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Structural changes in dynamical systems are often related to the appearance or
disappearance of orbits connecting two stationary points (either heteroclinic or
homoclinic). Homoclinic orbits typically arise in one-parameter problems when
on a branch of periodic solutions the periods tend to infinity (e.g. Guckenheimer
& Holmes, 1983). We develop a direct numerical method for the computation of
connecting orbits and their associated parameter values. We employ a general
phase condition and truncate the boundary-value problem to a finite interval by
using on both ends the technique of asymptotic boundary conditions; see, for
example, de Hoog & Weiss (1980), Lentini & Keller (1980). The approximation
error caused by this truncation is shown to decay exponentially. Based on this
analysis and additional numerical investigations we set up an adaptive strategy for
choosing the truncation interval.

1. Introduction

W E CONSIDER parametrized dynamical systems of the form

x=f{x, A), jc(0elRm , XeW. (1.1)

Global changes in the phase portraits of such systems are often related to the
appearance or disappearance of separatrices. These separatrices consist of orbits
which connect one or several stationary points. We will call a solution x(t), for
-oo<f<c» ) o f ( l . l ) a t A = JLa connecting orbit if the limits

jr_ = lim x(t), x+ = lim x{t)
t—» —oo t—>oa

exist. For continuous / these must be stationary points, i.e.

In the case x+ =JC_ we have a homoclinic and in the case x+±x- a heteroclinic
orbit. The pair (f, A) will be called a connecting orbit pair (COP).

Homoclinic orbits typically arise as limiting cases of periodic orbits which attain
infinite period but stay bounded in phase space (see, for example, Guckenheimer
& Holmes (1983), Glendinning (1988) for the theoretical background and Doedel
& Kernevez (1986), Rinzel (1985) for some interesting applications to chemical
and biological systems). Further interesting phenomena may occur near homocli-
nic pairs, such as the appearance of strange attracting sets in the Lorenz system
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and in Shil'nikov-type systems (Sparrow, 1982; Shil'nikov, 1965; Glendinning,
1988). Finally, we mention the significance of connecting orbits for determining
the shape and speed of travelling waves in parabolic systems (see, for example,
Doedel & Kernevez (1986: §8), Fife (1979)).

The subject of this paper is the numerical computation of connecting orbit
pairs. Since this involves the solution of a boundary-value problem on the real
line, we have to truncate the problem to a finite interval in order to make
standard codes applicable. At both ends of the interval we use the asymptotic
boundary conditions which have been developed for the semi-infinite case by de
Hoog & Weiss (1980) and Lentini & Keller (1980) (see also the recent account in
Ascher, Mattheij, & Russell (1988)). The so-called projection conditions (de
Hoog & Weiss, 1980) prove to be the most effective type of boundary conditions
both theoretically and numerically (see Sections 3 and 4). Several applications
will be presented in Section 4. In particular, we set up a strategy for an adaptive
choice of the truncation interval. This strategy is based on a careful theoretical as
well as numerical study of the approximation error. Further, some details of
the implementation are discussed, such as the choice of phase condition and the
realization of smooth projection conditions, and a comparison is made with the
method of Doedel & Kernevez (1986) who approximate homoclinic orbits by
periodic orbits of large but fixed period.

It is also our concern to develop a sound theoretical basis for our numerical
approach. For that purpose we introduce in Section 2 the notion of a
nondegenerate connecting orbit pair. This pair may then be regarded as a regular
(or isolated) solution of a suitable operator equation. This equation includes a
phase fixing condition of a very general type as has been discussed for periodic
orbits by Keller & Jepson (1984).

In Section 3 we analyse the error introduced by the truncation of the interval
and by the asymptotic boundary conditions. Our results are strongly related to
(but do not directly follow from) those of de Hoog & Weiss (1980) and
Markowich (1982). Also, in our proofs (given in the Appendices) we prefer to
utilize the theory of exponential dichotomies (Coppel, 1978), in particular the
results of Palmer (1984). This theory provides the appropriate tools for the
treatment of connecting orbits.

Some preliminary results of this paper were communicated in Beyn (1987). We
would also like to mention a related approach to connecting orbits in recent
papers by Doedel & Friedman (1990a,b).

2. Nondegenerate connecting orbits

We start with some arguments on the number of parameters in (1.1) which are
necessary for a connecting orbit to occur. First consider a parameter independent
system in IRm

x=/ (x ) . (2.1)

Let x-,x+ be stationary points with stable manifolds Ms(*-)> Ms(x+) and
unstable manifolds A1U(JT_), Mu(x+)- Let t n e dimensions of these manifolds be
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MS(X+)

Ms(x.)

FIG. 1. A heteroclinic orbit in R3 which satisfies condition (2.2).

m_s, m+s and m_u, m+u where m±u = m — m±s (see Fig. 1 and Guckenheimer &
Holmes (1983: p. 50)). Whenever Mu(x-) and A1s(jr+) intersect in at least one
point they intersect in at least one orbit by uniqueness of solutions to the initial
value problem. Therefore, we expect their intersection to be exactly one orbit, if
the sum of their dimensions is m + 1, i.e.

ni-u + m+s — m + i. \A-&)

If m-u + m+s>m + 1 then the separatrix A1U(JC_)r\Ms(x+) has dimension
m_u + m+s — m 2= 2 and we have to introduce further conditions for parametrizing
it. This case will not be considered here. Rather we are interested in the case
m_u + m+s < m + 1. Then a connecting orbit is not a structurally stable phenome-
non for the system (2.1) but we can stabilize it by introducing

p = m + 1 — m_u — m+s = m_s — m+s + 1 (2.3)

parameters into the system. We obtain this relation if we inflate the stable and
unstable manifolds by the parameter space W and write down the relation (2.2) in
the new state space Um+P. We notice that p = 1 in the homoclinic case x+ = JT_.

The relation (2.3) (including the case p = 0) will be our basic assumption in
order to recognize a COP as a regular solution of a suitable operator equation.
For that purpose we use the Banach spaces

••(y)(0 exist for 7 = 0,...,*:},X* = {x e C* ") : l im **•

\\x\U =
j=O>

lk(yV)ll with ||° || some norm in

We notice that, by the mean value theorem, any function j : in X* satisfies
x w ( 0 - * 0 (/ = 1 ,...,*) as r-> ±oo.

As a preparation for the nonlinear case, we collect several results on linear
differential operators with an exponential dichotomy (see Coppel, 1978; Palmer,
1984).

