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ON THE NUMERICAL APPROXIMATION OF PHASE PORTRAITS
NEAR STATIONARY POINTS *

W.-J. BEYNY

Abstract. We show that the phase portrait of a dynamical system near a stationary hyperbolic point is
reproduced correctly by numerical methods such as one-step methods or multi-step methods satisfying a
strong root condition. This means that any continuous trajectory can be approximated by an appropriate
discrete trajectory, and vice versa, to the correct order of convergence and uniformly on arbitrarily large
time intervals. In particular, the stable and unstable manifolds of the discretization converge to their
continuous counterparts.
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1. Introduction. We consider an m-dimensional autonomous system

(1.1) x'(t)=f(x(1)), t=0, x(1)eR™

and compare its trajectories with sequences x(0), x(h), x(2h), - - - generated by a
one-step method with uniform step-size A

(1.2) x(t+h)=x(t)+hf,(x(2)), t=0,h--".

Our aim is to compare the trajectories of both systems on large time intervals. Classical
estimates give error bounds of the form exp (Lt)h" where r is the order of the method
and L is a Lipschitz constant for f in some domain containing the continuous trajectory.
Therefore, the numerical values may completely deviate from the continuous ones
after sufficiently long time. Whether this really happens clearly depends on the
asymptotic properties of the dynamical system itself.

A simple situation occurs if all trajectories of (1.1) in some bounded domain
converge to one and the same stable equilibrium. Then, for sufficiently small h, this
property carries over to the discrete system (1.2) and both trajectories stay close for
all times (see [13, Chap 3.5] for results of this type).

However, if the system has some kind of sensitive dependence on initial conditions
then the discrete and continuous trajectories starting at the same point will go apart
after some time even if h is small and if the trajectories of (1.1) stay bounded for all
times. The simplest situation of this type occurs in the neighbourhood of unstable
stationary points. There the behaviour of the trajectories strongly depends on which
side of the stable manifold they start.

This is the situation which we analyze in this paper. We show that in fact any
continuous trajectory can be approximated by a discrete trajectory within the order
of the method if we allow the discrete initial value to be adjusted. Similarly, any
discrete trajectory approximates some continuous trajectory with a suitably chosen
starting point. These estimates hold for sufficiently small h and as long as the trajectories
stay within some neighbourhood of the stationary point. For initial values on the stable
manifold the time interval is in fact infinite. The adapted initial values actually depend
on the continuous trajectory which precludes us from using our construction numeri-
cally. Rather, our results, in particular the reverse statement, should be taken as an
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indication in which sense numerical computations with (1.2) are still reliable for phase
portraits containing unstable modes.

Let us state in more technical terms the approximation problem for the trajectories.
For some open set ) <R™ we denote by X(1; xo) the solution of (1.1) with x(0 }=x,
and maximal interval of existence J(xp) =[0, T(x,)) in Q. Similarly, let x "(tyo) €
be the solution of (1.2) with initial value y,€ Q) and maximal grid of existence
J*(yo)={0, - - -, Nh}, N eNU{cc}. We then ask for conditions on f and () such that
certain constants C >0, h,>0 with the following property can be found. For any
xo€ O and h = h, there exists yo= yo(xo, h) € () satisfying

(1.3) sup {|%(1; xo) = x"(£; yo)|I: te J(x) N J*(yo)} = CH".

Also, to any y,€Q, h = h, there should exist some xo=x(yo, h) €} which satisfies
(1.3). These relations will be obtained for neighbourhoods ) of hyperbolic polnts o
of (1.1),i.e.,

(1.4) f(&)=0and Re A # 0 for all eigenvalues A of f'(&).

Our approach will be motivated in § 2 for the constant coefficient case. Again it
is crucial that we only consider integration up to a certain finite bound. This is reasonable
since in more realistic systems nonlinear effects will usually prevent trajectories from
exponential growth to infinity. Sections 3 and 4 contain the main results on one-step
and multi-step methods. In addition to (1.3) we show that the mappings from (1.2)
have stable and unstable manifolds which converge to their continuous counterparts.
For multi-step methods we impose the strong root conditions and use some decoupling
techniques as in [5]. Section 5 concludes with some numerical tests of the relation
(1.3) in two global cases not directly covered by our results. In particular, we consider
a two-dimensional example where () contains three stationary points, two stable and
one unstable.

Let us finally comment on systems (1.1) with more complicated dynamics where
the condition (1.3) seems to be somewhat too restrictive. For instance, for systems
with periodic orbits the discrete and continuous trajectories certainly run out of phase
after some time. Nevertheless it is possible to get estimates for the Hausdorfl distance
of the trajectories [1] and to obtain approximating invariant curves [1], [4]. Forsystems
with strange attractors or chaotic behaviour such as the Lorenz system [9], [12] it
seems no longer appropriate to compare single trajectories at all. Rather one should
compare attrflf:ting sets of (1.1) and (1.2) (see the remarkable recent paper [7]) or
;egr;am quantities measured from the trajectories such as Lyapunov exponents [§, Chap.

Above all, we want to emphasize that our main interest is in the longtime behaviour
of (1.2) in the asymptotic case h - 0. It is well known that, if h is taken too large, the
recursion (1.2) may exhibit all kinds of chaotic behaviour [4], [11], [14], whereas (1.1)
behaves nicely. In this case, however, (1.2) should rather be considered as a discrete
model in its own right than as a numerical method for the system (1.1).

