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1. Introduction

The numerical analysis of the longtime behavior of a dynamical

system

(1) 2=£f(z,2), z€ R™, » € R (a parameter)

usually follows two complementary approaches.

I. Direct methods: Set up and solve defining equations for limit

sets of (1), such as steady states and periodic orbits, determine
their stability characteristics and find singular points with

respect to the parameter.

II. Indirect methods: Integrate (1) numerically for various values

of z(o) and X and analyze the longtime behavior of the numerical

trajectories.

Although there has been considerable success with direct methods
the integration seems to be indispensable in complicated situa-
tions where e.g. global stability properties are of interest or
where direct methods are not available. For the integration ap-
proach it is important to know in which sense the longtime behav-
lor of continuous trajectories is reflected by the numerical tra-
jectories. For simplicity, we will assume the latter to be se-
quences 2" geperated by some one-step method with constant step



size h
(2) 22"V =9 (2",2,h) = 2" + hg(z®,1,h)

It is the purpose of this paper to comment on both approaches in

the case where the system (1) has a homoclinic orbit.

2. A direct method for homoclinic orbits

A homoclinic orbit z{(t), t€ Ris a solution of (1) at some A=A
which satisfies

(3) 2(t) »z_ as t- = and £(z_,)) =0

Homoclinic orbits are typical one parameter phenomena and - as
with Hopf points - they mark the begin and end of branches of
periodic orbits (see [ 5,10] for a theoretical and a numerical
illustration of this fact). We consider the following two-dimen-
sional model example (see [ 8],Ch.6.1)

(4) x=y, y=x-x2+ 2y + axy

Fig. 1 gives the nume- Model example : a=.5
steady,stable

4 [ — — steady,unstable
o——operiodic,stable

rical bifurcation pic-

A O
}

ture for a=0.5 as
abtained with the Code
AUTO by Doedel [ 5].

The periodic orbits
created at the Hopf — —

point A =-a vanish — % - =2 . ‘L1 _‘14
through a homoclinic Lambda
orbit at X =-0.429505
(see [ 8] for the typical Figure 1
changes in the phase

(maximum value of) X

1k

oL g
i

plane near this point). In [ 5] homoclinic orbits are simply com-
puted as periodic orbits with large period, nevertheless it seems



attractive (and probably more efficient) to have a direct method
for homoclinic orbits which make use of the base point z_ and of
the linearization at z_ (see below).

We return to the general system (1) and assume that it has some

smooth branch (z_(}),2) of steady states such that A(X) =
3f
9z
tation of a homoclinic orbit with a base point on this branch

would then require to find A and z(t) (£t € R) satisfying (1) and

(zw(k),k) has no eigenvalues on the imaginary axis. The compu-

(5a) lim z(t) =z_(A), lim z(t) =z_(})

t-c0 to>—
As for periodic orbits we have to add a phase fixing condition
which we take in the simple form

(5b) ¥Tz(0) ~a=0 where ¥€ R"™, a€ R.

For numerical purposes we have to replace the infinite interval
(~w,w) by a finite one, say [-T,T], and we have to replace (5a) by
appropriate boundary conditions at -T,T. For boundary value
problems on semi-infinite intervals there is a well developed
theory of how to do this { 9,11,12] and how to estimate the resul-
ting error. This theory easily carries over to the present case.
Let P()) and Q(A) be the projectors onto the invariant subspaces
of A()) associated with the unstable and stable eigenvalues. Then
we replace (1), (5a,b) by (5b) and

(a) 2=£f(z,2), - T<t<T
(6b) P (1) (z(T) -2 (3)) =0, Q() (2(-T) -2z (1)) =0.

The boundary condition (6b) forces the orbit to leave zm(x) close
to the unstable manifold and to approach it again close to the
stable manifold. There are many more possible choices for (6b),

however (cf.[ 9]).

Finally, by setting y(t) =z(-t) we obtain a two-point boundary
value problem of dimension 2m+1 on [0,T] to which we can apply a



standard code
(7a) 2-f(z,2) =0, y+£(y,A) =0, A=0 (OSt=<T)

P(A(T)) (2 (T) - z_(A(T))) =0, Q(A(T)) (¥(T) =z (A(T))) =0
(7b)
¥¥z2(0) —a=0, z(o) =y(o)

The choice of ¥ and @ is relatively easy if we are following a
branch of periodic solutions with increasing period. If Z(t) is
such a large period solution we could use ¥=2%2'(o), G==WT§(0).
Using the theory from [ 9] we can show the following result.
Suppose that (z(t) (t€ER), 1) is a nondegenerate homoclinic pair,

i.e. it solves (1), (5a,b) and the linearized problem

y-2£E,0y-25E,THu=0, lin y(t) =0, ¥Ty(0) =0
z 3 A
totew
has only the trivial solution (y,p). Then (5b}, (6a,b) has a

unique solution (zT,AT) for T sufficiently large and

Max 1z (t) =z (£)il +1 -2 < CUQ(R)(Z (-T) —2z_ (AN +1IP (X)(z (T} -z (XDII}
FEl<T :

In fact, due to the hyperbolicity of zw(X) the right hand side
decays like exp{(-BT) for some B> O. '

The defining system (7a,b) can be modified in an obvious way for
heteroclinic orbits connecting two hyperbolic points at which the

Jacobian of f has stable subspaces of equal dimension.

