to
t € R and find that any phase shifted function v(¢ + ¢), ¢ € R also solves
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Fig. 5.8. Classical phase condition

(2.2, 2.3). This arbitrariness can be eliminated by imposing an (N + 1)-
st boundary condition, the so-called phase condition. We take it in the
general form

where ¥ : C}[0,1] — R is any functional and C}[0,1] denotes the space of
1-periodic C! functions from [0,1] to RY. The classical phase condition is
obtained if we fix v(0) in a hyperplane through some approximate vector
wp and orthogonal to some direction zp (see Figure 5.8), i.e.,

T(v) = 23 (v(0) — wo). (2.5)

A good choice usually is 29 = f(wp). Finally, adding the equation T = 0,
we may now apply any of the available boundary value solvers to (2.2, 2.3,
2.4) (see e.g., Ascher, Mattheij and Russell[6], Seydel[87]). These codes
usually do not allow to take advantage of some sparsity of f' (cf. 5.1.3,
Example 3), so that specialized programs have been developed (Holodniok,
Knedlik and Kubicek[49]).

An integral phase condition has been set up and implemented by
Doedel[27] (see also Doedel and Kernevez[28]). In continuation problems
this condition usually allows for larger step sizes and is more robust than
(2.5). It has the form

1
vw) = [ FO) - w) ds 2.6)

where vp is an approximation from the predictor and zy = ¥y & f(vo). The
motivation for (2.6) comes from the following:
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Lemma 2.1. Suppose that vg € C}[0,1] is nonconstant. Then there is a
neighbourhood U of vp in C1[0, 1), such that for any v € U the Ls-distance

1
/ [o(t + q) = vo(®)[2 dt, || - ||» = Euclidean norm (2.7)
0 .

has a unique local minimum at some q = g(v) close to zero. At the mini-
mum we have

1
f 5T (8) (v(t + q) — vo(t) dt = 0.
0
Proof. Let F'(¢,v) denote the Ly-norm from (2.7). Then we find
1
e @vh=2 [t + 070+ ) - w(®) .
0
Using the periodicity of v and partial integration we obtain
1
%I;l (@,v) = 2 f T (£)u(t + q) dt.
0

Therefore, %{:—(0, vp) = 0 and

9%F

1
Sz (0.00) = sz lo0(£)|12 dt > O.

We may now apply the implicit function theorem to the equation %% (g,v) =
0 and find all our assertions. |

Determining the stability of a periodic orbit can be a considerable nu-
merical task. One has to calculate the so-called monodromy matriz Y(T') €
R™®" which is the T-value of the fundamental matrix Y (t), 0 <t < T of

the system
Y(t) = fut)Y (), 0St< T, Y(0) =1 (28)

The eigenvalues of Y (T') are called Floguet multipliers. By differentiating
(2.1) we easily find

Y (t)a(0) = u(t) and Y(T)5(0) = w(T) = 4(0).

Hence 1 is always a Floquet multiplier and stability is determined by the
remaining ones (cf. Hirsch and Smale[48], Amann[3]).
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Theorem 2.2. Let v = {u(t) : 0 < t < T} be a T-periodic orbit of
% = f(u) with monodromy matrix Y (T'). Then the orbit is asymptotically
stable if 1 is a simple eigenvalue of Y(T) and if |u| < 1 for all other
eigenvalues u. The orbit is unstable if |u| > 1 for at least one Floquet
multiplier p.

The monodromy matrix can often be determined as a by-product of
the numerical solution of the boundary value problem (2.2, 2.3, 2.4) (see
Doedel and Kernevez[28], Seydel[87], Chapter 7). This is possible because
the discretization of (2.2, 2.3, 2.4) is linearized during some Newton step
and the matrix obtained is close to a discretization of the linearized system
(2.8). Doing some kind of ‘forward integration’ with this system provides
an approximation for Y (T'). However, it is also well-known that this shoot-
ing type approach completely fails if there are Floquet multipliers which
are very small or very large in modulus (cf. Doedel and Kernevez[28],
Stiefenhofer[94]). This stiff periodic case typically occurs with relaxation
oscillations.

We finally mention a result of Keller and Jepson[57]. It characterizes
the admissible phase conditions (2.4) which lead to a regular boundary
value problem (2.2, 2.3, 2.4). By regular we mean here that if we write
(2.2, 2.3, 2.4) as an operator equation

F(o,T)= (0 =T f(v),v(0) —v(1),¥(v)) =0

where F : C1[0,1] xR — C°[0,1]x RN, then we require that the Frechét
derivative of F' (in some suitable norms) at the solution is a homeomor-
phism.

Theorem 2.3. Let u(t) be a solution of (2.1) and let v(t) = u(tT). Then
(2.2, 2.3, 2.4) is a regular boundary value problem for (v,T) if and only if
the following two conditions hold

(i) 1 is a simple Floquet multiplier
(ii) W'(v)v # 0.

Condition (ii) is a rather mild requirement; for the classical phase condition
(2.5) it means 2T 9(0) # 0, while (2.6) requires

1
f 2T (£)0(2) dt 0.
0

Further, as in the stationary case condition (i) is weaker than the hy-
perbolicity of the orbit, which requires that 1 is not only a simple Floquet
multiplier, but also the only one on the unit circle. Again hyperbolicity
guarantees the persistence of the dynamic behaviour under perturbations.
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5.2.3 More general invariant manifolds

Smooth invariant manifolds are an important tool in the analysis of dy-
namical systems. On the one hand, these are applied for lowering the di-
mensionality of the system without loosing the w-limit sets (or attractors)
under investigation. Examples are:

- center manifolds (see e.g. Carr[18], Guckenheimer and Holmes[43])
— inertial manifolds (e.g. Temam|[98]).

On the other hand, invariant manifolds also serve to understand the dynam-
ics in low-dimensional systems by either bounding domains of attraction
or appearing as limit sets themselves such as

- separatrices consisting of stable and unstable manifolds

— tnvaeriant tori.

The numerical approximation of these invariant manifolds has been un-
dertaken just recently (see Kevrekidis, Aris, Schmidt and Pelikan[60], van
Veldhuizen([99], Foias, Jolly, Kevrekidis, Sell and Titi[35], Doedel and Fried-
man([29,30,31], Dieci, Lorenz and Russell[25], Beyn[11]). Some special sep-
aratrices — the homoclinic orbits — will be discussed in the next chapter.
In this section we outline the method of Dieci, Lorenz and Russell[25] (see
also Lorenz and Van de Velde[70]) for calculating invariant manifolds in

the special case of a two-dimensional torus.
They assume, that the given dynamical system has been subject to a
coordinate transformation u — (©, R), after which it takes the form

© = f(©,R), R =g(6,R). (2.9)
Here R € RV 72 and © € T? := (IR/277Z)? is already a toroidal coordinate.
Our example 4 (section 5.1.5) is of this type with f being constant and g
depending only on R. We look for an invariant manifold of the form

M = {(©,r(0)):© € T?}. (2.10)

Decomposing the flow & = (®g, ®r) according to (2.9) we may write the
invariance condition as

®r(t,0,R) =r(®e(t,©,R)) for (O,R)€ M.

Differentiating this identity with respect to ¢ and setting ¢t =0 yields

‘ 8
o(8,R) = 1'(©)1(0, B) = f1(O, R) 55~ (6)+ 2(6, R) g5~ (©).
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Inserting R = r(©) gives the following first order system of nonlinear partial
differential equations for the function r : T? — RN 2

90,7) = 11(0,) - +12(6.7) - 2:11)

The requirement that 7 is a smooth function of © € T? can be written as
© € [0,2n] x [0,27],7(0,02) = r(2m,03), r(01,0) =7(01,2r). (212)

The boundary value problem (2.11), (2.12) is discretized with central
differences (leap frog)

g(@,r(@)) = f1 (@1T(@))D17‘(@) + fz((“), T(E‘)))Dz’f'(@), ©cy (213)

where
Qn = {(n1hy, nghs) : n; € Z(mod N;), j = 1,2}, hj = fv—’z
and
Dir(®) = g ({81 +h1,02) = 1(01 = h1.©2)
Dyr(@) = 5;1—2 (r(©1,02 4+ hy) — 7(©1,03 — hy)).

The periodicity condition is built into the definition of Q5. Now Newton’s
method can be applied to (2.13), and the linear systems arising in each
step are of block tridiagonal form (cf. 5.1.3) with an additional block in
the upper right and lower left corner.

If these linear systems are solved in a shooting type manner (called
compactification), then ill-conditioned matrices arise, and a modification
of the discretization avoiding these failures is proposed in Dieci, Lorenz
Russell[25]. The compactification of these linear systems also elucidates the
relations to another approach for invariant tori (see van Veldhuizen[99]).
In that method the torus is computed via its intersection with a given
plane, which is an invariant curve for the Poincaré map. This increases the
geometric flexibility of the method if compared to the rather restrictive pre-
transformation (2.9). On the other hand, the invariant circle methods rely
to some extent on the asymptotic stability of the torus and the dynamics
on it, while the PDE approach (2.11), (2.13) seems to be independent of
it.