2. The constant coefficient case. Consider the scalar equation
(2.1) ' x'= Ax, x(0) =x,
with solution X(#; xo, A) = x, "' and the one-step method

(2.2) (Gr1—x)h 7 = a(Ax)+(1-a)Ax;,  j=0,1,- -+



NUMERICAL APPROXIMATION OF PHASE PORTRAITS 1097

with solution x; =x"(jh; x,, A, @) = Xog.(hAY where g.(z)=(1+(1—a)z)(1—az)™,
a €[0, 1]. Then, for any sector in the negative half plane

S=8(y,0)={zeC: Re =0, |Im z| = y|Re 2|, |z]| = 0}
one easily finds constants C >0, h,> 0 such that
(2.3) |Z(jh; X0, A) = x"(jh; x0, A @)|= C(|A|h)"

forall h=hy, A€ S, acf0,1] and |x,|=1. Here, r=2 if @ =% and r=1, otherwise.
Now we consider the unstable case A € —S, A # 0. For 0<|x,|=1 the solution of
(2.1) reaches the unit circle at time T =—In |xo|(Re A)~". We then define

(2.4) N=[Th™], xr=xoexp (ANh), yo=x/(g.(hA))™™.

For h sufficiently small, we have |x/|=1, |y|=1 and, by a simple calculation,
X(jh; X0, A) = X((N =j)h; x5, =), x"(jh; Yo, A, @) =x"((N—j)h; x, =4, 1-a). We
may therefore apply (2.3) with x; in place of x, and obtain

(2.5) |%(jh; x0, A) — %" (jh; yo, A, @)|= C(|A|R)

for all h=hy, Ae-S, 0=j=N, ac[0,1]. This proves our assertion (1.3) with Q=
{zeC: |z]=1} for all A e SU(-S).

Notice that y, is actually scaled up in case A >0, « <3. Moreover, the scaling
(2.4) of the initial value x, in the unstable case is necessary if we want (1.3) to
hold with a constant C independent of x,. For example, consider Euler’s method
for (21) with fixed A>0. For N=[h"2A72+1], x,=e ™, we have
X(Nh; x5) =1 but x"(Nh; x,) = exp (N(ln (14 hA)— hA)) = exp (N(—3h*A%+ O((hA)*))
Zexp (-1+ O(h)).

The generalization of the result (1.3) from the scalar equation (2.1) to a system
with constant coefficients

(2.6) x'=Ax, ReA #0forall eigenvalues A of A

proceeds in the standard way. Assume that A can be put into diagonal form so that
(2.6) decouples into m scalar equations. Choose an appropriate sector S where SU (—S)
contains all eigenvalues of A and apply the above result. Transforming back gives the
desired result for the a-dependent one-step method applied to (2.6). The general
procedure for finding an appropriate y, in (1.3) is therefore to keep the stable com-
ponents of x, but to adjust the unstable ones.

3. One-step methods near hyperbolic points. In the neighbourhood of a hyperbolic
point the flow of the system (1.1) is dominated by its linear part. All trajectories staying
in this neighbourhood for all times form the stable manifold which is tangent to the
stable subspace of the linearization (we use [6] as a reference for this classical theory).
For initial values x, on the stable manifold the supremum in (1.3) will be taken over
an infinite set. This suggests as a first step the construction of the stable manifold for
the one-step method. In fact, this step is crucial and it turns out that our proof can
then be adapted for starting points off the stable manifold.

We start with some notation. For £ >0 let K, ={x €R™: ||x|| = ¢} where the norm
will be specified later. We assume that 0 is a stationary, hyperbolic point of the system
(1.1). The local stable and unstable manifolds at 0 with respect to some g,Z & > 0 are
then defined by

M,={xeK,: %(t;x)e K, Vt=0and X(t, x) >0 as t » oo},
M, ={xeK,: %(t;x)e K, V=0 and (¢, x)>0 as t-» —o0}.
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Further, let X, X, = R™ be the stable and unstable subspace for the hyperbolic linear
vector field £'(0) ([6, Chap. 4]) such that
R"=X,®X., (x,x)=xeR™ [x||=Max(|x], |Ix.])
It is well known that M,, M, may be represented as graphs
M, ={(x,, p(x.)): x. e K.}, Mu={(g(x.), x.): %, € K, .}

where the functionsp: K, , =K. NX,~» K, , =K, N X,,and q: K, , > K, ; are assmooth
as f.

Our consistency assumptions on the one-step method (1.2) are
3.1) fu—>fand fi, > f as h-> 0 uniformly in some K,,, p >0,
(3.2) (X (B x0) —x0)h ™ = fu(%o)|| = O(h") uniformly for x, € K.

Then it is easy to show (e.g., by Theorem 3.2 below) that (1.2) has a unique fixed point
x, € K; for some 5 =p and h sufficiently small. Moreover, x, = O(h"). However, all
commonly used one-step methods even satisfy

(3.3) f(x)=0 = fi,(x)=0 forallh.

Therefore, we may assume 0 to be the fixed point of (1.2) for all h, which leads to

some technical simplifications. The local stable and unstable manifold of the one-step
method are defined by

M!={xeK,:x"(nh; x)e K, VneN, x"(nh; x) >0 as n-> o},
Mh={xeK,: x"(nh; x)e K, Vne -N, x"(nh; x) > 0 as n > —}.

Our principal result is as follows?

THEOREM 3.1. Let 0 be a hyperbolic point of (1.1) and let (3.1)-(3.3) hold. Then
there exist constants C*, €, €5, hy>0 such that M! and M" (k= h,) are of the form
(3.4) Mi={(x, p"(x)): x, € K..},  Mi={(g"(x.), %) %, € K.}

where p" = p+ O(h”) uniformly in K., and g" = g+ O(h") uniformly in K, . Moreover,
Jor any xo€ K, and any h = hy, there exists a yo= yo(xy, h) € K., satisfying

(3.5) sup {||£(nh; xo) — x"(nh; yo)||: %(t; xo) € K, for 0=t = nh}= C*h".