Consider a linear operator

L:Xl^*°, bc=x-A(')x, (2.4)
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where A(t) for t eU is a continuous mx m matrix function such that the
following limits exist

A{t)-*A± asf-»±oo. (2.5)

As we will see below, differential operators of this type arise when linearizing
about a connecting orbit.

Let Y{t) for t e U be the fundamental matrix of L which satisfies F(0) = /.
L is said to have an exponential dichotomy on some interval J7 c [R if there exist

K, a > 0 and a projection P in Um such that, for s,t e3>

\\Y{t)PY{s)-l\\^Ke.-tt«-s) loxs^t, (2.6)

\\Y(t)(I-P)Y(s)-i\\^Ke-ais-') fortes. (2.7)

In the case 3 = [0 , o°) the range R(P) of P is given by

R(P) = {JC0 e Um : Y(t)x0 is bounded for t s= 0} (2.8)

and any projector with the same range has properties (2.6) and (2.7). Similarly, if
L has an exponential dichotomy on ( - » , 0] with projector Q then

= {*o e Rm : y(')*o is bounded for t« 0}

and any projector with the same null space satisfies (2.6) and (2.7).
If A(t) = Ao is a constant matrix then L has an exponential dichotomy on [0, <»)

iff Ao is hyperbolic, i.e. Ao has no eigenvalues on the imaginary axis. In this case
we may take P (resp. / — P) to be the projector onto the stable (resp. unstable)
subspace of Ao.

The following lemma, due to Palmer (1984: Lemma 3.4), shows that the
exponential dichotomy carries over to the nonconstant case provided the limit
matrices A± from (2.5) are hyperbolic.

LEMMA 2.1 Let (2.5) be satisfied with hyperbolic matrices A+ and A_. Then L has
an exponential dichotomy on both [0,°°) and (—°°,0]. If P and Q are
corresponding projectors then

l=P+s, lim Y(t)(I - Q)Y(t)~1 = P_U, (2.9)

where P±s and P±u = I — P±s are the projectors onto the stable and unstable
subspaces of A±.

As a simple consequence of (2.9) we can determine the rank of the projector P as

dim R(P) = dim R(i>+S) =: m+s, (2.10)
and similarly

dim H(C) = dim R(P_U) =: m_u. (2.11)

The exponential dichotomies allow us to set up a linear Fredholm theory for the
differential operator L in (2.4).

LEMMA 2.2 Under the assumptions of Lemma 2.1 the (adjoint) differential
operator
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also has exponential dichotomies on [0 , °°) {resp. (—°°, 0]) and suitable projectors
are I — PT (resp. I — QT). Moreover

: xo e R(P) n H(fi)}, (2.12)

dim &(/.) = dim H(L*) + m + s -m_ s , (2.13)

f <pT(t)y(t)dt = O V V e &(/.•), (2.14)
J—co

and L: X 1 —»X° is Fredholm of index m+s — m_s = »!_„ — m+u.

If we consider L and L* as operators on spaces of bounded functions, then this
lemma holds verbatim and it follows from Palmer (1984: Lemma 4.2), (2.10), and
(2.11). For the special spaces X 1 and X° chosen here, some supplements are
necessary and these will be given in Appendix A.

Now we consider the nonlinear case and assume that (x, X) is a COP of the
system (1.1). Then x is at most determined up to a phase shift. This is reflected by
the fact that x solves the variational equation

y=fx(x,X~)y inU, y(t)^O as f-» ±°o.

Here and in what follows partial derivatives are denoted by lower indices whereas
a prime is used for the total derivative. Our formulation of nondegeneracy
includes a certain converse of the above statement.

DEFINITION 2.1 A connecting orbit pair (JC, X) of the system (1.1) with/in C1 is
called nondegenerate if the matrices

A± = lim £(*(*), A) =fx(x±, A) (2.15)

are hyperbolic, if their numbers of stable and unstable eigenvalues relate to the
number of parameters as in (2.3), and if the following condition holds:

H = 0 and y = cx for some ceU. (216)

With the aid of Lemma 2.2 we have the following characterization of the
nondegeneracy.

PROPOSITION 2.1 Let (x, k) be a COP of the system (1.1) with hyberbolic
matrices, A ± as in (2.15). Then (x, X) is nondegenerate if and only if the linear
operator

has the properties

(i) dimff(/.) = l, dimN(Z.*)=p,
(ii) the p X p matrix

E=\ 4>T(t)fx(x(t), X) d/

is nonsingular, where the columns q>t eXl of & = (qp,,..., q>p) form a basis of H(/-*).
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Proof. Assuming that (x, X) is nondegenerate, we obtain from (2.16)

H(/-) = span{i}, dimfl(L) = l, (2.17)

and further dimfl(L*)=p from (2.13) and (2.3). Moreover, (2.16) implies that
fk(x, X)fi e R(L) only if fi = 0, hence Eft = Q only if ^ = 0 by (2.14) and E is
nonsingular.

Conversely, assume that (i) and (ii) hold. Then (2.13) yields the relation (2.3)
and by the use of the Fredholm alternative (2.14) the nondegeneracy condition is
an easy consequence of (2.17) and assumption (ii). D

As a final prerequisite for the central result of this section we need the
following elementary functional analytic lemma. (See Appendix B for a proof.)

LEMMA 2.3 (Bordering lemma) Let X, Y be Banach spaces and consider the
operator

r A m

: W, y x W],

with bounded linear operators Ae\t[X,Y], Be\i[W,Y], Ceh[X,W], De
\t[W, R9]. If A is Fredholm of index N then S is Fredholm of index N + p - q.

Our nondegeneracy definition is independent of any phase-fixing condition. But
in order to write down a well-posed problem for a COP we must have such a
condition. We use the general form

V(x,X) = 0, (2.18)

where W is any functional in C^X0 x W, U) and X° x W is equipped with the
standard product norm.

THEOREM 2.1 Let (x, X) be a nondegenerate COP of the system (1.1) with
f e C1(Rm+p, Um) and let a functional W e C\X° x R ' J ) be given such that

W(x, X) = 0, Vx(x, X)jf # 0. (2.19)

Then (x, X) e X 1 xMp is a regular solution of the operator equation

F(x, A) = ( i - / ( * , A), V(x, A)) = 0. (2.20)

Proof. By regular we mean that the operator F :Xl x W->X° x R, as defined
by (2.20), has a total derivative F'(x, X) at (jf, X) which is a linear homeomorph-
ism from X 1 x W onto X° x R (with the norms always understood to be the
product norm of the single Banach spaces). In fact, F is easily seen to be
continuously differentiable with

By Lemma 2.1, L is Fredholm of index m+s — m-s and an application of
Lemma 2.3 shows that F'(x, X) is Fredholm of index m+5 — m_s + p — 1 which is
zero by (2.3). Hence it is sufficient to show that F'(x, X)(^, ft) = 0 has only the
trivial solution. Writing down this equation, we first find ft = 0, y = ex from (2.16)
and then y = 0 from (2.19). •
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We conclude this section with several remarks on the nondegeneracy conditions
used in Theorem 2.1.