Of course, all these methods run into difficulties if the torus leoses
smoothness and breaks up. This is probably one of the possible routes to
chaos (cf. Newhouse, Ruelle and Takens|73)).
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Fig. 5.9. Eigenvalues of f,

5.3 Singular points in one-parameter systems

5.3.1 The loss of hyperbolicity on a branch

In this chapter we take up the questions of detecting and locating singular
points in one-parameter systems (cf. section 5.1.5)

W= f(u,A), A€ R, u(t) e RV, (3.1)

Any stationary point of (3.1), which is not hyperbolic, will be called singu-
lar. Let (u{s),A(s)) be a smooth branch of stationary points parametrized
by s € (—sp,89) C R, sg > 0. Looking at the spectrum of f,(u(s),A(s)),
we can imagine basically two ways in which the stationary points loose
hyperbolicity. Either a real eigenvalue crosses zero or a pair of complex
conjugate eigenvalues crosses the imaginary axis (see Figure 5.9). In the
first case we have a turning point {or a saddle node in the language of
dynamical systems), and in the second case we have a Hopf point.

5.3.2 Turning points (saddle nodes)

The situation near a turning point is described in the following Theorem:

Theorem 3.1. Let (u(s), A(s)), s € (—89,50) be a smooth stationary
branch of (3.1) with (u'(s),\'(8)) # O for all s. Further assume that
79 := f.(u(0), \(0)) has a simple eigenvalue 0 with eigenvector ¢o nor-
malized by ¢3¢0 = 1 and that (fC f2) has rank N. Then X'(0) = 0 holds
and the following conditions are equivalent

(i) A7(0) #0
(i) 1/(0) # 0, where u(s) denotes the smooth continuation of the

eigenvalue 0 for f2 := fu(u(s), A(s))
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(i) (u(0), A(0), ¢o) is a regular solution of the defining equation

flu,A)
T(u, A @)= fulu,A)¢ | =0, (3.2)
¢Td—1
ie., T'(u(0), A(0), ¢o) is nonsingular.

Remark: If any of these three conditions is satisfied, then (u(0), A(0)) is
called a quadratic (or simple) turning point. The obvious reason is the ge-
ometric condition (i), according to which the branch is locally a parabola
either turning to the right or to the left (see 5.1.5). Condition (i) is the
characterization in terms of eigenvalues and condition (iii) is the first ex-
ample of a defining equation given by Seydel[86] and further analyzed by
Moore and Spence[72). We will discuss a special aspect of defining systems
in the next section, but for a broad overview we refer to Seydel{87]. For
later reference we indicate here the proof of (i) & (ii).

Proof. (i) & (ii) Differentiating

flu(s),A(s)) =0

yields
LU (8)+ fRN (s) = 0.

Taking s = 0 we obtain from our assumptions that A’(0) = 0 and «'(0) =
¢ ¢o for some ¢ € R. We differentiate again with respect to s and find at
s =0,

A f3.0% + Fou"(0) + FIN"(0) = 0.
Consequently, condition (i) is equivalent to
where R(f2) denotes the range of f2.

Similarly, the equivalence of condition (ii) and (3.3) can be shown by dif-
ferentiating the following eigenvalue equation at s =0

fu(u(s), A(s))¢(s) = u(s)d(s),

where p(0) =0, ¢(0) = ¢o. n

Let us illustrate the phase diagrams near a turning point by introducing a
parameter A into example 1 (see (1.9))
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Fig. 5.10. Phase diagrams for Example 1(A)

Example 1(})
t=y, y=A+y—z®+uxy. (3.4)

Here the stationary branch is

(z(s), y(5), M(s)) = (5,0, 8%)
and for the linearization f3 we find

Tr(s) =1+s, Det(s)=2s.

This is shown as a dashed line in Figure 5.3. The change of phase diagram
with A is illustrated in Figure 5.10. Notice that, according to Figure 5.3,
the spiral source at (v/A,0) becomes an unstable node before coalescing

with the saddle at A = 0.

5.3.3 Defining equations

One Newton step for the defining equation (3.2) involves the solution of a
linear system of dimension 2N + 1, but, as Moore and Spence[72] showed,
this can be reduced to 4 linear systems of dimension NV + 1 with the same
matrix. This matrix is nonsingular at the turning point and has the form

Alu,\) = ( f:(” M) g" ) bo, co € RY. (3.5)
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This result clearly suggests replacing (3.2) right away by a system of di-
mension N + 1:

T(u,A) = ( g ((Z i‘)) ) =0, (3.6)
where g(u,A) € R is implicitly defined through
Alu, \) ( Z%Zi‘g ) - ( ) ) v(u, ) € RY. (3.7)

In fact, this is the approach proposed by Griewank and Reddien[41,42]
Similar systems are given Abbott[2], Pénisch and Schwetlick[78], and even
further reduced equations are considered in Jepson and Spence[55], Beyn[7].
Though many of these methods lead to comparable numerical effort, we
think that the approach of Griewank and Reddien has several appealing
features, conceptually as well as computationally:

(a) The function g can be used for detection as well as accurate location
of a singular point. This generalizes to other singularities (see below).

(b) The system is written in such a way that the linear algebra of a
Newton step suggests itself. In particular it can be seen that several
linear systems with the same matrix A(u, A) or its adjoint have to be
solved (see Lemma 3.2).

(c) If one wants to retain the original equation f = 0, then (3.6) is the
minimal extension possible.

Let us explain the argument b) in more detail. First, we have to evaluate
the derivative

9:(2) = (gu(u, }\)’ a(u,A)), z= (u, A)
which appears in a Newton step for (3.6). Here the following Lemma
is useful (cf. Griewank and Reddien[41,42]). For later purposes we will
formulate it for the case of p > 1 parameters.

Lemma 3.2. Let & C RY*? be open and f : @ — RY be smooth such
that

A(z) := ( Q‘OT(") OB 0 ) e RN*»N+r B 0, € RV? fixed (3.8)

is nonsingular for all z = (u, A) € Q. Define the functions

UV:9— RV? and G,G:Q — RPP
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A(2) ( g((g ) = ( _g ) (3.9)

(UT(2) G(2))A(z) = (0 I). (3.10)
Then the following relations hold in

G=G=-UTfV (3.11)

G, =-~-UTf,,V. (3.12)

Proof. Let us write down (3.9), (3.10) explicitly

flV+BG =0, CFV=1I,
UTf, +GCT =0, UTBy =1,

Multiplying the first equation by U7 from the left and the third by V from
the right immediately yields (3.11). The same operation on the derived
terms gives

UTfqu +UTquz + G, = UszuV + UTfqu +G,=0.

We then arrive at (3.12) by combining these formulas with the formula
obtained by direct differentiation of (3.11). [ ]

We notice that G, can be easily evaluated from f, by numerical differenti-
ation, e.g., if p = 1, we may use

0:(2) ~ = 7 UT(Falu+ AV, ) = fulw, N)) (3.13)

In the Newton step for (3.6) we have to solve a linear system with

T'(u, \) = ( g: 5:\‘ )(u,,\).

We now insist that this is done with the help of the matrix (3.5). One
reason for this is that the user may provide a black box routine for solving
with the bordered matrix (3.5) (or (3.8) in the general case). The following
Lemma shows how to reduce the solution of one bordered linear system
to the solution of another one. It is in some sense implicitly contained in

Griewank and Reddien[42].
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Lemma 3.3. Let Ey = ( é‘} 530 ) e RYtPNTP pe nonsingular and
0
let
E = é?r g € RN+kN+k be another bordering of Ay. Solve the
following p + k linear systems with Eg
Xo\_( 0 X\ (B
a(%)-(5) »(V)=(5) o9
Then E is nonsingular iff A is nonsingular, where
Y Y.
A= [ cTX _ D C"T X, ] € RPHhPHk, (3.15)

The solution of a system E ( z ) = ( 5 ) can be written as

=Tp— Xy - Xo dg (316)

WhereEg(Zg)z(é)andA(go)=(cT$‘Z_g )

The proof is rather easily obtained by inserting the formula (3.16) into the
given linear system, and we omit the details. If k = p and B = By, thenwe
can take X =0, Y = B;. We also notice, that in the extreme case p =0,
Lemma 3.3 reduces to the block elimination method (e.g. Keller[56]). In
the turning point case one might use this Lemma with B = By = f) and,
noticing the coincidence of (3.7) and (3.14), one ends up, for one Newton
step, with 2 linear systems in A and one in AT as well as 2 evaluations of
(fu, [r) (see (3.13)). We finally notice that several algorithms have been
proposed for solving systems with bordered almost singular matrices as in
(3.5). The emphasis here of course is on methods which exploit sparsity
of f, or even work with a black box solver for f, (see e.g. Rheinboldt[79],
Chan[19] and the remarkably simple, recent approach in Govaerts{39]).