Correspondingly, for any y,€ K, and any h=h,, there exists xo= Xo(yo, h) € K., with
(3.5) where the sup is now taken over all n satisfying x"(jh; yo)e K., j=0,+, n.
The proof needs several steps. First, we compare M, and M" by using the graph

mapping technique ([6, Chap. 6]). Let S, be the Banach space of sequences ¥(n)€ R™
converging to 0 with norm

l¥lo=sup{ll¥(n)l: neN} andlet S, ={ye S: |y]wse).

We construct M? by solving the equation

(3.6) Ti(7v)=(x,0), xekK,,

where T,,:S,> X, xS, is defined by T,,(y) =(y(0),, h™"(y(n+1)—y(n)) =A(¥(n))
n=0). We apply to (3.6) the following Lipschitz inverse mapping theorem ([6, Appen-

dix 'Cll], for the stability inequality see [3], note also that the use of this theorem
avoids any manipulation of (3.6) as in [6, (6.7)]). ’
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THEOREM 3.2. Let A: X > Y be a linear homeomorphism between Banach spaces
X and Y. Further assume that, for some x,€ X, 8,> 0, the mapping F: Ky (xo) - Y is
Lipschitz with constant k <o = ||A™"||™". Then the equation (A+ F)(x) =y has a unique
solution x € K, (x,) for each y € Ks;(Axo+ Fx,), & = 8o(o — x). Moreover, the following
stability inequality holds
(3v7) ”xl—xzﬂé(O'—K)_IH(A-f'F)(x,)—(A-i' F)(X2)” Vxl, x2€ Kso(xO)-

Let us write T, = A, + F,, where

An(y) = (¥(0)s, A (y(n+1) = y(n)) = f(0)y(n), n = 0), and
Fr(y}=(0,(f(0) = fi)(¥(n)), n20).
We estimate || A" || uniformly in h by using the following lemmata.

LeMMA 3.3. Let the m X m-matrix Q be a hyperbolic automorphism in R™ with stable
and unstable summands X, X, and with skewness Max (]| Q.|l, |Q.'D=a<1 ([6,
(4.19)]). Then the linear mapping
. {So > X, X S,,

Ly > (¥(0),, y(n+1)—Qy(n), n20),
is a homeomorphism and satisfies
B~ (x., M=%+ (1) nlle forx.eX,, nesS,.
Proof. A solution y of By =(x,, n) is given by

Y0),= QL QG YW= T Qa0

It is readily verified that y(n) >0 as n - co as well as
ly(n) || = Max (|| y(n) ]|, lv(m)ulD) = Ix+ (1 - @) 9]l

Finally, B is invertible since By=(0,0), y€ S, implies y(n);=0 for all neN and
¥(0),=Q;"y(n),»>0as n>c0. [

LEMMA 3.4. Let Q be a stable m x m-matrix (i.e., all eigenvalues have negative real
part) and let the function g(z)=1+z+ O(z%) be real analytic in a neighbourhood of
OcC. Then there exist constants hy> 0, B> 0 and a norm on R™ such that

(3.8) lg(hQ)|=1~hB forallh=h,.

Proof. It is well known [6, (4.37)] that there exists a norm on R™ and some 8> 0
such that Jexp (kQ)|=e ™ for all h=0. Since g(z)=e”+ O(z%), it is obvious that
(3.8) holds with the same norm for sufficiently small . O

Applying Lemma 3.4 to g(z)=1+2z, Q=1(0), and g(z)=(1-2)"!, Q=~f(0),,
we find hy, 8> 0 and norms on X, and X, which are independent of h such that

H+hf0).<1-h8,  I(I+hf(0).) | =1-hB for h=hs.
Lemma 3.3 then shows that A,y =(x,, n) € X, X S, has a unique solution and
AR (xey Mo = 1% )|+ 1 = (1 = 18) " [Bnllec= 1%, + B [0 -

We may therefore take o = Max (1, 87") in Theorem 3.2. Using (3.1) we find ko, 8> 0
such that F, is Lipschitz in S, with constant « = o/2 for all h = h,, Then, with x,=0,
Theorem 3.2 assures a unique solution y=y(x,, h)e S, of (3.6) for all x,€ K,
8= 8,0/2. This proves the representation of M} in (3.4) for p”(x,)=[v(x,, h)(0)L.
and with §, §, in place of &, £,. Moreover, we have

B9 n-rles20""Ti(y) — Ta(y o forall v, v,€ Ss, h=ho.
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For any initial value x,= (Xo,, p(Xo:)) € M,, We choose the discrete initial value y,=
(Xos, P" (Xos)). Setting y,(n) = X(nh; X,) and y,= y(Xo,, h) in (3.9) and using (3.2), we
have our assertion (3.5). In particular, ||x,— yol| = [|P(Xos) —pP(x0, )| = C*h.

The corresponding result on the unstable manifolds is obtained via the time
reversed systems

X' =f(x)=—f(x),  x(t+h)=x(t)+hfu(x(t))

where f,(x) = h~((I+hf,)"'(x) —x). One verifies that I + hf; is locally diffeomorphic
and that f,, f satisfy (3.1), (3.2). Then our above result applies.

Next we consider initial values x,2 M,. For any NeN and h>0, we define
Ton :R™YV*D 5 X xR™ x X, by

(3.10) Tun (¥) = (¥(0),, B (y(n+1) = y(n)) - fu(¥(n)) 0= n = N - 1), y(N).).

In quite an analogous fashion as above, we then find positive constants &, &, ho such
that

(3.11) Tun(7) = (%1, 0, x7), x € Ky, x€K;,

has a unique solution in K5, R™ V" for all h = hy,and N €N (taking suitable minima,
we may assume 8, and 8 to be the same as in the proof for the stable manifold M M.
Moreover, T, satisfies a stability inequality with a stability constant independent of
h and N. For x,€ Ks\M, the time 7=sup {t=0: £([0, t]; xo) = K} is finite (cf. [6,
(6.8)]). Let ¥ denote the solution of (3.11) with N =[7h™'], x, = xo,, X, = X(NIt; Xo}u-
Then we set yo= 7(0) and find the estimate (3.5) from the stability inequalityfor T~
applied to vy, =7, y2(n)=X(nh; xo).