First, we notice that one can show a certain converse of Theorem 2.1. If
(x, A) e X 1 x Rp is a regular solution of (2.20) and if the matrices fx(x±, A) are
hyperbolic, then (2.19) holds and the COP is nondegenerate. It may even be that
the Fredholm property of F'(x, A) implies the hyperbolicity of fx(x±, A) (see
Rodrigues & Silveira (1988) for a result in this direction).

Second, in the two-dimensional homoclinic case (m+s = m_u = 1, p = 1) the
nondegeneracy condition (2.16) turns out to be equivalent to the key assumption
for the saddle connection bifurcation (e.g. Guckenheimer & Holmes, 1983: Thm.
6.1.1.) which states that the stable and unstable manifolds of the saddle pass each
other on a transverse segment with nonvanishing velocity (with respect to A).

We also notice that so far we have fixed the number p of parameters through its
relation (2.3) to the dimensions of the stable and unstable manifolds. If there are
more than p parameters in the system (p given by (2.3)) then we may select a
particular subset of p parameters as unknowns whereas the remaining parameters
are used for continuation. This is the situation in examples 1 to 3 in Section 4.

Further, we mention that our nondegeneracy conditions exclude a direct
application to Hamiltonian systems, where, for example, a homoclinic orbit
usually occurs in a system without parameter. However, it is easy to introduce an
artificial parameter such that the Hamiltonian structure is destroyed and the
nondegeneracy condition satisfied. For example, let x(t) = (p(t), q(t)) e IR2",
where m = 2n, be a connecting orbit, with m_s = m+s, of a Hamiltonian system

p = -HT
q(p,q), q=Hl(p,q),

and assume dim7V(L) = l for the linearization L at x. Then (JC,A = O) is a
nondegenerate COP of the following extended system (see Schmidt, 1976, for this
construction)

p = -HT
q(p, q) + kHl(p, q), q = HT

p(p, q) + kHq(p, q).

With (2.13) we verify that N(L*) = span {(—q,p)} and we can apply Proposition
2.1 since

= f {-Hp{p, q)q(t) + Hq(p, q)p(t)] dt
J—oo

Likewise, in parametrized Hamiltonian systems we can introduce the stabilizing
parameter A as above and use the given parameters for continuation.

Finally, we comment on the choice of the phase condition (2.18) and the
assumption (2.19). Usually, in applications we assume that some approximation
(i, i ) e X ' x W of the COP is known, either from an initial value problem or
from a previous solution on a branch of COPs. In the simplest case we take the
classical phase condition

<F0(x) = i(0)T[x(0) - i(0)] = 0, (2.21)
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which fixes JC(O) in a hyperplane through JC(0) and orthogonal to x(0). The
nondegeneracy in (2.19) then requires

T (2.22)

For numerical purposes the following integral condition (following an idea of
Doedel (1981)) is much more reliable

•?-(*)=[ £(t)T[x(t)-x(t)]dt = 0. (2.23)
J — oo

Of course we assume here that x(t) decays sufficiently fast at ±°°. The motivation
for (2.23) is as follows. In the homoclinic case and in the heteroclinic case with
stationary points independent of X there exists a constant ceUm such that x(t) + c
and the unknown solution x(t) have the same limits at ±°° (take c = 0 in the
heteroclinic case). Then (2.23) is the necessary condition for a local minimum of
the L^-distance

d(r)=\
J — C

as a function of the time shift x.
For foo the nondegeneracy in (2.19) reads

r
J—ex.

x(t)Tx(t)dt*O. (2.24)

3. Truncation to a finite interval

For the numerical computation of a COP we have to solve the following
parametrized boundary-value problem on the real line

x =/(*, X) for t e U, (3. la)

x(t) converges as t-* +°° and t—> -°°, (3. lb)

W(x, A) = 0. (3.1c)

We replace this problem by a boundary-value problem on a finite interval, say
J7 = [71, T+], with certain boundary conditions at T_ and T+,

x=f(x,k) for re [71,7; ] , (3.2a)

b+(x(T+), A) = 0, 6_(*(r_), X) = 0, (3.2b)

Ws(x,X) = 0. (3.2c)

Here and in what follows we assume

/eC2(Rm+p,Rm), b±eCl(Um+p,Mn*),

where the numbers n+ and n_ will be specified later on. We will also use the
spaces Xk(J) = Ck(J, Um), for k 2=0, with the standard C*-norm denoted by
||*\\k. Forx eX* we have that the restriction to JT, denoted by x\3, is in X*(i0-
For the phase condition W3 we assume f j e C ' ^ J J x r j ) , the total
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derivative being W'^x, A) = {V3,x(x, A), V3,x{x, A)). In view of (2.21) and (2.23)
the standard choices for W3 are

<^(x,A)=i(0)T[x(0)-x(0)] (if Oe/) , (3.3)

V3(x, A) = \T+ i(0T[*(0 - i ( 0 ] * . (3.4)
•»7L

Following Lentini & Keller (1980) we will call (3.2b) the asymptotic boundary
conditions. In the semi-infinite case, the correct setting up of these conditions as
well as an error analysis was carried out by de Hoog & Weiss (1980), Lentini &
Keller (1980), and Markowich (1982). We essentially adapt their approach to our
specific problem, i.e. we take into account the two-sided infinity, the special role
of the parameters and the possibly nonlocal phase condition.

Suppose we have a nondegenerate COP (x, A) which connects the stationary
points x_ and x+, and suppose m±s and m±u are the numbers of stable and
unstable eigenvalues of fx(x±, A). Then, in a neighbourhood of x±, there exists a
smooth manifold of hyperbolic stationary points of (3.1a) with the same numbers
of stable and unstable eigenvalues.