Finally, it is interesting to note that in the two-dimensional
case the nondegeneracy of the homoclinic pair (Z,%) is equivalent
to one of the assumptions in the homoclinic bifurcation theorem

([ 81,Th.6.1.1.(2)). Together with trace A(X) # 0 this theorem
ensures that in a one sided neigborhood of X there exists a branch
of periodic orbits which turn into the homoclinic orbit at .

2. Numerical integration of systems with homoclinic orbits

We now consider the asymptotic behavior n- o of a one-step method



(2) if h is small and if A is close to the value i, for which the
system (1) has a homoclinic orbit.

First of all, it is instructive to review the results on (2) if
the system (1), for a fixed X, has a hyperbolic, periodic orbit
z(t) with period T. Apart from some smoothness we assume p-th
order accuracy of the method (2) in the form

i i
(8) £%(z,2,0) =22(z,3,0),i=0,...p
shi aht

where ¢ (z,)2,h) denotes the flow of the system (1) with time step
h. It was shown in [ 1, 2, 4, 6, 71 that, for h sufficiently
small, the one step method (2) has a closed invariant curve

{z, (t) : t € R} where 2z, is T-periodic and satisfies
(9) Max{llz(t) -z, (t)Il: 0 tsT}=0(nP)
(10) @©(zp, (£),2,h) =z (0, (£)) (t€R) where Gh(t)=t+h+0(hp+1)

These results may be generalized to compact branches of hyper-
bolic periodic orbits, but it is clear that the critical value of
h, below which the invariant curve exists, tends to zero if we
approach a Hopf point or a homoclinic point. The situation near a
Hopf bifurcation was successfully analyzed in [ 3J. But - as far
as we know - there is no precise answer to the question, what
happens to the invariant curves of (2) if 2 passes the homoclinic
point.

Fig. 2 shows some numerical experiments with Euler's method for
the model example (4) with h=0.4, a=0.5.
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Figure 2



For A < th; -0.7089493 the points of the iteration starting at
(0.7,0) filled an invariant curve after some time whereas for

A > Xh the sequence became unbounded. It seems that, exactly as
for the continuous system, there is a critical value ‘h at which
we have an "invariant homoclinic curve". From a generic point of
view this is quite surprising (see below) but it has been observed
also for smaller step sizes h and different Runge Kutta methods.
What we can actually prove is the following. Let the branch
(z_(A),1)} from section 1 be the trivial one and let (z,2) be a
nondegenerate homoclinic pair. Moreover, assume (8) and
w(o,2,h) =0 for all » and h as well as

(11) g(z,r,0) = £(z,)) {compare (1) and (2)), gec! (R™xRx[0,1], R™)

Then, for h sufficiently small, the iteration (2} has a discrete
homoclinic pair (zﬁ(nEAZ), Ap)e i.e.

+
(12) zg 1=xp(zﬁ,>\h,h) {n€gZ) and zg—»o as n-atoo,\l’T zg—a=0.

Moreover, we have the estimate
sup{llz} - Z(nh) ll: n€ 2} + A, - X} =0(hP) .

The following table shows a few values of Ah for our model example
(Euler's method) which were obtained by truncating the boundary
conditions in (12) in a way analogous to (6b)and using ¥T=(0, 1),0=0.

h 0.8 0.4 0.2 0.1 0.05

a=20.5
Ap -0.9645 -0.7089 -0.5716 =-0.5010 ~-0.4653

In all cases we found that Xh coincided with the wvalue at which
the invariant curve vanishes.

In the two dimensional case, under our assumptions above, we have
that O is a hyperbolic point of the mapping ¢(-, xh,h). The stable
and unstable manifolds Mz and Mﬁ of this point both contain the
discrete homoclinic orbit so that it is crucial to decide whether

these manifolds (actually curves) intersect transversely or not.



A transverse intersection would exclude the possibility of a
homoclinic curve and would also imply certain chaotic features for
the one-step method (2) (e.g. infinitely many discrete periodic
orbits and horseshoes [ 8]).

In fact, following a suggestion by B. Fiedler during this con-
ference, a transversal intersection was observed after adding an
artificial perturbation to Euler's method for (4) (actually we
added to the first component 10h%+# ((x-1.5)/h) # ((y-3)2) where
# (x) = exp b—1/(1-x)2) for Ixl <1 and 0 otherwise) which did not
disturb the discrete homoclinic orbit and which still satisfies
our smoothness and consistency requirements. Fig. 3 shows the
resulting unstable manifold and the typical oscillation effect
due to the transversal intersection. The picture was produced by
plotting the points of the iteration (2) by starting randomly on
a straight line which was very

h=.4 Lanbda~-.700949271859 a=.5 : EULER

close to the local unstable mani-

fold. Similar observations were

made for smaller step-sizes and

different one-step methods.
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Figure 3

known that the nondegenerate homo-
clinic bifurcation in Iézis stable with respect to autonomous
perturbations. However, nonautonomous perturbations introduce a
third dimension and hence may produce transverse homoclinic points.
For a periodic perturbation, for example, the stable and unstable
manifolds of the stationary point now appear as stable and un-
stable manifolds of a Poincaré map.Hence they may - and in a
generic sense also will - intersect transversely after pertur-
bation (see [13]).
In view of our results above we are therefore led to the following
question. Do standard one-step methods - without any artificial
perturbation - have some intrinsic property which forces them to



act rather as an autonomous than as a nonautonomous perturbation

of the dynamical system itself?
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