Finally, let us start with some discrete initial value y,€ K5 and some h< ho. In
case Yo=(Jos, P"(Yos)) € M%, We use xo= (¥, p(¥os)) s0 that (3.5) has already been
proved. For the remaining case, introduce the exact one-step function f;,(x) =
(__f(h; x)— _x)h"l and for any N eN the operator T,y as in (3.10) with f, replaced by
fu- Since f, satisfies (3.1), we obtain the same properties for T,yas for T;,y. Then we
let xo=4(0) where ¥ solves (3.11) with Tin=Twn, X1 =V N=
sup {neN:x"(jh;y)e K, for j=0,--+ n} and x,=x"(Nh;yy).. From 0=
Y (§(n+1)=%(h;5(n))), 0=n = N-1 we find ¥(n) = %(nh; x,) and then (3.5) by
using the stability inequality for T,y with y, =¥, y,(n)=x"(nh; y,). This completes
the proof of Theorem 3.1.

Remarks. Theorem 3.1 does not exactly state the relation (1.3) for Q = K, because
g0 may be greater than ¢ in general. However, this is not very important since x,€ K.
and yo(x,, h) =x,+ O(h"). We also note that y, is actually determined by a discrete
boundary value problem (3.11). The boundary values are given by the continuous
so}ution so that this fact cannot be used numerically. The only exception occurs when
0 is asymptotically stable, in which case we may put y,= x, (cf. [13, Chap. 35]).

4. Multi-step plethods near hyperbolic points. In this section we generalize our
results on the longtime behaviour of one-step methods to multi-step methods of the form

k
(4.1) h—1j§oafx(t+jh)=ﬂ,(x(t),- -+, x(t+kh)), t=0,h---.

Tlhle solution of this system with starting values x,,« -, x,_, will be denoted by
X (#; X0, * = *, Xi_1). As for one-step methods it is crucial to consider first the approxima-
tion of the stable manifold. In the present case this amounts to finding all starting
values (xo, * * *, X,-1) €R™ which by (4.1) yield a sequence converging to the stationary
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point. We will show that these starting values form a manifold in R™ which is of
dimension m(k—1)+d where d =dim X,. The additional m(k—1) dimensions are
caused by the exponentially decaying spurious solutions of the multi-step method. We
will also see that a suitable d-dimensional submanifold of this large manifold yields
the proper starting values for approximating continuous trajectories within the stable
manifold. A similar analysis can then be carried out for trajectories off the stable
manifold. Throughout we use the well known technique of rewriting (4.1) as a one-step
method in R™,
Finally we use our results to deal with the case where (4.1) is completed by a
starting procedure (see Theorem 4.3).
Our basic consistency assumptions for the multi-step method are:
(H1) For some open set Q <R™ and some numbers B;, j =0, - -, k f e C'(Q*",
R™), fh is equicontinuous on Q**', fi(x,---,x)>f(x) and (3f/8x;)
(%,-+,x)=>B,f(x) (j=0,--,k) as h~>0 and uniformly in Q,

k k k
Z aj=0, Zjaj=2ﬂj=l,ak#0.
j=0 j=0

j=0

(H2) There exists a C > 0 such that any solution X(¢),0=t= T of (1.1) in () satisfies

sup
0=t=T~hk

h™ i ax(t+jh)—fi(%(2), -+, X(t+ kh))“ =Ch'".

J=0

The stability requirement is the strong root condition which is also used in [5].
(H3) 1 is a simple root of the characteristic polynomial p(z) = E =0 a;z and all
other roots of p lie inside the unit circle.

For any stationary hyperbolic point x, € { it follows again easily from (H1), (H2)
that there exist fixed points x;, €  of (4.1) (i.e., fi(xs, * * *, x,) = 0) for sufficiently small
h such that x; = xo+ O(h"). But, since the common multi-step methods satisfy f(x) =
0 = fu(x,--+,x)=0, we use the convenient assumption as follows:

(HO) 0 is a stationary hyperbolic point of (1.1) as well as a fixed point of the
multi-step method for all h.

THEOREM 4.1, Assume (HO)-(H3), then there exist constants &, o, hy, C*>0 with

the following property. For any x,€ K. and any h=h, there exist starting values

Yos* ', Y1 € K, satisfying
(42)  sup {|Z(nh; xo) —x"(nh; yo, + + + , Y1) ll: Z([0, nh]; x0) = K.} = C*h'".

In particular, if x, is on the stable manifold of the stationary point 0, then

x(nh Yos® "' s Ve~ 1)—)0asn—>w
Proof Let us rewrite (4 1) as a one-step method ®"(2(1), z(t+ h))=0, t=
0,h, - - where z(2)=(x(t), - +, x(t+(k—1)h)) € R™. Furthermore,

®"(z, y) =(h"(zj~yj_1)

(4.3) k-1
- (l éjé k— 1)9 D;l:[h_‘l(akyk—l-i— Z aij)""ﬁ,(Z, yk-l)])
j=0

for z=(zo,**+, Zkcs), y=(¥o, " *- . Vk-1) € and

(4'4) Dhj = ajI_ hﬂ]f(o), j=0’ "t Ty k.
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We want to apply Theorem 3.2 with X ={ye (R™)":y(n)->0 as n- oo} and norm
7)o = suppen 1 7(n)}]. Let X;, X, = R™ be as in § 3 and define the mk x mk matrix Q,
as follows:

0 I 0 0
0
Q=
I
0 0
—D;} Dy . ~Due Dy

The stable and unstable summands of Q, are determined in the following lemma which
will be proved at the end of the section.