More precisely, by the implicit function theorem, we have functions x± e
C2(A, Um) on some neighbourhood A of A such that x±(A)=x± and
/(x±(A), A) = 0. Moreover, there exist matrix-valued functions E±s e
C^A, Rmm± '), E±ueC\A,Um-m±") such that the columns of ^±S(A) (resp.
E±U(X)) span the stable subspace Y±S(X) (resp. the unstable subspace y±u(X)) of
the linearization A±(A) =fx(x±(X), A) (see Appendix C). Writing down the
matrices

E±(X) = (E±U(X) E±t(Xj),

we find that the rows of L±S(A) and L±U(A) form a basis for the stable and unstable
subspaces of fx(x±(X), A)T, hence

y±u(A) = R(£d:u(A)) = H(/-±s(A)), y±s(A) = R(E±S(A)) = K(L±U(A)). (3.5)

The projection conditions derived by de Hoog & Weiss (1980) for the parameter
independent case generalize to

b+(x, A) = L+u(A)[x -x+(A)], A_(x, A) = L_s(A)[x -x_(A)]. (3.6)

In this case we obtain from (3.5) that the boundary conditions (3.2b) take the
form

x(r_) e x_(A) + y_u(A), x(r+) e x+(A) + Y+S(X).

This is a very natural condition since the connecting orbit must leave x_(A) via its
unstable manifold /V1_U(A), which is tangent to x_(A) + y_u(X), and must
approach x+(A) via its stable manifold A1+S(A) which is tangent to x+(A) + y+s(A)
(see Fig. 2).

The projection conditions are natural for a second reason. The numbers of
asymptotic boundary conditions are then given by n+ = m+u, n- = m-s. There-
fore, the system (3.2) has m+u + m_ 5 +l boundary conditions for the m+p
unknowns x and A, and these numbers match precisely under the condition (2.3).
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M-s(A)

\ x+(A)+Y+u(A)

M+U(A)

x+(A)+Y+s(A)
M+S(A)

FIG. 2. Illustration of the projection boundary conditions: the endpoints x(T_), x(t+) are required to
lie on the tangent spaces to the unstable and stable manifolds.

Next we investigate the approximation error of solutions to (3.2). We use a
well-known linearization technique (see, for example, Spijker, 1971; Keller, 1975;
Vainikko, 1976). The basic tool for analysing the nonlinear problem locally is the
following perturbation lemma. See Vainikko (1976: §3) for a proof.

LEMMA 3.1. Let F: b6(y0)-+Z be a ^-mapping from some ball of radius 6 in a
Banach space Y into some Banach space Z. Assume that F'(y0) is a homeomorph-
ism and that for some constants K, a we have

\\F'{y)-F\y0)\\^K<o^\\F{y0)-
l\r V j e B ^ o ) , (3.7)

11^0)11 « (o- K)6. (3.8)

Then F has a unique zero y in isiyo) and

\\, (3.9)

j ^ e B s O - o ) . (3.10)

The following approximation theorem contains a typical asymptotic convergence
result as in de Hoog & Weiss (1980) and Markowich (1982). We consider
asymptotic boundary conditions of the general form and we will write J7—>R
instead of J7 = [71, T+] and T±—> ±°°.

THEOREM 3.1 Let (x, A) be a nondegenerate COP with endpoints x_ and x+.
Assume f eC2(Um+p,Um), b+eC\Um+p,Um+"), b-eCl(Um+p, Um-), Ws e
Cl(X°(3) x R ' , U), and let the following conditions hold.

(i) b±(x±, A) = 0 and the quadratic matrices

b+x(x+,

are nonsingular

(ii)

for some d>0 and J sufficiently large, *P'j(x\j, A) is uniformly bounded
and *V'3 is equicontinuous at (x \3, A) (see remark).

Then there exist p, with C>0, such that, for sufficiently large J7, the finite
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boundary-value problem (3.2) has a unique solution (x3, k3) in the tube

Kp = {(x, A) *X\3) x R' : ||x - x fe||, + ||A- X|| «p} ,

and the following estimate holds

(3.11)

Moreover, there is a unique phase shift x3 e \-p , p] such that y(t)=x(t + r3)
satisfies V3(y, A) = Q, and we have r ^ ^ O as J - ^ R as well as the improved
estimate

\\y-x3\U + | |A-Ay| |<C(| |6+(y(r+), X)|| + ||6_(y(T_), X)||). (3.12)

Remark. The precise meaning of the uniformity in assumption (ii) is that there
exists some C > 0 such that || Wj(xfe, A)|| =£ C for Jsufficiently large and that to
any £ > 0 we find some 6 > 0, T > 0, such that

||«P^xfe,X)-«P^(x,A)||*:e for ||x-xfe||, + ||A- X|| ^ <5 [-T,T]^J.
The somewhat technical assumption (ii) is easily seen to be satisfied for the
special phase conditions (3.3) and (3.4) provided the phase of the connecting
orbit is fixed according to (2.21) and (2.23), and provided the nondegeneracy
conditions (2.22) and (2.24) hold. The minor role of the phase condition is also
illustrated by the fact that the error introduced by XV3 in (3.11) can be removed
by a suitable time shift on the connecting orbit itself, i.e. any solution of (3.2)
approximates some suitably shifted orbit with an error which is dominated by the
asymptotic boundary conditions.

Proof. We apply Lemma 3.1 with the settings y = X\j) x W, Z =X°{3) x
Um-+m-'+\y0 = {x\3,k), and

F{x, A) = ( i -f(x, A), b+(x(T+), A), 6_(x(r_), A), Vj(x, A)).

The inhomogeneous equation F'(yo)(x, A) = (y, r+, r_, e) e Z turns out to be the
following variational equation

x-A(°)x-V(o)Ji = y jnj, (3.13a)

K±x(T±) + M±X = r±, (3.13b)

U(X) + VX=E, (3.13c)
where

A(t) =fx(x(0, »), V(i) =/4(x(0, X), K± = b±,x{x(T±), X),
M± = b±MT±), X), u = VSA* fe, A), v = W^x fe, A).

In Appendix D we show that there exists a constant a > 0 such that for all J7
sufficiently large the solution of (3.13) can be estimated as follows

1 + ||r+|| + ||r_|| + |e|). (3.14)

Since (3.13) is a linear boundary-value problem of dimension m+u + m_ s +l =
m + p (see (2.3)), we obtain a uniform bound o~l for HF'Cyo)"1!!- Now we use
the smoothness properties of/ b±, and W3 to find a <5 > 0 such that (3.7) holds
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with K = \a for all J7- Finally, by assumptions (i) and (ii)

\\F(x\3, A)|| = \\b+(x(T+), X)|| + \\b_(x(T_), X)|| + \W3(x\j, A)hfl as J^U
(3.15)

and (3.8) holds for J sufficiently large. Thus Fhas a unique zero y = (x3, X3) in
K6 and the estimate (3.11) follows from (3.9) and (3.15). The special phase shift
x3 is constructed by solving the scalar equation W3(x{° + T), A) = 0 for T.