5.3.4 Hopf points

We return to the second mechanism of loosing hyperbolicity, i.e., through
two complex eigenvalues crossing the imaginary axis. This situation is de-
scribed by the classical Hopf bifurcation theorem (see e.g. Hassard, Kazari-
noff and Wan[46], Amann[3]).

Theorem 3.4. Let (u(X), \), be a smooth stationary branch of (3.1). As-
sume that at some A = Ao the matrix fO = f,(u{)o), o) has a simple
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eigenvalue wo,wy # 0 with eigenvector z¢ + iyy and no eigenvalue of the
type ikwo, k = 0,2,3,... Finally, assume

Re p'(Xo) # 0, (3.17)

where (A} is the continuation of the simple eigenvalue iwq for f,,(u()), A).
Then there exists an ap > 0 and a smooth branch of T(a)-periodic solutions
(uft, a)(0 < t < T(a)), Aa)),|a|l < ag for &« = f(u,A) with the following
properties

u(t,a) = wu(A(a))+ alcos(wot)To — sin(wot)ye) + O(a?)
Al@) = A+0(a?),T(a) = Z—E + O(a?). (3.18)

Compared to Theorem 3.1, this theorem only describes the geometric
setting, i.e., the periodic orbits created out of (u(Ag), Ag) and parametrized

by the amplitude a.
For an illustration we now insert a parameter A into example 1(-) (see

5.1.4).

Example 1(-))
g‘;:y,g=,\—2y—-m2+my. (3.19)

As in example 1(A) the stationary branch is
(2(s),4(5), A(3)) = (s,0,5%).
For the linearization f2 at these points we obtain
Tr(s) = -2+ s, Det(s)=2s.

This is the dotted line shown in Figure 5.3. We have a saddle for s < 0,
a sink for 0 < s < 2 and a source for s > 2. Consequently, we s'till ﬁnc.i a
turning point at s = 0, but in addition to this, there is a Hopf bifurcation
at s = 2. It turns out that the periodic orbits created at s = 2 are
asymptotically stable and that they exist in a certain interval' for A > 4
We have sketched the changes in the phase diagram up to this region in

Figure 5.11.

In our next step we relate the eigenvalue condition '(3..17) of the Hopf
Theorem to the regularity of a defining equation. This is the analogy to
the equivalence (ii) < (iii) in Theorem 3.1.
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Fig. 5.11. Phase diagrams for Example 1(—A)

Theorem 3.5. Let the assumptions of Theorem 3.4 hold with the excep-
tion of (3.17) and let ¢ € RY be given such that

c"zo =0, Tyo=1.
Then the eigenvalue condition (3.17) holds if and only if
(u(Xo), Ao, To, Yo, wo) € R*NF2

is a regular solution of the defining equation

fu, A)
fulu, A)z + wy
T(u, M\ z,y,w) = | fulu, Ny —wz | =0. (3.20)
cTx
cTy—1

The system (3.20) was set up and analyzed by Jepson{54]. Further in-
vestigations are due to Griewank and Reddien[40], who showed that the
linearized system can be reduced to solving several systems with a border-
ing of f2(u,A) + w?I.

In the spirit of the previous section it seems therefore reasonable to
replace (3.20) by the (N + 2)-dimensional system

T(u, \,w) = ( g{éf‘:\’)‘g) ) =0, (3.21)
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where g(u, A\,w) € IR? is defined by

2w, )+ By \ [ v(wAw)\ [ °
( cr 0 ) ( g{u, A, w) ) - (1) (3.22)

Since, at the Hopf point fZ+wZ2 I has a two-dimensional null space, spanned
by 29, yo, it is clear that By, Coy € R™? can be chosen in such a way that
(3.22) is nonsingular close to the Hopf-point. Similar strategies, which
employ the matrix f2 +w?I or its characteristic polynomial were proposed
by Kubiéek and Holodniok[64] and Roose and Hlavacek[83]. Let us consider
here one Newton step for (3.20).

As in Lemma 3.2 we solve the adjoint system

2. 2
(WTG)( fié+w?l By ) = (0 I,), W e RV?, G e R??

ct 0
and find
g = -WT(f2 +w*)v = second column of G (3.23)
9:6 = "'WT[fuz(fu'U» )+ fu fuz(v, Q)] 2= (u,A), (€ RY*, (3.24)
9o = 2w WT, (3.25)

Again, g, can be approximated by difference quotients, and with this in-
formation we can set up the bordered matrix

Tr____(fu .f)\ 0 )
Gu 92 Gu

At a Hopf point f, is regular, so we can solve with 7" by a block elimina-
tion method. However, as Griewank and Reddien[40] pointed out, turning
points are also solutions of (3.20) (and hence of (3.21)), namely with w = 0.
Therefore, one of the algorithms mentioned at the end of the last section is
also recommended for this system. Of course, (3.22) requires the compu-
tation of f2, but for large banded matrices the computing effort still grows
only linearly with N. We should add here, that up to now we have no
numerical experience with the system (3.21).

We close this section with some comments on the problem of detecting
Hopf points (compare Jepson[54] or Seydel{87] for a discussion). Since t.:he
function g in (3.21) is two-dimensional, this problem amounts to watching

for a zero of
g(u(s),A(s),w) at some w € R.

Clearly, this is a difficult task. One can simply compute all eigepval—
ues of f,(u(s),A(s)). But then the computational costs usually dominate
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those for the branch itself, which is particularly awkward for N large and
fu sparse. For a recent attack to this difficult problem by using inserve
subspace iteration see Garratt, Moore and Spence[37]. A further possibil-
ity for line systems (see 5.1.3, Example 3) is recommended by Seydel87].
He proposes to use a coarser spatial grid for the Hopf detection.

5.3.5 Singular periodic orbits

Once a branch of periodic orbits has been created at a Hopf point one
would like to continue these periodic orbits (cf. 5.2.2) and detect bifurca-
tions on the branch. In Figure 5.12 we have sketched the possible further
scenarios by using the list of bifurcations from 5.1.5. We may either find
a turning point of periodic orbits, a period doubling, a homoclinic orbit
or a torus bifurcation. The last three phenomena already represent final
steps on the route to chaotic behaviour, such as a period doubling se-
quence, periodic forcing of systems with homoclinics and torus breakdown
(see Guckenheimer and Holmes[43]).

In what follows, we will focus on only one of the possibilities in Fig. 10,
viz. the homoclinic bifurcation.
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Fig. 5.13. Phase diagram for Example 1(—X)

5.3.6 The homoclinic bifurcation

Let us continue example 1(—\) from section 5.3.4 and observe the fate of
the periodic orbit created at the Hopf point. With increasing ) the periods
also increase, while the periodic orbits in phase space approach on one side
the saddle point. Finally, at some A = )g the period becomes infinite and
the perodic orbit turns into a homoclinic orbit, connecting the unstable
saddle with itself in infinite time. Increasing A beyond Ao just leaves us
with the two unstable stationary points, and all trajectories not starting at
these two points or on their stable manifolds eventually escape to infinity.
The phase diagrams are shown schematically in Figure 5.13. Because of
the global change of phase diagram at the homoclinic orbit, this transition
is often called a global bifurcation. Before we can state some basic results
we have to introduce further notions. Let w(t),t € IR be a solution of
% = f(u,\) at some A = X such that there exists a 7 € R™ with

u(t) > T as t — oo and as t— —oo. (3.26)
Then {@(t) : t € R} is called a homoclinic orbit with base point ¥, and the

pair (%, )) is called a homoclinic orbit pair (HOP). Obviously, 7 has to be
an unstable stationary point of & = f(u, A).
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Similar to periodic orbits (see Theorem 2.3) we want to recognize (7, A)
as a regular solution of some operator equation. For this purpose, the
following Banach spaces are useful.

By = {ueCR,RM): tlirgo u(t) and t_l}r_noo u(t) exist }  (3.27)

Hullo = sup {|lu(?)]|:t€R} and (3.28)
By = {ue C*R,RY):u,u € By}, lulli = ||ullo + |[&]]o- (3.29)

Next we notice that homoclinic orbits may be phase shifted just as periodic
ones (cf. 5.2.2), so for uniqueness we impose a phase condition ¥(u)=0
where ¥ : By — R is assumed to be smooth. We then have the following
characterization (see Beyn[11]).

Theorem 3.6. Let (1, X) be a homoclinic orbit pair with a hyperbolic base
point. Then (G, \) € By x R is a regular solution of the operator equation

F(u,)) = ( “‘\Pf(fu”) A) ) =0, F:BixR— Byx R (3.30)

if and only if the following two conditions hold

(i) the only solutions (v, u) € By x IR of the variational equation

O = fu(@ X + fA(T Ay (3.31)

arev=ci(ceER), p=0.
(ii) ¥(@) =0, ¥'(w)u # 0.