LEMMA 4.2, There exist positive constants hq, ., i, and invertible mk x mk matrices
T, depending C* on h €[0, hy] such that

(4.5) T;;IQhTh=(Qhu 0 ).

0 th

Here, Qy, is a square matrix of dimension m(k ~1)+d, d = dim (X,), and for some norm
on R™*"V* which is independent of h we have |Qy,||=1—-u,h, 0=h= h,. Similarly,
for some suitable norm on R™*

"Qhu"§1+l"'2hs IIQZJIlél—unh forO=h=h,. o

Following Lemma 4.2, the projectors onto the stable and unstable summands Zy;,
Z;,, of Q, are uniformly bounded and given by

0 0

4.6 P,=T,
(4.6) A "(0 1

)rzl, Po=I-P, |Pul,|Bul=C

Now we apply Theorem 3.2 to the equation

4.7) Ayt F(y)=(z,0)e Z,; x X=Y

where x,=0 and

“5) Ay =(Poy(0), ™' (y(n+1) = Quy(n)), n 20),
Fi(y)=(0,9"(y(n), y(n+1)) =k~ (y(n+1) - Quy(n)), n 2 0).

Using Lemmata 4.2 and 3.3 as well as the uniform boundedness of || T,|}, | T:' |, we
obtain an upper bound

(4.9) o'z || A" forall0<h=h,.
Furthermore, (4.4) and (4.8) imply

| Fuly) —Fh('n)"oo:i‘;% D;;i[fn(n(n), Me—1(n +1)) = £ (y(n), yei(n+1))
+f(0)(Bk('Yk—1(n +1) =My (n+1))

k-1
+J_§0 Bi(v;(n)— 17,-(")))]"
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k-1 1 (e)
) (%ff—ﬂjf'(m) di(m,(m) = y,(m)

Jj=0Jo

=Csup

n=0

Yo,
+ (‘a}—k‘_ﬁkf (O)) dt(n""("+l)‘7/k_1(n+1)) .

0
Here, the upper index ¢ indicates the argument

(r(n), Yir(n+ 1))+ t[(n(n), M (n+1)) = (v(n), v (n+1))].
Then, by (H1) we find 8,, hy> 0 such that

g
I1E(¥) = Fa(mllw=Z Iy =nllw for [ ¥lle, [ nllo= 8o and h=h,.

Thus (4.7) has a unique solution y(z)€ K, < X whenever z€ K; < Z,,, 8, =8,(c/2).
Moreover, for all h = h,, the following stability inequality holds:

(4.10) ly—nlle=20""(As+ F)(v) = (A, + F)(n)|| fory, neKs,.

If we define the local stable manifold of the multi-step method (4.1) to be
M?={zeR™ :x"(nh; z) e K, forall n 20, | P,,z| = 8,, x"(nh; z) >0 as n > o0}

then we have shown the representation

(4.11) M!={z+q,(2): ze Ks,= Z,,} where g,(z) = P,.(¥(2)(0)).

M? is as smooth as J» and has dimension m(k —1)+d. By (4.6) we may choose & >0,
ho> 0 such that § =<8, and

Z(x0) = Pp(%(0; xo), - * =, X((k—=1)h; o)) € K5, forall xo€ Ky, h=hy.
For initial values x, on the stable manifold
M, ={xe K;: %(t; x) € K, for t =0 and %(t; x) >0 as t -» oo}

we select the discrete starting values y = (3o, * * * , Yi—1) = Zr(Xo) + gn(zn(x0)) e M " Then
we apply (4.10) to y(n) = (x(nh; x,), - - -, ¥((n+k—1)h; x,)),

n(n)=(x"(nh;y), -+, x"((n+k—1)h; y))
and obtain by (H2)
(4.12) sup ||%(nh; xo) — x"(nh; y)|| = O(K").

nz0
It remains to prove (4.2) for points x, & M,. Analogous to (3.10) we apply Theorem
3.2 with X =R™WV* 'y = 7, xR™N x Z,,, Tin() = (Puy(0), @*(y(n), y(n+1))
0=n=N-1), P.,y(N))=(Aun + Fan (7). A,y and F,y are defined analogously to
(4.8). It turns out that, for some 8,, 8,, ho> 0, the equations

(4.13) Tin(¥)=(21,0,2,), 2,€Ks<Zy,, 2,€K5<2Z,, h=h,

have unique solutions vuv(z:,2)€ Ks. We then choose 6>0 such that
Ppy(%(0; xp), + + +, ®((k—1)h; Xo)), P (%(0; Xo), - * = , X((k—1)h; x0)) € K, holds for all
%€ K;. For any x, € K,\ M, we solve (4.13) with N =[sup {r = 0; ([0, t]; xo) = K;}]—
k+1, z,= P (%(0; %o), - -, X((k = 1)h; X)), 22 = P £(Nb; Xo), - - -, H((N+ k- Dh;
Xo)). The starting values (yo, * - - , Yx-1) = ¥an (21, 22) (0) then have ;he desired properties
and this finishes the proof of Theorem 4.1.
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We note that we do not have any suitable converse of Theorem 4.1 as for one-step
methods in Theorem 3.1, i.e., we do not know how to characterize those discretestarting

values (yo, ' * *, Yx—1) for which an appropriate initial value of the system (1.1) may
be found.