Again we use Lemma 3.1 but now with yo = 0. The estimate (3.12) is then
obtained by an application of (3.10) to yl = (x(° + x3), A) and y2 = (x3, k3). D

Assumption (i) in Theorem 3.1 is the crucial one. As for numerical computations,
it shows that we must be able to evaluate the stationary solution manifolds x±(A)
(either explicitly or via an iterative method) and we must know the corresponding
numbers of stable and unstable eigenvalues. For the projection conditions,
assumption (i) is obviously satisfied. But we also see that it is not necessary to
know the stable and unstable subspaces y±s(A) and J/±U(A) exactly, rather one
could pick almost any pair of matrices L+U(A) and L_S(A) in a linear condition of
type (3.6) provided that condition (i) is not violated.

The special merit of the projection conditions is that they minimize the
approximation error caused by the asymptotic boundary conditions. For the
linear case this was first observed by de Hoog & Weiss (1980). In the nonlinear
case considered here, we use the fact that the connecting orbit approaches the
stationary points tangentially to x_ + )/_u(A) and x+ + y+s(A). More precisely, if
0 < fi+ < -Re fj, for all stable eigenvalues n oifx(x+, A) then we find a T, > 0 such
that

x(t)=x++s(t) + u(t),
where s(t) e y+s(A"), u(t) e y+u(A), and s(0 = O(e"^'), «(0 = O( e-2^') uni-
formly for t^Ti. The estimate for s(t) follows from the corresponding estimate
*(*)-*+= 0(e~'1*') (see, for example, Hartmann, 1964: IX Corollary 5.2) and
u(t) = O(\\s(t)\\2) is a consequence of the tangential property (Hartmann, 1964:
IX Lemma 5.1).

By a Taylor expansion we obtain

6+(x(f), A) = b+(i+, X) + b+x(x+, A)[x(f) -x+] + O(\\x(t) -x+\\2)

In general, this term is only O(e~'1+')> but it will be O(e~2/i+') if we assume

6+ X(JC+ (A)£+ S(A) = 0. (3.16)

This is satisfied for the projection conditions (3.6), and for asymptotic boundary
conditions which are linear in x, these are the only ones with the property (3.16)
(up to some trivial scalings). We note, however, that (3.16) is also satisfied by the
nonlinear projection conditions b+(x, A) = L+u(X)f(x, A) which are suggested by
the work of Lentini & Keller (1980).

In an analogous way we obtain b-(x(—t), A) = O(e~2fl-r) if 0 < /i_ < Re n for
all unstable eigenvalues p offx(£-, A) and if

(A) = 0. (3.17)
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Thus we have shown the following.

COROLLARY 3.1 Under the assumptions of Theorem 3.1 we have, for J7 =
[71, T+] sufficiently large and with y(t) = x(t + x3),

||y -x3\\x + | |A-kj\\ ^Cexp( -min {n+T+, /i_ |r_|}). (3.18)

//, in addition, (3.16) and (3.17) are satisfied, then a factor 2 can be inserted in the
exponent.

4. Numerical implementation and applications

In all examples below we solved the finite boundary value problem (3.2) with a
code from the NAG-library, Oxford (DO2RAF which is actually based on
PASVA3 by Pereyra (1979)). Further we used some standard transformations
(see Ascher, Mattheij, & Russell, 1988) in order to put (3.2) into two-point
boundary form.

Classical phase condition (3.3). With £ = i ( 0 ) , y = £Tx(0), y(t)=x(tT+), and
z(t) = Jr(f71), solve the (2m + p)-dimensional system

y = T+f(y,k), z = 71/(z,A), A = 0 in [0,1], (4.1a)

0) (4.1b)

(4.1c)

Integral phase condition (3.4). With

r =
Jr.

y(t)=x(T. + (T+ - TJ)t), i/(/) = (T+ - T_) f t,(s)Ty(s) &,
Jo

solve the (m + p + l)-dimensional system

y = (T+-T_)f(y,X), v = (T+-T-Wy, A = 0 in [0,1], (4.2a)

6+(jr(l),A(l)) = 0, ft_(y(0),A(0))=0, (4.2b)

u(0) = 0, u(l) = y. (4.2c)

Usually some rough starting values {x{t), X) were obtained from an initial value
problem and £(0 =f{x{t), A) was taken instead of i (0 - For the integral phase
condition it was also necessary to interpolate £ smoothly from the given discrete
values since it enters into a nonautonomous term on the right-hand side of (4.2a).

As for the projection conditions, we have to supply basis vectors of stable and
unstable subspaces which vary smoothly with A. If this could not be done
explicitly (as in example 4) we used the following device. For A close to the initial
guess A, let the rows of C(A) e Rm+-m form a basis of the unstable subspace of
/J(jr+(A), A). C(A) may be nonsmooth and computed by any method. Then we
set

(4.3)
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where D{k) e

W.-J. BEYN

"m+u is obtained from the linear system

D(A)[C(A)C(X)T] = C(X)C(X)T. (4.4)

In this way the normalization L+U(A)C(X)T = C(X)C(X)T is achieved and L+U(A) is
as smooth as fx. This follows from Appendix C with

A(A) =/J(jr+(A), A), B(k) = C(A)T.

We did not implement more sophisticated methods for computing L+U(A)
because the dimension of the system (4.4) is low compared to any discretization
of the boundary-value problem and hence it does not significantly contribute to
the overall computational work. We start with a two-dimensional homoclinic
example taken from Guckenheimer & Holmes (1983: Ch. 6.1).

EXAMPLE 1.

This system has stationary points (0,0) and (1,0). For fixed p >0, a supercritical
Hopf bifurcation from (1,0) occurs at A = —p and the periodic orbits turn into a
homoclinic orbit with saddle (0,0) at some A = AC(JU) > —p (for the bifurcation
diagram compare Beyn (1987) and for the typical changes in the phase portrait
see Guckenheimer & Holmes (1983: Ch. 6)).

In what follows we solved (3.2) via the transformed system (4.1) with the
settings

p = 0-5, £ = (0,1), y = 0.

Figure 3 shows the homoclinic orbit in phase space obtained with T+ = — 71 = 10
and with projection conditions. The A-value is A = -0-429505849 and fx(0, A) has

0.7 r

-0.2 -

-0.5 -

-0.8
0 0.4 0.8 1.2 1.6

FIG. 3. The homoclinic orbit of example 1 in phase space (ft = 0-5) approximated on [-10,10].
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FIG. 4. Natural logarithm of errors vs. truncation time T.