Remark: Condition (i) is plausible from the fact that v = ¢, u =0 al-
ways solves (3.31), as can be seen by differentiating @ = f(@, A). Moreover,
this condition can be characterized by a transversal intersection of certain
stable and unstable manifolds (Beyn[12]).

We will not prove Theorem 3.6. However, we would like to draw the
reader’s attention to an important technical tool which is employed in this
as well as the following theorems. The linearization (3.31) suggests that
we first have to study the behaviour of linear differential operators

Lu=1u- A(t)u, A(t) € R¥" continuousint € R.
For these, the notion of an ezponential dichotomy (Coppel[21], Palmer(76])

is of utmost importance. Let Y (t),t € R be a fundamental matrix of L
normalized by Y (0) = I. Then L is said to have an exponential dichotorny
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on some interval J C R, if there exist K,a > 0 and a projection P in RY
such that for all t,s € J

Ke~at-8) o< (3.32)
Ke™ 26—t t<g, (3.33)

|V (£)PY (s)71|

<
YT -P)Y ()™ <

This means that we can decompose the solution operator associated with
L into a part which decays exponentially in forward time and another part
which decays exponentially in backward time. This property holds for the
linear differential operator L obtained by setting

A(t) = fu(a(t), »),

where (%, A) is the HOP. Using the hyperbolicity of the base point, one
can show that L has an exponential dichotomy on both J = [0,00) and
J = (—00,0] (but not on J = R!). These dichotomies may then be used to
set up a linear Fredholm theory for the operator L : B; — Bp. In fact, in
our homoclinic case L turns out to have Fredholm index zero. _

Theorem 3.6 gives rise to the following definition. A HOP (@, A) is
called nondegenerate, if the base point is hyperbolic and if condition (i)
of Theorem 3.6 holds (see Beyn[11] for the general case of connecting or-
bits). It is remarkable that this basic assumption suffices to guarantee a
branch of periodic orbits created out of the homoclinic orbit according to
the following homoclinic bifurcation theorem.

Theorem 3.7. Let (4, \) be a nondegenerate homoclinic orbit pair of
@ = fu,A). (3.34)
Then there exists a Ty > 0 and a branch of 2T -periodic solutions
(ut, T)([t| < T),Ar), T =2 To
of the system (3.34) with the following estimates

1at) —u@,T)|| < Ce*T forall te[-T,T]
M- € Ce 2T (3.35)

where a < |Re p| for all eigenvalues p of the linearization at the base point.

Surprisingly, this general theorem seems not to have been noticed unt.il
recently (Lin[69], Beyn[12]), although there is a long history of homoclinic
bifurcation results (cf. Andronov, Leontovich, Gordon and Maier{4], Chow
and Hale[20], Guckenheimer and Holmes[43], Wiggins(100]). One reason
may be that the cited references try to discuss simultaneously the dynamics
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of (3.34) for A close to A\. However, these can be very complicated in
dimensions N > 3. In Figure 5.14 we sketch two basic behaviours of
the periodic branch in a (A,T') diagram. Let us denote those eigenvalues
at the hyperbolic base point as critical which have smallest positive or
largest negative real part. Then case 1 in Figure 5.14 usually occurs when
the two critical eigenvalues are real, while in case 2 there is a real and a
complex conjugate pair of critical eigenvalues. This last case is called the
Shil'nikov bifurcation, see Shil’'nikov[88], Glendinning,[38], Wiggins[100],
Lin[69]. One of its remarkable features is that there exist infinitely many
periodic orbits at A = X.

Theorem 3.7 also has an impact on numerical calculations. It shows
that HOP’s may well be approximated by periodic orbits of large but

fixed periods, and this approach has been successfully used by Doedel and
Kernevez[28].

However, it is possible to replace the periodic boundary conditions by
more efficient ones, the so-called projection boundary conditions, which
lead to even better convergence than (3.35) and hence allow for smaller
time intervals. We will briefly discuss here the method of Beyn[11,12],
and we mention that a slightly different method was developed by Doedel
and Friedman(29,30] (see also Kuznetsov[67], Rodrigues-Luis, Freire and
Ponce[81]). Both approaches allow for the computation of more general

connecting orbits, i.e., orbits which connect two possibly different station-
ary points.
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We know from Theorem 3.6 that we have to solve a defining equation,
which is a parametrized boundary value problem on the real line

= f(u,A), u€ B, €eR, (3.36)
¥(u) = 0. (3.37)

For numerical purposes we have to truncate this boundary value prob-
lem to a finite interval J = [T-,7%], and we have to set up boundary
conditions at 7,7 which catch the asymptotic behaviour of the solu-
tion (notice that in (3.36) the boundary conditions are hidden in the space
By). For the case of semi-infinite intervals such boundary conditions have
been set up by de Hoog and Weiss[22] and Lentini and Keller[68]. Here we
generalize the first approach to our problem (3.36).

We require that a branch of stationary hyperbolic points v(}), is known
(or can at least be computed numerically) which contains the candidates
for the base points (compare Figure 5.13). Consider the stable subspace
Y5(A) of fu(v(A), A), which contains all generalized eigenvectors belonging
to the eigenvalues with negative real part, and similarly let Y, {A) be the
unstable subspace. Then we impose the projection boundary conditions

w(Ty) = v(A) € Ya(N), w(T-) —v()) € Yu(A). (3.38)

These conditions are very natural since the homoclinic orbit must leave v(A)
via its unstable manifold, which is tangent to Y, ()), and must approach
v(A) again via its stable manifold, which is tangent to Y;() (see Figure 5.15
and, for example, Irwin[51]}. For a numerical implementation we construct

full rank matrices
P,(\) e RMVN P,(A) e RN N, =N - N,
such that
Yo(A) = {z: Ps(A)z = 0}, Yyu(A) = {z: Pu(N)2 =0}
and rewrite (3.38) as
Py(A)(w(Ty) — v(N) = 0, Pu(A)(u(T-) —v(}A)) = 0. (3.39)

These projection type matrices can be computed numerically in such a way
that the smooth dependence on ) is guaranteed (see Beyn[ll]):
Finally, bearing in mind the discussion of phase conditions in 5.2.2, we

replace (3.37) by an integral condition

Ty
Ur(u) = / T (8)(ult) — uo(t)) dt =0, (3.40)
T_
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Fig. 5.15. Illustration of projection boundary conditions

where ug(t) is some initial approximation and zo(t) = #%(t). Summing up,
we have to solve the (N + 1)-dimensional system

= f(u,A), A=0 for ¢t € [T_,T4] (3.41)

subject to the N + 1 boundary conditions (3.39), (3.40). Notice that (3.39)
is linear in u but nonlinear in A.
As in Theorem 3.7 the approximation error, due to the truncation to the

finite interval, can be estimated for [T_, T ] sufficiently large (see Beyn[11,
12]).

Theorem 3.8. Let (T,)) be a nondegenerate homoclinic orbit pair and
assume that in the phase condition (3.40) we use functions zp,up € Bo
such that

f_ - 25 (8)((t) — uo(t)) dt = 0, f_ ” 2L (£)u(t) dt # 0. (3.42)

Then there exists a To > 0, such that for Ty,—T_ > Ty the boundary
value problem (3.39)-(3.41) has a unique solution (wr_ 1,1, A[(T_ 1)) close

to (@lir_ 1., A) and the following estimates hold for a suitable phase shift
T= T(T—7 T+)

@t +1) —wg r @) < Ce 2 MIRIT-ITY) ¢ e (1, T,]
XAl < € 3 Minir|1y) (343)

where a is a given constant with a < |Re p| for all eigenvalues p of the
linearization at the base point.
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The requirements for the phase fixing of the continuous homoclinic orbit
are not really restrictive, since we are only interested in approximating it up
to a phase shift. We notice that (3.43) has better exponents that (3.35) and
this difference can be clearly seen in practical computations. Also, for both
types of boundary conditions we have a superconvergence phenomenon in
the parameter. This also shows up numerically, and in some cases the
A-error is even smaller than the prediction from (3.43).

We consider as a final example the Lorenz equations (cf. Sparrow([90]).

Example 5
t=o(y—z), y=Az—y—xz, 2 = ~uz+ Y.

First, at the Lorenz values ¢ = 10, p = % the homoclinic orbit connect-
ing the origin with itself and the A-value (= 13.926557) were computed.
Due to the symmetry in the Lorenz equation this homoclinic orbit has a
symmetric companion orbit, and both together create a strange invariant
set (see Sparrow[90], Glendinning[38]) which at higher A-values stabilizes
to an attractor.

We then continued this HOP into a branch of HOP’s by freeing the
parameter . In addition, the automatic adaptation strategy for [T, T} |,
as developed in Beyn[l1], was used. Some of the homoclinic orbits from
this branch are shown in an zy-projection in Figure 5.16.