Let us finally consider the case in which (4.1) is completed by a starting procedure

X(O) =Xq,

(4.14) ;
h™t _go ax(ih) =f,(x(0), - - -, x(h)), j=1,---, k-1

We need the additional consistency assumptions
J
(H4) Zoa,-,:o, a; #0forj=1,---,k-1;
fiy€ CHY',R™), f;is equicontinuous on '*;

S+, 5)>f(x) and T @fyfam)(x%, -, x) > (x)as b

- 0 uniformly in x € ().
(H5) There exists a constant C such that

.
Max B T (i) £y (20), - -, 5(GM)]| = CH

holds for all solutions %(¢) of (1.1) with X([0, (k—1)h]) < Q.
Moreover, in view of (H0) we assume that
(H6)  f,;(0,---,0)=0forj=1,+++,k—1and forall h.

THEOREM 4.3. Let (H0)-(H6) be satisfied and let x"(t; x,) denote the solution of
the complete multi-step method (4.1), (4.14). Then there are constants ¢, £y, hy, C* >0
such that, to any x,€ K., h = hy, a suitable y, = y(x,, h) € K., exists which satisfies (3.5).

The proof of this theorem makes intricate use of the techniques necessary for
Theorem 4.1. It will therefore be given subsequent to the proof of Lemma 4.2.

Proof of Lemma 4.2. We make successive use of the blocking lemma below which
is a quantitative version of some well-known decoupling techniques (cf., [5], [10])-
Let n,, n,€N as well as norms on R™, R™ be given. For vectors x = (x,, x,) €R", where
x, €R™, x,€R™, n=n,+n, we use the norm ||x|| = Max (||x,|, || x,}}). All matrices in
the following lemma will have a compatible partitioning.

LEMMA 4.4. Let 0=r <1 be given. Then, for any n x n blockdiagonal matrix

)
0 A,
satisfying || Ayl =r, |AT|=1 and any nx n matrix
B= (Bn Biz)
BZI B22

s:tisfying |A— Bl =(1-r)/8 there exist uniquely determined matrices V, W, B,, B, such
that

(4.15) B(‘I, ‘;/)-—*(‘{, ?I)(I;l ;2), fvi=1, |wl=1.
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For fixed A, the matrices V, W, B,, B, depend C* on B and satisfy

VI IWI=T=14-Bl 18- Aul, 1B~ Al 14— B,

2 _ 2
| Bi1— B, || B2~ Bs|| él_j;”A"BHZ, I BT =7

Proof. By our assumption and the Banach Lemma we have

1—r
|41 = Bull, 1422~ Baoll, | Bl | Bl = | A~ Bl ==,

_ _ _ _ 8
IBLI = 1AL~ AL || A = Bul) ‘éﬁrﬂ-
It suffices to consider W, B, in (4.15) since V, B, can be found analogously.
By (4.15) the conditions on W, B, are

(4.16) B1]W+ Blz'_ WB22— W321W=0,
(4.17) B2= Bzz+B21 W.

Let us solve the Riccati equation (4.16) by an application of Theorem 3.2. with A= By,
F(W)=B,,— WB,,— WB,, W, x,=0, 0 =(r+7)/8, 8,=1. F is Lipschitz on K,, with
constant (5r+3)/8<c and |F(0)|=(1—r)/8=0o—(5r+3)/8. For any two n,Xxn,
matrices W, W, with | W], | W,||=1, we obtain

(4.18) | Wi~ Wall 5 | B Ws = W)+ E(W) ~ F(W)l|

The unique solution W = W(B) of (4.16) depends smoothly on B as may be seen from
the Lipschitz inverse mapping theorem with parameters [5, Appendix C7]. Setting
W, =0, W= W(B) in (4.18), we find || W(B)]| =2/(1-1))| Bixf = (2/(1-r))|| A~ B.
B, is uniquely determined by (4.17) and satisfies [ B,— By|=|Bu||W|=
(2/(1-r)|A-B|*> as well as [B,—Ay,[=((2/(1-r)l|A-B|+1)|A-B|=
(5/9)|A-B|. O .
Our assumption (H3) implies that 1 is an eigenvalue of multiplicity m for the matrix

0 I o .- 0

Q=0 - 0o 1 0
_ o, Sty

(24% ay

The corresponding eigenspace is Z;={(x,-*-,x): x€R™}. A complementary Qo-
invariant subspace is given by

k—1 k . k-1 .
Zz={(x0, Ce L Xe—1)D L Y =0} where ¥ a;z’ =(z-1) L vZ.
i=0 =0 i=0
As all other eigenvalues of Q, lie inside the unit circle, we find that
I By I 0
Iy= I 1 T, QTo= 0 0

and anorm on R™* " such that || Q,[| s r<1.
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Applying Lemma 4.4 to

B B
A=T4'QyT, and B,= Ty hT0=( h11 hlz)

Bnai B

we find
i w,
h0> O and Fh = Vh !
which satisfy
E, O
(4.19) T, T QT = ( " ) forh=h,
0 Ehs

and Vh = O(h), Wh = O(h), Ehs = Q2+ O(h), Ehu = Bhll+ O(hz). By the definition of
By, we have

k-1 T
(Bhlla Ty Bhu)T"‘ T,Byn = (I, SRR A —_Zo D;l:Dhj) .
j=
We multiply from the left by (oI, - * -, yx—,I) and use (H1)
k-1 k—2 ., k—1
By = ‘}’,-Bm::( ’)’j)I"‘)'k—1th > Dy,
0 [} j=

j= j= j=0
k k o
=I- ‘Yk--lD;l: 2 Dhj = I_akD;I:("h x ﬁjf’(o)) = I+h0«'thkf'(0)
j=0 j=0

= I+ hf'(0)+ O(h?).
Hence the block diagonalization (4.19) satisfies

Tw=1+0(h), Ep=I+hf(0)+0(h?), ||E,,su§1;—’<1 for h= hy.