O-Qex{T)\

15

t periodic boundary conditions
J

eigenvalues

,-,{) projection boundary conditions

i_ = 0-808046576, -/u+ = -1.237552425.

In Fig. 4 we compare the errors introduced by the projection and the
periodic boundary conditions (i.e. z(l) = y(l) in (4.1b)). The quantities

t(r) = i n p r , - , |° | | = Euclidean norm,

are displayed in both cases. Actually, the solution on [—15 ,15] was taken as the
exact solution and all finite boundary-value problems were solved at high
accuracy (~10~15) so that discretization errors do not spoil the error arising from
truncation to a finite domain.

For the projection conditions, ex shows the expected slope — 2fi_ (see Corollary
3.1) while ex shows some superconvergence with a slope of approximately
—2fi- — fi+. A similar phenomenon is obtained for periodic boundary conditions
but now with slopes —/i_ and — 2//_. A theoretical explanation of these effects
(which can also be found in many other examples) needs a more detailed error
analysis than that in Corollary 3.1 and will be given elsewhere. Nevertheless, Fig.
4 shows that, as a rule of thumb, for a given accuracy the projection conditions
require only half of the time interval for periodic boundary conditions.

In Fig. 5 we demonstrate the importance of determining the correct
projection conditions. We fix T = 6 and the projection condition at T but vary the
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FIG. 5. Error ek(T) vs. projection angle <p at -T (T = 6).

left boundary condition

b_(x(-T), A) = [cos q>, sin <pfx(-T) = 0.

Then the error ex exhibits a sharp minimum at the angle <p which belongs to the
projection condition at — T.

In the next step we discuss the choice of the truncation interval [71, 71]. For
the linear semi-infinite case there is a proposal by Mattheij (1987) where the right
boundary is adjusted during a stabilized multiple shooting procedure. This
approach, however, depends on the intervals of the boundary-value solver. In our
case we prefer to solve the finite boundary-value problem (3.2) by any method,
but try to estimate the error to the infinite solution by varying the underlying time
interval (for a corresponding remark see Ascher, Mattheij, & Russell (1988:
11.4.2)). We also want to make use of the known exponential decay towards the
stationary points.

As a consequence of our previous calculations we choose the projection
conditions and take into consideration only the x-error given by

e(71, (4.5)r+, t) = p ( r ) - x{T_, r+](OII for r_ =s f « r+ .
Figure 6 shows the logarithm of this error for T+ = 6 and varying 71 with f scaled
to [-1,1].

Clearly, by extending 71 only, the error cannot pass below a certain error
function which has its maximum at T+. But the error at t = 71 decreases over a
wide range precisely at the rate 2jU_. Similarly, the rate 2fi+ is found at t = T+ if
71 is fixed and T+ varies over a certain range. This is summarized in Fig. 7 which
compares the local and global errors.

These observations motivated the following algorithm which was very reliable
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FIG. 6. Variation of error ln[e(T_, T+, /)] by fixing T+ = 6 and varying 71 from - 1 to -14, J was
scaled to [-1,1].

in all examples considered below.

Step 1: Choose a tolerance tol, an interval [71, 71], and an initial approximation

(jf ,X)eX lxR" for the COP.

Compute stationary points x± from f(x, A) = 0 and

H±- min {|Re fi\ : fi eigenvalue of fx(x±, A) and Re n § 0}
o± = min {| Re o\ : a eigenvalue offx(x±, A) and Re

Step 2: Using the initial approximations from the previous step compute the
solution (x, A) of the b.v.p. (3.2), (3.6) (via the system (4.1) or (4.2)) on the
interval [71, T+] with tolerance ^tol.

Step 3: Let A± = 1/min {/x±, o±) and f± = T±±A±. Repeat step 2 on the
interval [f_ , f+] and obtain (x, A).

Step 4: Compute £± = \\x(T±)-x(T±)\\. If max(£+, e_)«§tol, then accept the
interval [71, T+] and the solution (JC, A) as COP. Otherwise continue with step 5.

Step 5: Use (r, A) as initial approximations and update £±, fi±, a±. Set

* =ln {£r : = T± ±

and continue with step 2.

Step 4 provides approximations e± for the quantities e(71, T+, T±) from (4.5).
Based on the assumption

e(71, T+, T±) = const± exp (-2/i± | r± | ) ,

we then try to compute a new interval [71,7"+] in step 5 such that
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FIG. 7. Local and global errors obtained by varying one end of the interval [71 , 7"+] only. Natural
logarithm of

D—De(T.,6, 71)

x — x max {e(T_, 6, / ) : 71

— + max {e(-6,

Altogether, the algorithm tries to equilibrate the errors caused by the
truncation to the finite interval and by the discretization on the finite interval.

In most applications the successful exit in step 4 was reached after one
correction of [71, 7"+] in step 5, i.e. a total of 4 b.v.p. had to be solved. Table 1
illustrates this in the case of example 1 for various initial intervals and tol = 10~6.
The actual final error

e(T_, T+) = max {e(T_, T+,t):te[T., T+]}

is also shown. During the adaptation of [71, T+], the function §, which enters
into the phase condition (see (4.1), (4.2)), was kept fixed.

71 7+

primary

e_ £+

TABLE

7_

1

71

secondary

«(r_ ,r+)
- 3
- 6
- 3
- 6

3
3
6
6

2-24E-2
317E-4
2-21E-2
1-96E-4

112E-2
1-04E-2
1-46E-4
713E-6

-9-89
-10-24
-9-89
-9-95

7-20
7-19
8-45
7-23

3-79E-7
2-17E-7
3-79E-7
3-48E-7

3-71E-7
3-86E-7
1-83E-7
3-42E-7

3-79E-7
3-86E-7
3-79E-7
3-48E-7
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Next we use the above algorithm during the continuation of a branch of
connecting orbits. Then the initial approximations in step 1 are obtained from the
predictor. Moreover, even after a successful exit from step 4 we execute step 5 in
order to estimate the interval [71, T+] for the next solution on the branch. This
accounts for shrinking time intervals along the branch.

We also employ the integral phase condition, i.e. we use (4.2). For periodic
boundary value problems this condition allows for rather large continuation steps
(see Doedel & Kernevez, 1986) and the same behaviour is found in our setting.
Figure 8(a) shows some COPs from such a branch for example 1 with /i taken as
parameter (tol = 10~6). Actually it turned out that, for the required accuracy, it
was not necessary to compute orbits which come very close to the stationary point
on the negative time axis. In Fig. 8(b) the variation of [71, T+] along the branch
generated by our algorithm is displayed.