5.4 Two—parameter problems

In this chapter we discuss some aspects of two—parameter systems
u=f(u,A), A= (A1, A2) € R? u(t) e RV. (4.1)

It is evident that in such systems singular points with higher degeneracies
are possible, and one might well ask why one should analyze or even nu-
merically compute these points. The answer is that these singular points
serve as organizing centers for dynamic features, which are obtained under
parametric perturbations. And these dynamic features may well be generic,
i.e., they appear in 0-parameter problems (e.g., invariant tori), and so we
may start a branch of these objects at the singularity. In addition, from
two-parameter problems onwards, chaotic behaviour is possible near singu-
larities, so that there is some chance for an analytical treatment. This is
one of the important discoveries of dynamical systems theory.
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Fig. 5.16. Some homoclinic orbits of the Lorenz equations

5.4.1 The possibilities

Suppose that we continue a branch of stationary points (u(s), A(s)), se R
of (4.1) which are singular (u, A;)—points, i.e., either a branch of Hopf points
or turning points. Thus the Jordan normal form J® of f$ = f,(u(s),A(s))
is of the type

0 w(s) 0
N r JP=| —w(s
J_(OH(S))OJ o’ o s

For most of the points we expect the submatrix H(s) to be hyperbolic,
but at some values of s it may be nonhyperbolic. However, the reader
is cautioned that the Jordan structure (along with some nondegeneracy
conditions for quadratic terms) is no longer sufficient for classifying the
singularities in two-parameter problems. For example, on a branch of turn-
ing points we may find a degeneracy in the quadratic terms, viz.(compare

(3.3)),
Fau ¢5 € R(£2),

where ¢, spans the null space of f3. This is the well-known cusp point
(see Guckenheimer and Holmes[43], Chapter 7.1 and for numerical methods
Spence and Werner[91], Roose and Piessens[84], Pénisch[77], Griewank and
Reddien[42]). For the remaining three possibilities we have a singular block
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in the Jordan form of one of the following types

TN AT
—_— —w1
(00)’ ‘ggga 0 0 0 w (4.2)
0 0—(4)20

The analysis of the first case is generally attributed to Bogdanov(15] and
Takens[97]. Consequently, we call these points Takens-Bogdanov singu-
larities or TB-points. A numerical method for computing TB-points was
given by Roose(82]; see also Khibnik[59] and the further references therein.
Here we will pursue the corresponding defining equation from the viewpoint
taken in section 5.3, i.e. we will follow Griewank and Reddien[42]. It will
become clear from the following presentation and from the treatment of
Hopf points in 5.3.4, how to construct defining equations for the remaining
cases in (4.2). We notice that these bifurcations can only occur in systems
of dimensions N > 3 and N > 4 and a complete analysis of these cases is
still not available, mainly due to the local occurrence of chaotic behaviour
(Guckenheimer and Holmes[43]).

5.4.2 The Takens-Bogdanov singularity

Let us first consider a two-dimensional example which contains all the
variations of example 1 (see 5.1.3, 5.1.4, 5.3.2, 5.3.4, 5.3.6).

Example 1(\, A2)
=y, g}=z\1+)\2y—m2+wy. (4.3)

In 5.3.2, 5.3.4, 5.3.6 we studied the cases A2 = 1 and A; = —2 with varying
A1. In the general case of (4.3) the stationary points lie on the folded
surface

S = {(way:)‘la’\2) = (3909 32) A?) : 8, A2 € ]R.}
and the trace and determinant of f, at an arbitrary point on S are given

by
Tr(s, A2) = A2 + 8, Det(s, Az) = 2s.

Varying s and Ag, these values now cover the whole plane in Figure 5.3.
Hopf bifurcation occurs on the half-parabola

Ao = —8, A = 82, 8> 0. (4.4)

The periodic orbits created at these Hopf points vanish throug}.l a homo-
clinic orbit on a curve which in a neighbourhood of A; = Az = 0 is approx-

imately given by - ,
)‘1=(g Az) . A2 < 0.
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System (4.3) is in fact a so-called unfolding of the system
b=y, §=—2+ay,

which has 0 as a TB-point (see Guckenheimer and Holmes[43], Chapter
7 and notice that we slightly transformed the system). The qualitative
information on the various phase diagrams is contained in Figure 5.17.

For the numerical computation of a TB-point let us start as in (4.1)
with a branch of A;-turning points (u(s), A(8)), obtained by solving

rn = () ) =0

where

e (e8) = (8). = (457 §) o

and
(U7 (u, ), g(u, X)) Alu, A) = (0,1). (4.6)

Compare with (3.6), but notice that now A € R%
A test function for detecting a TB-point is then (cf. Roose[82], Spence,
Cliffe and Jepson|[92])

7(3) = TT (u(s), A(s)) v(u(s), A(s)), (4.7)
because we expect the left eigenvector of f, to be orthogonal to the right

eigenvector at a TB-point.
For the accurate location of the TB-point we now set up the defining

system
( fu, A) )
S(u,A) = g(ua ’\) =0 (4'8)
h{u, )

where h(u, A) is defined by

w(u, A) \ _ ( v(w,A)
Ay, A) ( h(u, A) )— ( o ) (4.9)
It is also natural to solve the adjoint system
(€T (u, A), A(u, A)) A(u, A) = (¥7T(u, A),0). (410)

By similar manipulations as in the proof of Lemma 3.2, we then obtain the
following result (see Griewank and Reddien{42]).
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Lemma 4.1. For any (u, ), where A(u, A) is nonsingular, the functions
defined in (4.5), (4.6) and (4.9), (4.10) satisfy the following relations

h=h=0Ty (4.11)
h, = =UT fw— (T fuv, 2= (u,N). (4.12)

From this we see that the test function in (4.7) is in fact obtained by
evaluating h along the branch. Though this could have been done without
solving (4.9), (4.10), we find from (4.12) that the derivatives of h can be
easily expressed in terms of those solutions (using a difference formula for
the second derivative of f, if necessary). Thus we can evaluate the Jacobian

fu. .fA
S'=1 g« o
hy hx

and we may now solve for the Newton step by invoking Lemma 3.3 with
p=1and k= 2.

A careful count of the numerical work for one Newton step {notice the
coincidence of (4.5) with the first system in (3.14)) yields 5 linear systems
in A, two in AT and 4 evaluations of (f,, f3).

Similar to Roose[82] the regularity of (4.8) at some solution can be
related to a nonvanishing derivative of the test function (4.7) under further
assumptions. We don’t discuss any details here. Instead, let us write
down the various functions above for the simple example 1 (A1, Az). With

u=(z,y), b = ( (1) ), et = (1,0) we find

w(u, A) = é , glu, A) =2z — y,
‘IJT(’U,,/\) = (—)\2 - T, 1), h(u,)\) =—A2—2
and thus
0 1 0 0
§'(w,A) = ;0 0 o |
-1 0 0 —1
and
0 10 0
0 01 0
5'(0,0) = 2 -1 0 0
-1 0 0 -1

Clearly, S’(0,0) is nonsingular.
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5.4.3 Starting l-parameter singularities at a TB-point

In the last section we discussed the passage from a branch of 1-parameter
singularities to a 2-parameter singularity. If we think of the singularities
being ordered in a hierarchy, then we may call this step ‘descending the hi-
erarchy’, a term coined by Jepson and Spence[55] for stationary problems.
See also the hierarchy described by Khibnik[59]. Of equal importance is
the reverse step of ascending the hierarchy, i.e., starting a branch of 1-
parameter singularities from a 2-parameter singularity. In fact, the calcu-
lation of TB-points was taken up by Roose[82] in order to start branches
of Hopf-points (see also Spence, Cliffe and Jepson[92]).

If we look at the unfolding picture Figure 5.17, then this suggests to try
starting a branch of homoclinic orbits at a TB-point. This was first carried
out for planar systems with the help of Melnikov’s method by Freire, Ponce
and Rodriguez-Luis[36], see also Rodriguez-Luis, Freire and Ponce[81]. We
will briefly outline here the algorithm for the general case (more details
are contained in Beyn[13]). Though this algorithm involves several steps,
it is not very difficult to implement. Its derivation, however, needs all the
theoretical machinery developed for proving the existence of a branch of
homoclinic orbits, such as center manifolds, normal forms and Melnikov’s
method.