It remains to separate E,, into stable and unstable blocks. Let us first put f(0) into
block diagonal form

J, 0
4.20 U0 U=( ! )
(4.20) J(0) 0 I,
where J, is of dimension d = dim X and relates to the stable eigenvalues of f(0). By
Lemma 3.4 we have constants a, h,> 0 and norms on R¢ and R™ ¢ such that || I+ hJo|| =
1—ah, ||[(I+h))'|=1-ah for h=h,. Now we use Lemma 4.4 with A=
(1-ah)U™'(I+hf(0))U and B=(1—ah)U"E,,U. This gives us a transformation

. L, O
(4.21 R;'U'E,,UR =( hu )
) h h h 0 th

where R, = I+O(h%), L,, =I+hJ,+ O(h®), L, =1+ hJ,+ O(h?). Summing up (4.21)
and (4.19), we obtain (4.5) with

U 0
T"=T°(0 1)+0(")’ Qu.=I+hJ,+O(h%),

Q"‘=(Igs ;m)=(I+M2;O(h2) Qz+00(h))'

These matrices have the desired properties. D

(4.22)
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Proof of Theorem 4.3. For xe K, <, ¢ sufficiently small, we define
S(x)=(x(0; x), -+ -, Z((k=1}h;x)),  Su(x)=(x"(0; x), - - -, x"((k - 1)h; x)).

Assumptions (H4) and (HS) yield the convergence of the starting procedure, i.e., for
some £ >0

(4.23) Sp(x)=S8(x)+O(h") uniformly for xe K,.

Now we consider the mapping A,(x) = P, S,(x) — g, ( P,sS,(x)) where P, P,, are
the projectors from (4.6) and g, determines the stable manifold M of the multi-step
method (see (4.11)). For fixed but small x, € X;, we want to ﬁnd a solution x, € X,, of
the equation

(4.24) An(x,, x,) =0.
Suppose x = (x,, x,,) is a solution, then
Sh(x) = P, Sp(x) + Py Sh(x) = PyuS(x) + gn(PosSu(x)) € M

and hence x is on the stable manifold of the complete method (4.1), (4.14).

Let us apply Theorem 3.2 to (4.24). We take X = X,, Y = Z,,<R™, x0=0 and
use the decomposition A,(x,, x,) = Apx, + E,(x,, x,) with Apx, = P (%, - 5 Xa). We
write x, = U,x;, x,€ R™™ where U =(U,, U,) is compatible with (4 20). Then (4.22)
implies T, (x,,0)=(x,, - - -, x,)+ O(h||x,||) and hence A,,x., = (X, *, %)+ O(h|x.[)
by (4.6). Therefore, we have a uniform bound 6" 2 | A7l, B = ho. As for the Lipschitz
bound on F,,, we estimate for x, € K, , and x., Y. € K, , as follows

(4.25)
1B (5, %) = B (g, Il = 1| G (PucSi(%er ¥4)) = G PasSn (%, %)) |

1 Pl S s %) = S (s Y = (=Y =+ + 5 %u = )1l
Putting S, (x) into (4.14), differentiating with respect to x and using (H4) we find
(4.26) Si(x)=(I,---,I)+O0(h) uniformly for x€ K,.

Hence, the second term in (4.25) may be estimated by (&/6)||x, — y.| for h sufficiently
small.
The first term is more difficult to handle. Let us first choose &,, h, so small that

F,, from (4.8) has a Lipschitz constant (o/4) Min (1, 05/12C?) in Kan‘ for h = h, (see
(4.6), (4.9)). Then by (4.7), (4.10), any two vectors z, w€ K5 < Z,, satisfy

17(z) = y(w)— Ay (2= w, 0)||=20"|| F(y(w)) — Fy(y(2))
+ Fu(y(2) = y(w)) - Fu(A3' (2= w,0)) |l

s 52zl 72 =¥l

+%||7(z) —y(w) = A (2= w, 0}~

Thus _
l7(2) - ¥(w) = Ar*(z = W, 0) o = (05/12C?)| ¥(2) — ¥(W) o
=(3/6CH||Ps(z - W) = (6/6C)|z - wl|
and because of P,,(A;'(z—w, 0))(0) =0 we have
(4.27) 1g8(2) = g (W) = | Pal(¥(2) = ¥ (W) @] = (/6 C)liz = wl.
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Combining this with (4.26) and (4.6), we have a bound (/6)(1+ O(h)) [l = .| for
the first term in (4.25). Summing up, we obtain 8o, ho> 0 such that F,(x,,- ) is Lipschitz
in K 3,, with constant &/2 for all x, € K, h = h,. Finally, A, is umformly Lipschitz
and A,,(O) 0 so that there exists a & > 0 satisfying ||A,(x,, 0) || =§,(6/2) forxe K;,,
h=h,. Theorem 3.2 then assures a unique solution x, = p"(x,)eK; . of (4.24) if
x, € K 3,. For the corresponding element X = (x,, p(x,}) € MS, the stability inequality
(3.7) yields

Ip(x) = p* (%)) =267 | AW (B)]| =267 Il P | (| 55 (£) — S(F)|

+[|S(£) = [y (PreS(E)IO)1) + (|4 (PrsS (X)) — gu PasSs ()|}
and hence by (4.23), (4.27), (4.12)

(4.28) Ip(x,) = p"(x,)| = O(h") uniformly for x, € K 5.
Using (4.26) and (4.23) again, %, = (x,, p"(x,)) satisfies
(4.29) 184 (%) — S(X)]| = O(h").

For nzk we employ (4.12) with y=y(P,,S(%))(0), xo=% as well as x"(nh; i) =
¥(PusSn(%))(n) to obtain

Ix"(nh; %) = %(nh; £)]| = || y(PrSu(%.)) ~ ¥(PrS(£)) |+ O(h").

The uniform Lipschitz boundedness of y together with (4.29) then prdves our assertion.
Remark. Our proof shows that, in addition to Theorem 4.3, the complete multi-step

method (4.1), (4.14) has a stable manifold which approximates that of the differential
equation as in Theorem 3.1.