EXAMPLE 2. (Lorenz equations, cf. Sparrow (1982))

x = o(y—x), y = kx —y — xz, z = —fiz +xy.

First, at the Lorenz values a = 10 and fi = f, we computed the homoclinic orbit
connecting the origin with itself and the A-value ( = 13.926557). It is well known
that a strange invariant set is created at the COP for this system (see Sparrow
(1982)). Then we followed a branch of COPs by varying ju. Figure 9(a) shows the
values of A, T+, and |71| along the branch as obtained by our procedure. Note
that the time interval shrinks with increasing (i while the phase curve continuously
grows (Fig. 9(b)).

EXAMPLE 3. (Travelling waves, e.g. Fife (1979))

"r = «xx + "(M ~ /*)(! ~ ") for x e U, t > 0.

25 r

20

15

— 10

IT—|

T+

-24 4 8 12
Parameter^

16

FIG. 8(a). First component of homoclinic orbit for example 1, ft = 0-5, 1, 2, 4, 8, 16. (b) Variation of
time interval [T_ ,T+] for example 1 as obtained by the adaptive algorithm.



0.0

FIG. 9(a). [71, T+] and ĵ gA for a branch of homoclinic orbits in the Lorenz equations, (b) Projection
of homoclinic orbits into xz plane, Lorenz equations 3/i = 8, 14, 20, 26, 32, 38.

Travelling waves of the form u(x, t) = w(x — kt) are found as heteroclinic orbits
connecting the saddles (0,0) and (1, 0) of the system

w' = z, w(w - - »v) = 0.

Again, this system was rather easy to solve with our algorithm and with the
integral phase condition. A typical wave front w(x) at /x = ^ and the truncation
intervals are shown in Fig. 10(a) and (b).

EXAMPLE 4. (Modification by Chay & Keizer (1983) of the Hodgkin-Huxley
model for nerve excitation.) This four-dimensional system models the time course
of voltage oscillations across the membrane of pancreatic /3-cells for a given
intracellular calcium concentration Ca[^M] ( = parameter A below). Actually, it
occurs as a fast subsystem of a singularly perturbed five-dimensional system (see
Rinzel (1985) for more details and an enlightening discussion). The dimensionless
equations are

V = gK(VK " V) + 2gCaMH(VCa -V)+ gL{VL - V),

h = tf[arn(V)(l - n) - pB(V)n], m = <*>[arm(K)(l - m) - pm{V)m],

where

gK = 0 .09-^-+12* 4 , gca HH = 6.5m% gL = 0.04,
1 + A

VK=-75, KCa = 100, V L =-40, <p = 3(7--63>/1°,

«n(V) = M-V - 20){exp [U-V - 20)] - I}"1 , /3n(K) = | exp [&(-V - 30)],

«m(V) = M-V - 25){exp [TJ,(-V - 25)] - I}"1 , fijy) = 4 exp [ i ( - V - 50)],

<xh(V) = 0.07 exp [M-V - 50)], /8h(V) = {exp [tfe(-V - 20)] + I}"1 .

At temperature 7 = 18-5 (°C) we found the homoclinic orbit shown in Fig. 11
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FIG. 10(a). Wavefront w(x) and w'(x) for example 3. (b) Variation of [71, T+] and X on the branch
of heteroclinic orbits for example 3.

(tol = 10~6). It determines the shape of the last spike in a bursting oscillation
while A ( = 0-4576217) is a threshold value above which the oscillations break
down (see Rinzel, 1985). We emphasize that all the quantities JC+(A), L+U(A), and
L_S(A) in the projection conditions (3.6) had to be computed numerically. At A
the stationary point was (-43-578, 010926, 0-37003, 014264) with the eigen-
values of fx being -12-29, -0-6369, -0-4454, 0-1031.

The slow unstable mode actually caused the rather large negative part of the
time interval in Fig. 11.

- 1 4

- 2 0

- 2 6

>
- 3 2

- 3 8

- 4 4
-68 -48 -28 - 8 12 32

FIG. 11. First component (voltage) of homoclinic orbit for example 4.
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Appendix A. Proof of Lemma 2.2

Palmer (1984: Lemma 4.2) gives a proof of Lemma 2.2 when the spaces Xk are
replaced by spaces of bounded functions:

Bk = {x € C*(R, Um): xu\t) (teR) bounded for / = 0,..., A:}.

This does not affect fl(L) and H(/-*), since any bounded function which vanishes
under L is already exponentially decreasing in both time directions (see (2.6),
(2.7), (2.8)).

Also, the range L(B') contains the range /-(X1) and the Fredholm property of
L follows from (2.13) and (2.14). Therefore, only the backward implication of
(2.14) remains to be proved. Let y eX° be given such that

£q>T(t)y(t) dt = O for all <p e fl(L*).

From Palmer's result we know thatx — A(°)x =y holds for some func t ion ieB '
and we show that x(t) converges as t —* ±°°. For t^O a particular bounded
solution of the inhomogeneous equation is

z(t) = I YiOPYis^yis) ds-[ Y(t)(I - P)Y(s)~1y(s) ds. (A.I)

Then x(t)—z(t) is bounded for t^O and satisfies the homogeneous equation,
hence x(t) - z(f)-^ 0 as t—> <».

Now we replace y(s) in (A.I) by y(s) — j(°°) +y(co) and use the exponential
dichotomy (2.6), (2.7) to find

\im[z(t)-C(t)y(c°)) = 0,
I—»oo

where

C(t) = [ Y(t)PY(s)-1 ds-l Y(t)(I - P)Y(s)~1 ds.