We assume, that we have computed a TB-point (ug,Ag) €
the last section, and we will use the matrix Ag = A(ug, Ag) as well as the
(generalized) right and left eigenvectors v, w and ¥, { of f2 (see (4.5), (4.6),
(4.9), (4.10)). We also assume that these vectors are normalized such that

RY*2 a5 in

(To=0Tw=1, ¥Tv=¢Tw=0. (4.13)

This can always be achieved by replacing ¥,{ by a¥, af + GV for some
suitable o, 8. Finally, we require ¥T fQ 7 0 and without loss of generality

we can assume
§=0Tf) #0. (4.14)

Otherwise, we exchange the roles of A; and A2. We then proceed as follows:
Step 1 Linear normal form:

Introduce new coordinates z € RY, u € R? via a linear transformation
v\ _ f uo R v w Dy D, ( z ) 415
(A)—(Ao)+(0 0 0 B Bg) p) (4.15)

with R € RVN-2 D, D, € RY, B;,B: € R? such that the system

= f(u, A) takes the form
2= g(z,p) (4.16)
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with H o o
gz(0,0) = [ 0 J ] 3 gu(0,0) = JT } ’
and ) .
H e RY"2N-2 phyperbolic , J = L 8 0 ]

This form is obtained by setting

_( B _ 61 _ By _ —5_1‘1’ng2
= (%)= (%) m=(B0) = (77
and by solving the two linear systems
D1\ _ ( ¢—Buf} Dy \ _ { —Bufl -1
Ao(al)—( o )4 az | 0 2
(4.17)

Step 2 Center manifold reduction:

Write z = (,€) € RY2 x R?, then there are locally invariant two-
dimensional center manifolds which are graphs of the type n = F(£, 1)-
Inside the manifolds the system (4.16) reduces to

o )
i= (2 ) e e = M) .19

Furthermore, A has a Taylor expansion

e = (

where @ contains the quadratic terms. Only the following ones are needed
for our further calculation

Q& u) = ( 1162 + prabipa + . .. ),
, q1162 + qi21&2 + quabipto + qoaboliz + Qaapd + ...

and these are given by

2 ) + QU6 ) + OLEN + D),

pn = (TfP

pu = (T(fouvD2 + foyvBy)

gn = UTf0 4% qip= UT£0 yw

g1 = UT(fOvD, + fOvBs)

g2a = VT(fowD;y+ fl wBs)

qaue = VT(f2,D5+2f0,D2Bs + f5,B2).

Usually, the next step consists in a normal form transformation of the
quadratic terms. However, we omit this step, since many of the quadratic
terms prove to be irrelevant after the following scaling transformation.
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Step 3 Scaling transformation:
Again new coordinates are introduced
(61,82) — (z,9), (p1,12) = (,7)
such that the two dimensional system (4.17) assumes the form

£ = y+elarx® + aetz + azr?) + O(2)
U = z?—4+e(brzy+ bary) + O(e?) (4.19)

The transformation is of the form

H1 = (ao+al7'2)f4a Ho = T€
&1(t) = aze’(z(aget) + ayr)
£(1) = asedy{aszet).
The constants a;,7 = 0,...,5 are determined in such a way that the special

system (4.19) is obtained.

The coefficients a; and b; can be explicitly expressed in terms of the
quadratic coefficients from the last step. But we don’t write down these
relations because a complete set of formulas for an approximate homoclinic

orbit of (4.17) will be given below.
Step 4 Melnikov’s method:

First notice that the unperturbed system (4.19) (¢ = 0) is Hamiltonian and
has the homoclinic orbit

(Z(2),7(t)) = 2(1 — 3sech?(t), 6sech®(t)tanh(t)).

Melnikov’s method (Melnikov[71], Guckenheimer and Holmes[43]) can now
be used to show how this homoclinic orbit survives for € # 0. Instead of
the above two references we strongly recommend Hale’s reformulation of
Melnikov's method as a problem of bifurcation from the trivial solution
(Hale[45]). In fact, taking 7 as the bifurcation parameter, we see th:'smt
(Z,7,€ = 0) is a trivial branch of HOP’s for (4.19). After some analyfus,
which employs the techniques from 5.3.6, we then find that bifurcation

from a simple eigenvalue occurs at

_ 10 2a1 + 5
0= e+ by

Taking the last two steps together, we find an approximate homoclinic orbit
for (4.17) by choosing some small € and setting
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Fig. 5.18. Homoclinic orbits starting at a TB-point: the time diagram,
A =025-107%,...,0.35- 1072

.
T

p1 = ooe*, pp = 7€,
€2 o, €
§l(t) = — (1 — 3 sech (— t) — Q14T0)
d11 2
36 2
ty = sech ( )tanh( t),
(1) au 2 2
where
5 +
To = = Pu T qi2 (¢%4 — quigaa) - 1)

y 00 = ;77—
7 g11P14 — P11414 + 924911 — Q1412 2911
(420)

Of course, we require the two denominators in (4.20) to be nonzero.
These are the crucial conditions which in conjunction with the assumptions
on f2 define a nondegenerate TB-point. For our model example (4.3) they
are satisfied because the coefficients in front of 2 and xy do not vanish.

The above formulae can finally be used to set up an approximate ho-
moclinic orbit for the original problem via

u(t) = &(t)v+&(Hw + Dipy + Dapz + ug
X = ubB + po By + Ao (Cf step 1) .

With this approximation we can employ the numerical method for homo-
clinic orbit pairs from (3.6). In the beginning we look for a HOP (uA2)
close to (%, )\2) with A\; = )\1 fixed. Then A; is freed and used for continu-
ation. This approach has been tried successfully on a series of examples.



Wolf-Jiirgen Beyn 219

E——Zr

1.4+
v 0414
> —0.6} \_j

~1.64

—2.6 ) \ 3 o
-0.06§{ —0.02 002 006 0.10 0.14

X-AXIS

Fig. 5.19. Homoclinic orbits starting at a TB-point: the phase diagram,
A1=0.25-10"4,...,0.35-10"2.

However, sometimes difficulties arise with the realization of the projec-
tion boundary conditions since we are very close to the fold of the stationary
surface (cf. 5.4.2). We display in Figures 5.18 and 5.19 some results for our
model example (5.4.3). The computation was started with ¢ = 0.1 and then
continuation with respect to A; and the automatic truncation strategy was

used (cf. Figure 5.16).

5.5 The longtime behaviour of integration methods

5.5.1 Comparison of discrete and continuous flows

In section 5.1.2 we already considered the basic problems, which occur
when comparing the longtime dynamics of a one-step method with that
of the dynamical system. Of course, in practice one would prefer to use a
sophisticated code (variable step size, variable order) for the initial value

problem
@ = f(u), u(0) =’ ¢ RY. (5.1)

The user prescribed tolerances of these codes however, can only control
the local discretization error, and in principle there is no escape from the
exponential growth of the global error as signalled by the estimate (1.8).
It may occur just at a later time than with a simple minded one-step
method. Whether this blow-up of the error really occurs, clearly depends
on the dynamics of the system (5.1) itself. In what follows we will focus on
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the behaviour of the sequence
! = ¢(h,u"), n=0,1,2,..., u® € RV, (5.2)

if n tends to infinity, but & is sufficiently small (this simulates the accurate
ordinary differential equation-solver). For line systems of partial differential
equations, even this may be an unrealistic situation.

We start with a discussion of the relations between the discrete h-flow
¢(h, -) and the continuous h-flow ®(h,-). For an illustration we use m-stage
explicit Runge-Kutta methods, which are of the form

¢(h,u) =u+h f: Biki(h,u) (5.3)

with kg(h,u) = f(u) and
z—1
ki(h,u) = fu+ Y Bikj(h,u), i=1,...m.
i=0

Asin (1.7), let us assume that the one step mapping ¢ : [0, ko] x RY - RY
is smooth and defines a method of order p, i.e., let

¢(h,v) = ®(h,v) + O(hP*1) (5.4)

holds uniformly in any bounded v-set. For Runge-Kutta methods this
condition is used for determining the coefficients. Due to the smoothness
of ¢ and ® we may restate (5.4) as

¢ _ g . N
Ohi (0,’0)— W (O,U), J —0:'-'ps veER". (55)

Differentiating this relation with respect to v, we find by a Taylor-expansion
at h = 0 that also

¢y (h,v) = &, (h,v) + O(hPTY) (5.6)

holds uniformly in bounded v-sets. Therefore, the sensitivity of the discrete
flow to perturbations of the initial value is close to the sensitivity of the
continuous flow with the same order of accuracy. This argument can be
continued for higher derivatives, but of course the constants in front of
hP*! may grow in general. Since discrete and continuous h-flows are so
close, one might think, that it is possible to interpret a discrete h-flow as
the continuous h-flow of a perturbed dynamical system. More explicitly,
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given the system (5.1) and the one-step method (5.2), do there exist smooth
functions
Fp:RY - RV
such that for sufficiently small h
$(h,u, f) = ®(h,u, F), u € RV? (5.7)

This would allow us to use the perturbation results on dynamical systems,
in particular those on structural stability, for analyzing one-step methods.
However, (5.7) is false in general. For example, take N = 1, f(u) = u?
and Euler’s method. Then ¢(h,u, f) = u + hu? is not a diffeomorphism,
but ®(h, -, F) is a diffeomorphism, whatever Fj, looks like. This example
relies on the global behaviour of the discrete flow, but it is also very likely
that (5.7) does not hold locally, i.e. for some u-neighbourhood. But we
don’t know of any rigorous proof.