5. Numerical experiments in the global case. Perhaps the simplest nonlocal situ-
ation occurs if the system (1.1) has two stationary points in (), one stable and one
unstable. We then compute numerically trajectories that start near the unstable point

and converge to the stable point. The one-dimensional model equation for this s1tuat1on
is the logistic equation

x"=x(1-x).

For xy, y,=>0, we set

pn(Xo, yo) = sup |%(nk; xo) — x" (nh; y,)|.

neN

This sup was evaluated numerically by using the explicit formula for # and the fact
that both sequences approach 1 as n > if x,>0 and y,> 0. Since the adapted initial

values are not unique and cannot be evaluated explicitly (see the remark at the end
of § 3) we computed the quantities

en(Xp) = y?ed[%)r,lu P(X0, yo) and On(yo) = xOl\e/I[gl,'ln Pr(Xo, ¥o)

by numerical optimization. We expect O(h")-behaviour for both numbers if (1.3) holds
for 0 =[0, 1]. This is confirmed by Tables 1 and 2 for &, = £,(0.05) and 8, = 5,(0.05).
We have included the values of the standard error o= pn(0.05, 0.05), the estimated

order of convergence
Ep 7
ord (g,)=In (—-—)/In 2
' : Eny2
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TABLE 1
Euler.

h Pn €y ord (Sh) Ah 8 ord (55.)
1 1.82E-1 392E-2 1.04 2.73E-2 4.51E-2 1.22
3 992E-2 1.91E-2 1.07 1.48E -2 1.94E -2 1.10
1 5.12E-2 9.09E-3 1.03 7.81E-3 9.06E -3 1.02
3 2.59E-2 4.44E-3 1.01 4.00E -3 447E-3 1.01
% 1.30E-2 2.20E-3 1.01 2.02E-3 2.22E-3 1.01
& 6.48E—3 1.09E-3 1.02E-3 1.10E-3

TABLE 2

Fourth order Runge-Kutta.

h [ &y ord (&) A, 5, ord (8,)
1 1.35E-3 6.86E—4 4.40 3.8E—-4 7.38E-4 4.48
1 1.09E—4 3.24E-5 4.10 25E-5 331E-5 4.14
1 7.84E—6 1.89E—6 4.03 1.6E—6 1.88E~6 4.06
i 525E—7 1.16E-7 4.04 1.1E-7 1.13E-7 4.01
% 3.40E-8 7.05E—9 4.02 6.6E—9 6.99E—9 4.00
5 2.16E-9 4.36E—10 41E-10 437E-10

and the values A, where the minimum g,(x,) was attained at y, = xp+4,. If x, moves
towards the unstable point 0, then p, increases whereas &, 8, remain almost unchanged.

For instance, at xo,=5E —8, h =3 we have
pn=0.231, ¢,=0444E-2, §,=0.461E~2 for Euler’s method, and
pn=061TE—5, &,=0.115E—6, 8,=0.113E—6 forthe RK-method.

Similar results were obtained for a 3-step Adams Bashforth method with Runge-Kutta
starting procedure.

In fact it is not very difficult to establish relation (1.3) for one-dimensional systems
(1.1) if Q is a finite interval containing only finitely many simple zeros of f. Only the
initial values near unstable points have to be adjusted. Once a trajectory leaves the
neighbourhood of an unstable point, either standard results on finite time intervals or
the stable case of Theorem 3.1 are applicable. For higher-dimensional systems, however,
one is immediately led to impose some structural stability condition on (1.1).

We consider a typical two-dimensional example (cf. [2] for the underlying cell
model)

(5.1) ¥i="2xtxatl=pfa, ), Flx, A)=x(1+x+Ax*)"".

xp=x; =2+ 1 - pf(x2, A),

For ;. = 15 this system shows a hysteresis effect with respect to A. We take, for example,
A =57 and find two stable and one unstable stationary points in the relevant region
0= x,, x,= 1. In contrast to our first example we now have a nontrivial stable manifold
M, for the unstable point which separates the basins of attraction for the two stable
points. Our numerical results are intended to show that the approximation of M, and
of the phase portrait by a one-step method is valid in a more global sense than it was
actually proved in Theorem 3.1. Figure 1 gives a partial phase portrait obtained by
some standard code at high accuracy (we used the Routine DO2BBF from the NAG
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library, distributed by Numerical Algorithms Group, Oxford, United Kingdom), the
stable manifold was found by bisection. The resolution in Fig. 1 is sufficient for our
purposes. Figures 2 and 3 show how the numerical phase portraits for Euler's method
and the fourth order RK-method smooth out as h - 0 (dotted lines are the trajectories
from Fig. 1 whereas solid lines are obtained by linear interpolation of the points from
the one-step method).

The most significant change occurs near the stable manifold M,. We investigated
in more detail the intersection (0, &,) of the numerical stable manifold M " with the
x,-axis. Table 3 gives some values for &,, calculated by a bisection method with
sufficient accuracy. Assuming an asymptotic behaviour &, =&+ Ch"+O(h"™), the
order of convergence was estimated as

ord, =In (—g-'c—é'-&)/ln 2.
Eh/z_ fh/4

The results for ord, are quite satisfactory for Euler’s method whereas, for the RK-
method, the values of ¢, still slightly oscillate around &, for small step size A

TABLE 3
Euler Runge-Kutta
&, ord, & ord,
i 0.316485 1.82
1 0.346402 0.94 0.522539 296
i 0.486529 1.98 0.581050 478
% 0.559677 1.67 0.588582 5.83
& 0.578179 1.21 0.5888568 6.66
& 0.584009 1.08 0.58886163 4.50
o5 0.586527 1.04 0.588861683 3.05
5k 0.587715 0.58886168093
5 0.588293 0.588861680675
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