We consider

f Y(t)PY(s)-1 dsA+ = \ Y(t)PY(sY1A(s)ds+ \ Y(t)PY(s)-1[A+ -A(s)]ds,
Jo Jo 'o

where the last integral vanishes as t—»°° because of (2.5) and (2.6). Using
(Y~1)' = -Y~lA, (2.6), and (2.9) we find, for the first integral,

- f
Jo
f

Jo

Similarly,

f Y(t){I-P)Y(s)'1dsA+^P+u as/^oo

and therefore

c('M°°)-» ( -P + , -nu)A;M°°) = -A;V(°°) as
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x(t) has the same limit as f—•<» and finally x(t)-*0 follows from the differential
equation. By a reflection of the time axis we also obtain x(t)—*• — AZly(—°°) as
t->-«>. D

Appendix B. Proof of Lemma 2.3

Let us decompose S as follows:

„ TA 0] [0 SI

Ho DHC OI
It is easily seen that the blockdiagonal operator has null space H(A) x fl(D) and
range R(A) x R(£>), hence is Fredholm of index ind (A) + ind (B) = N + p-q.
The operators B and C are compact, so that S is a compact perturbation of its
blockdiagonal part. Therefore S is also Fredholm and has the same index, see, for
example, Kato (1966: IV Thm 5.26). •

Appendix C. Lemma

Let A e C*(IRP, Um-m) be a matrix valued function and let A e W be given such
that A (A) is hyperbolic with unstable dimension mu. Then there exists a
neighbourhood A of A such that A (A) is hyperbolic for AeA with the same
unstable dimension. Moreover, let B(X) e ti$m-m% for AeA, be given (without any
continuity assumption) such that the columns of B(X) span the unstable subspace
of A (A). Then, for A in some neighbourhood of A, the linear system

[B(X)rB(X))A(X) = B(X)TB(X) (C.I)

has a unique solution A(A) e Rm-m» and the columns of B(X)A(X) form a
C*-smooth basis of the unstable subspace of A (A).

Proof. The stability of the hyperbolicity under small perturbations is classical
(see, for example, Kato, 1966: II §1,§5), so we need only consider the special
construction of a smooth basis. By our assumption there is a matrix U e IR"1-"1"
such that the spectrum of U is the unstable spectrum of A(X) and such that
A(X)B(X) = B{X)U. We can now apply the implicit function theorem to the
matrix equation

G(A, R,U) = (A(X)R - RU, B(X)JR - B(X)TB(X)) = 0

and find C*-smooth solutions R(X) e Mm-m°, {/(A) e (Rm-m»; for AeA, such that
R(X) = B(X), U(X) = U. Moreover, the columns of R(X) span the unstable space
of A(A) and the spectrum of U(X) consists of the unstable eigenvalues of A(A).
Taking A sufficiently small we may assume that B{X)JR{X), for AeA, is
nonsingular. By our assumption, B(X) = R(X)T(X) holds for some nonsingular
T(A) e R"1-"1". Therefore, B(X)TB(X) = B(X)TR(X)T(X) is also nonsingular and, by
the construction of R(X), we find that the unique solution of (C.I) is A(A) =
T(A)"1. Therefore B(X)A(X) = R(X) has the desired smoothness. •
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Appendix D. Proof of (3.14)

We use the matrix #(f) e (Rm'p from Proposition 2.1, the columns of which
form a basis of fl(L*) with L = d/dt -fx(x, X). From Lemma 2.2 we have an
estimate

||#T(OH«/Ce-ar|" V r e R . (D.I)

Further, by Proposition 2.1 the matrix

E=\ OJ{t)V(t)dt (D.2)
J — oo

is nonsingular. Now we multiply (3.13a) by #T(0> integrate over J7, and find by
partial integration

TV f r + r r +

#T(0x(0 - OT(t)V(t)da=\ ®T(t)y(t)dt.

Using (D.I) and (D.2) this implies

, (D.3)

where C is independent of y, x, and 3, whereas c3 is independent of y and x only,
but Cj—»0 as J7—>°°. By a slight abuse of notation, we write this as A =
°(ll-rllo) + O(H^llo). Our goal is to establish an estimate

Taking the o(||jr||0) term to the left we then obtain

ll*llo= 0(11*110+l|r+|| + ||r_|| + |e|)

for sufficiently large J7, and using (D.3) as well as the differential equation (3.13a)
we find the same estimate for ||x||i + ||A||. In what follows we will modify the
projectors P and Q from Lemma 2.1 slightly without changing R(P) and K(0). By
(2.12) and (2.17) we have

and we can choose subspaces Z2, Z3, and Z4 such that

This induces a splitting Um = Z , © Z2 © Z3 © 2 4 and we assume P, Q, and /7 to
be the projectors onto Zi © Z2, Z2 © 2 4 , and Zx respectively. We then have

l|P§-n§||«cneill, ll(/-e)§-nsn«c||(/-p)§|| v|eR
m (D.5)

Now we define, for any y eX°(J7) (see (A.I)),

Y(t)P¥(s)'ly(s) ds - Y(t)(I - P)Y(Sy
ly(s) ds for 0 ̂  t« T+,

Jo Ji

Y(t)QY(syly(s) ds - f Y(t)(l - e)F(5)-V(s) ds for T_^t< 0.



NUMERICAL COMPUTATION OF CONNECTING ORBITS IN DYNAMICAL SYSTEMS 4 0 3

Sj(y) is a bounded solution of x — A(»)x=y in Jf\{0} which may be discon-
tinuous at 0. From (2.6) and (2.7) we find HfyGOIIo = O(|| j>||0). T ^ solution a: of
(3.13a) may now be written for some §, JJ e Um as

x(t) = Y(t){ti,S}+r(t), r = s3(y + V(')Z), (D.6)

where lk||o = o(IMI) + ^Klljilo) and {tj, §} denotes the step function which is %
for 12* 0 and IJ for t < 0. Since x is continuous at 0 we also have

| - ^ = o(||jr||0) + O(\\y\\0), S = O(\\x\\0) + O(\\y\\0). P . 7 )

Next we set |+ = Y(T+)(I — P)% and use the representation (D.6) in equation
(3.13b) to find

In order to estimate £+ itself we notice that assumption (i) of Theorem 3.1
implies

\\p+M\*c\\b+x(x+,i)P+M\ v ? e r .
SinceK+-*b+x{x+, X) and Y(T+)(I-P)Y(T+)~1->P+U as J^-U by Lemma 2.1,
the inequality | | |+| | =s C ||if+§+|| holds for sufficiently large 3 and we end up with

$+ = Y(T+)(I-P)S = o(

Similarly,
t,_ = Y(T_)Qt, =

and by the exponential dichotomies

o(\\x\\0) + OQ\y\\0+\\r+\\) uniformly for 0 * r « T+, (D.8)

(IWIo) + 0(IMIo+| | r_ | | ) uniformly for 71 < r « 0 . (D.9)

From the definition of the projector Flwe know that /7£ = yx(0) for some yeU
and hence F ( f ) n | = yx(t). For 0 « / « T+ we obtain, from (2.6) and (D.5)-(D.9),

O(\\y\\0 + \\r+\

and the same estimate for 71 =£ t ̂  0.
Finally, we use (3.13c) and assumption (ii) of Theorem 3.1

Combining this with the estimate of x — yx gives the desired result (D.4). D
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