In contrast to the negative statements above, there is an elementary
class of functions f, where (5.7) does hold. This is the linear case f(u) =
Au, A € RV'N. For all common methods, e.g. the Runge Kutta methods,

the discrete h-flow is of the form
where g(z) is a complex function, which is holomorphic in a neighbourhood

of zero. g is usually called the growth function of the one-step method.. If
the method is of order p, then we obtain from (5.6) the well-known relation

g(hA) = ef + O(|h|P*?). (5.8)

Now we use the logarithm, holomorphic near 1, in order to define
A, = -’1; In[g(hA)], k>0, Ao = A.
From (5.8) we find

Ay = = (RA+ O(hPt1)) = A + O(R?)

|

and the relation (5.7)
&(h, u, Ap) = eP4ru = g(hA)u = ¢(h,u, 4).

In other words, one-step methods applied to linear sys'tems, yielc.i h'-ﬁows
of a perturbed linear system which is close to the original one within the

order of the method.
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5.5.2 Persistence of compact invariant sets under discretization

In general we would like to know, if for any compact invariant set M of
the flow ® we can find a compact set My, C RY which is invariant under
o(h,-) (ie. v € My = ¢(h,v) € My and ¢(h,w) € My = weM,) and
which satisfies

H(M,My) —0 as h— 0. (5.9)

Here H (Mi, M>) is the Hausdorff distance of two closed sets My, M, C RY
given by

H(Ml,Mz) = Max(dist(Ml,Mg), diSt(Mg,Ml))

dist(My,M;) = sup inf ||u—v||
'U-EM1”€M2

In addition, we would like M}, to inherit the stability properties of M. For
stationary points such an asymptotic result is easily established (see The-
orem 5.1 below). This contrasts with the variety of spurious solutions that
may arise with growing h (cf. the references cited in 5.1.2). In spite of
these spurious effects, let us notice that most one-step methods have all
stationary points of & = f{u) as exact fixed points for all h > 0. For exam-
ple, this is easily verified for the Runge-Kutta methods (5.3). Nevertheless,
the following global result is instructive.

Theorem 5.1. Let @ C RY be compact and assume that (5.1) has finitely
many stationary pointsv;, 1 = 1,... K in the interior of Q) (which are unique
in Q) and assume these to be regular, i.e.,

f'(v;) is invertible fori = 1,... K.

Let ¢ be a smooth one-step method of order p > 1. Then there exists an
ho > 0, such that the discrete h-flow ¢(h,-), h < hqo, has exactly K fixed
points v;(h), i =1,... K in Q and these satisfy

vi(h) =v; + O(WP), i=1,...,K. (5.10)

Moreover, if Re p > 0 for some eigenvalue u of f'(v;) then v;(h) is an
unstable fixed point for ¢(h,-), and if Re u < 0 for all eigenvalues u of
f'(v;) then it is an asymptotically stable fixed point.

Proof. For the construction of the fixed points let us define the smooth

function
1

9(h,v) = 1 ($(h,0) ~v) = / 8 (ah,v) da. (5.11)
0
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Using (5.5) we obtain
o . od
9(0,0) = 22 (0,0) = = (0,0) = f(v) (5.12)

and g,(0,v) = f'(v). Therefore we can apply the implicit function theo-
rem to the equation g(h,v) = 0, with (h,v) in a neighbourhood of (0, v;).
This gives us the existence and local uniqueness of the fixed points v; (k).
Moreover, (5.10) follows from

o v3) = & (B(h,v5) + O(P*) — ) = O(W?).

Now we take any sequence vy, of fixed points for ¢(h,-) in Q where h — 0.
Then we can assume v, — ¥ € §2 for some subsequence & — 0 and find
from (5.12)

0= g(h,vn) — 9(0,%) = f(¥) ash— 0.

Thus T = v; for some i, and vy must enter the uniqueness neighbourhood for
v;(h) and hence coincide with v;(h). This establishes the global uniqueness
of the fixed points »;(h) in . Finally, by differentiating (5.11) we obtain

An = gu(has(h) = 1 (Bulh,vi(h)) = 1) = gu(0,05) = £'(w)

as h — 0. Therefore,
du(h,v;(h) =T+ hA,

has an eigenvalue of modulus larger than 1, if f/(v;) has an eigenvalue with
positive real part. Similarly, all eigenvalues of ¢, (h,v;(h)) lie inside the
unit circle if those of f'(v;) are in the negative half plane. The standard
analogoue of Theorem 1.1 for the stability of fixed points (see Irwin{51])

then yields the desired result. n

A corresponding result for periodic orbits is considerably more involved.
It was shown by Braun and Hershenov[16] that a one-step method has
an invariant circle for sufficiently small A close to an asymptotically stable
periodic orbit. This was generalized by Doan[26] to the hyperbolic case and
further details, in particular on the estimates, were developed by Beyn[8],

Eirola[32,33]. The general result is

Theorem 5.2. Assume that & = f(u) has a hyperbolic periodic orbit (cf.

2.2, 2.3, 2.4)
y={u(t):0<t < T}
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and let ¢ be a smooth one-step method of order p. Then for h sufficiently
small there exists an invariant curve <y for the discrete h-flow which is
O(hP) close to . More precisely, we have

= {Ua(t) : 0<t < T},
where Ty, : R — R" is a T-periodic Lipschitz function, and
Ja(t) —an()]| < C h? for0<t<T (5.13)
B(h, T (1)) = Ta(d(t, b)), d(t,h) =t + h+ ORPTY)(t € R).  (5.14)

Clearly, (5.13) gives us the desired result H(~,vys) = O(h?), but some
more information is contained in (5.14). The mapping ¢t — B(t, h) may
be regarded as the reduced discrete h-flow on the invariant curve and its
rotation number is found to be % + O(hPT1) (see Beyn[8]). It is also true
that, if the stability or instability criteria from Theorem 2.2 are satisfied
for 4, then also v, is asymptotically stable respectively unstable. Consider
a system with an asymptotically stable periodic orbit and apply a one-step
method. If we plot the points of the iteration on a screen then we usually
see the invariant curve gradually filled up by pixels (cf. Brezzi, Fujii and
Ushiki[17], Beyn[8)] for some illustrations). The reason for the fill up is that
the rotation number of 5, obtained by a random choice of A, is ‘sufficiently
irrational’. For larger values of h, however, periodic orbits with a finite
number of points are quite typical.

Let us mention that Eirola[33] used in his proof a general theorem of
Hirsch, Pugh and Shub[47] on the persistence of so-called normally hyper-
bolic invariant manifolds. This suggests that Theorem 5.2 may be gener-
alized to this type of invariant manifolds. But no detailed investigations
seem to be available up to now.

For the specific case of center manifolds, however, there is a corre-
sponding result by Beyn and Lorenz({14]. Let v € R”Y be a stationary
but nonhyperbolic point of (5.1). Then the linearization f'(v) induces a
splitting RV = X @ Y where X (respectively Y) are invariant subspaces
spanned by the (generalized) eigenvectors which belong to the eigenvalues
on (respectively off) the imaginary axis. Under these assumptions there
exists a center manifold, i.e. a locally invariant manifold of the form

M={u=(z,y(z)):z€ X, ||lr —v|| <€}

with %’(v) = 0. Under some technical assumptions, it is then shown that
any p-th order one-step method also has a locally invariant manifold of the
form :

Mh = {u’ = (Zl';',‘yh(l')) T E X, ”1: - ’U” < 6}7
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such that ys(z) = y(x) + O(A*). This again gives us H(M, M) = O(h?).
The result should be carefully interpreted, however, for the following two
reasons. First, the center manifold M is usually not unique, though all
center manifolds are tangent to each other to all orders. The manifolds M
and Mj, are therefore selected out of a possible continuum of manifolds.
Second, M}, is not necessarily a center manifold for ¢(h, '), because eigen-
values 1 of f'(v) with Re u = 0 might lead to stable or unstable eigenvalues
of the linearization ¢, (h,v) (see the proof of Theorem 5.1).

In view of our treatment of direct methods in chapters 2 to 4, it is
natural to continue the previous discussion for parametrized systems

o= f(u,A), u(t) e RN, AeR. (5.15)

There are still many open questions in this field and so we just briefly men-
tion a few results and problems. As mentioned above, stationary points are
usually reproduced exactly as fixed points for common one-step methods.
This also applies to the stationary bifurcation diagram of (5.15), so that

there are no problems.
The next step is the analysis of one-step methods

w1 = ¢(h,u”, \) (5.16)

in the neighbourhood of some A¢, where the system (5.15) undergoes a
Hopf bifurcation (cf. 5.3.4). For this case a corresponding result is given
(with a sketch of proof) for Euler’s method in Brezzi, Fujii and Ushiki[17].
According to their result, a branch of invariant circles for the map ¢(h, )

bifurcates off at some Ap = Ag + O(h).
Let us write down for an illustration Euler’s method for the example

1(-A) in 5.3.4
d(h,u) = (x + hy,y + h(A — 2y — 2 + zv)), u = (z,¥)-

At the stationary points (v/X,0) we find

1 h
bu(h V2, 0) = ( —2hvVX 1+ h(VA-2) )

A short calculation reveals that this matrix has two complex co.nju.gate
eigenvalues for A close to 4, and these two eigenvalues cross the unit circle

at

Ap = (1+22h)2 = 4 4+ O(h).

At this point the invariant curves are born according to the the?rem of Hopf
bifurcation for maps (see e.g., Iooss[50]) and this is the technique used by

Brezzi, Fujii and Ushiki[17).
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An attempt to understand (5.16) in the neighbourhood of a homoclinic
bifurcation was made in Beyn[9]. From some numerical experiments it
was conjectured that the homoclinic structure is preserved by the one-step
mapping in the case of a smooth system (5.15) but destroyed otherwise.
This conjecture seems to be false, but the case is still under investigation
and details will appear elsewhere. For the remaining two bifurcations with
periodic orbits, i.e. the period doubling and the torus bifurcation, we don’t
know of any results concerning the behaviour of the one-step mapping.

Let us conclude this section with a reference to the paper of Kloeden
and Lorenz[61]. Tt is the only one which deals with a general attracting set
of the dynamical system. They assume that the given system (5.1) has a
compact invariant set M C RY which is uniformly asymptotically stable,
i.e., there exists a § > 0 and for each € > 0 a time T'(¢) such that that

dist(®(t,u%), M) < eif t > T(¢) and dist{u®, M) < 6.

Under this assumption they show that a one-step method of order p has a
compact positively invariant set of the form

My={ueRN:uel, V(v) <C hP}. (5.17)
Here U is some suitable open neighbourhood of M and
V:U-R

is a Lipschitz continuous Liapunov function which decreases along trajec-
tories, is identically zero on M and satisfies an estimate

a(dist(u, M)) < V(u) < B(dist(u, M)) (5.18)

where o, : Ry — Ry are continuous, strictly increasing functions. The
existence of such a Liapunov function follows from the stability assump-
tion by a general theorem of Yoshizawa[101). From (5.17) one obtains the
convergence in the Hausdorff distance, more precisely

H(M, M) = O(a"1(hP)).

Of course, in general V,a, 8 are not known explicitly. Also the positively
invariant sets are rather ‘thick’, because they consist of shrinking neigh-
bourhoods of the continuous attractor. In fact, they absorb the discrete
trajectories in a uniform time. Nevertheless, this kind of result seems to
be the only one possible under such general assumptions.
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5.5.3 Comparison of trajectories

Let us finally return to the problem of estimating the global discretization
error on the positive real axis (compare (1.8)). If the system % = f(u) has
some kind of sensitive dependence on initial conditions, then it is conceiv-
able that also discrete and continuous trajectories will go apart after some
time even if the step-size A is small and if the continuous trajectory stays
bounded for all times (see also Fig. 5.20 below). The simplest situation of
this type occurs in the neighbourhood of a hyperbolic unstable stationary
point. There the longtime behaviour of a trajectory depends on the po-
sition of the initial value above, below or on the stable manifold. Let us
consider for illustration the scalar example

@ =Au, u(0)=1ul, (5.19)

where A € C and u(t) € CV, and take the familiar one-step method (© €
[0,1])

un—l—l —u?
—— = O(Au™) + (1 —0)(\u™), n=0,1,2,.... (5.20)
For the solutions
®(t,u®) = e ul, (5.21)
1+(1-0)z
(ki) = = AN, gln) = LELZDE

one readily verifies in the case Re A < 0, |u®| <1

|®(nh, u®) — ¥(nh,u’)) < Crh? forn>0and 0<h < ho- (5.22)

Here C), is a constant independent of © and h, and p = 2 if @ = 1 and

p =1 otherwise.

In the unstable case Re A > 0 an estimate of type (5.22) is impossible,
even if we restrict n, h such that ®(nh, u°) is bounded, say |®(nh,u%)| < 1.
Take, for example, A € R, A > 0 and Euler’s method. Let n be the integer
part of 1 + 1/(hA)? and consider the initial value u® = exp(—nh). Then,

by construction ®(nh,u’) =1, but

U(nh,u’) = exp(n(ln(l+ hX) —hA))
= exp(n(~ 5 (AN +O(hX))

< exp(—% + O(hA)).
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Therefore ®(nh,u®) — ¥(nh,u’) is of order 1, no matter how small h is
chosen. However, it is possible in the unstable case Re A > 0 to find a
suitable initial value v € IR such that

|®(nh, u®) — U(nh,v")| < CAR? (5.23)

holds for |u®| < 1 and for all n, & with |®(nh,u?)| < 1. In the case v’ = 0
we can take v = 0, but in the case 0 < |u°| < 1 we construct v? as follows.
The solution of (5.19) reaches the unit circle at time T = —(In |u°|)/(ReA);
let ng be the integer part of T/h and define

W0 = 4,0 (?.’;(’T(’;\;‘_))““, (5.24)

Then we have identical final values ®(noh, u®) and ¥(noh,v°) within the
unit circle, and (5.23) follows from (5.22) since the ®-method for (5.19) is
the reverse of the (1 — ©)-method for & = —Au.

We notice that the scaled initial value v° depends on A, A and °, but
not on n in (5.23). This elementary result easily carries over to general
linear systems

u = Au,

where A € RM¥ is hyperbolic and diagonalizable. We transform into a
diagonal system, then adjust the initial values for unstable eigenvalues as
in (5.24) and transform back to the original variables.

It was shown in Beyn[10] that estimates of the form (5.23) also hold in
the neighbourhood of hyperbolic stationary points.

Theorem 5.3. Let 0 be a hyperbolic stationary point of (5.1) and let it
be a fixed point of the one-step mapping ¢(h,-) for all h. Moreover, let ¢
be smooth and consistent of order p (cf. (5.4)). Then there exist constants
¢, €, ho such that for any u® € RY, ||[u°|] < € and 0 < h < ho there exists
av® = v°(u® h) € RN with the property

||@(nh, u®) ~ ¥(nk,v%)|| < CHP (525)

for all n such that ||®(t,u®)|| < € for t € [0, nh]. Here ¥(nh, v°) denotesthe
solution of (5.2) with initial value v°. Conversely, for any v® € RY, ||o¥)| <
e and h < hg there exists a u® = u%(v®, h) such that (5.25) holds for all n
with |[¥(jh, 1) € ¢, (j = 0,...,m).

Loosely speaking this theorem shows that any discrete trajectory ap-
proximates some continuous trajectory (and vice versa), as long as it stays
in some neighbourhood of the hyperbolic point. Thus in this case, the ad-
justment of initial values saves the uniform estimate. One should notice
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F‘ig. 5.20. Time diagram for the numerical approximation of trajectories
in the Lorenz system (o = 10, u = 8/3, A = 28), initial value u° = (1,4,9)

that the set of n-values for which (5.25) holds can be arbitrarily large de-
pending on u°. In the extreme case when u° is on the stable manifold of
the stationary point, then (5.25) holds for all n > 0. In fact, the fixed point
of the one-step mapping ¢(h, -) has a stable manifold which approximates
the continuous one within the order of the method (cf. Beyn[10] and also
the various results on invariant manifolds in 5.5.2).

In the neighbourhood of periodic orbits, estimates of the form (5.25) are
no longer possible, since the continuous and discrete trajectories inevitably
run out of phase after some time (this is documented in Beyn[8]). If the
periodic orbit is asymptotically stable, then all we can expect is convergence
of the positive trajectories in the Hausdorff metric, (see Beyn[8]), i.e.,

H(v+(w®), 74n(u®)) — 0 as h — 0,

where 71 (u%) = {®(t,ul) : t > 0}, v+ (u®) = {¥(nh,u"): n = O}.

For systems with strange attractors or chaotic behaviour such as the
Lorenz system (Sparrow[90] or 5.3.6, Example 5) it seems no longer ap-
propriate to try to approximate trajectories over large time intervals. This
is clearly demonstrated in Figure 5.20 which shows three numerical time
diagrams for the Lorenz equations (¢ = 10,u = g—, A = 28) obtained
with a standard ordinary differential equation-solver and three different
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tolerances. All of them go apart, and it can be estimated that evenif the
tolerance is taken to be the machine precision (~ 1071¢) then accurate
trajectories can be expected at most up to ¢t = 50. As a consequence of
this well-known effect one should rather compare certain quantities mea-
sured from the numerical trajectories with their continuous counterparts,
such as Liapunov exponents. Although methods for calculating Liapunov
exponents numerically have become quite popular (see e.g. Shimada and
Nagashima[89], Kubitek and Marek(63], Seydel[87]), there seems to be no
rigorous justification of these methods however simple the system may be.
This does not come as a surprise since the proof of existence for these
exponents is already a considerable task (see Oseledec([75]).
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