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Summary. We show that a one-step method as applied to a dynamical
system with a hyperbolic periodic orbit, exhibits an invariant closed curve
for sufficiently small step size. This invariant curve converges to the peri-
odic orbit with the order of the method and it inherits the stability of the
periodic orbit. The dynamics of the one-step method on the invariant curve
can be described by the rotation number for which we derive an asymptotic
expression. Our results complement those of [2, 3] where one-step methods
were shown to create invariant curves if the dynamical system has a
periodic orbit which is stable in either time direction or if the system
undergoes a Hopf bifurcation.

Subject Classifications: AMS(MOS) 65L05, 58F08, 58F22; CR: G1.7.

1. Introduction

We are interested in the longtime behaviour of one-step methods with constant
step size h

(1.1) x(t+h)y=x()+hf,(x(2), t=0,h,...
if applied to an autonomous system
(1.2) x'=f(x), x{0)=x,eR™

Since standard estimates of discrete and continuous trajectories yield error
bounds which grow exponentially with time it is an important question if and
in what sense the longtime behaviour of (1.2) is reflected by the recursion (1.1).
In particular, what happens to the limit sets of (1.2) under discretization?

The case of stable stationary points is contained in the analysis of Stetter
[14], Chap. 3.5. In [1] we have shown in which sense the discrete and
continuous trajectories stay close in the neighborhood of hyperbolic stationary
points.
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The general case of a stable attracting set for (1.2) has been discussed by
Kloeden and Lorenz [12]. There it is shown that, under some uniform stability
condition, the one-step method (1.1) has a stable attracting set (not necessarily
unique) which converges in the Hausdorff distance as h—0. However, in this
generality no results on the order of convergence and on the minimality of the
discrete attracting set seem to be possible. If however the continuous attractor
is an asymptotically stable periodic orbit then the result of [3] shows that the
discrete attracting set may be taken as an invariant curve.

In this paper we analyze the case where (1.2) has a hyperbolic periodic
orbit of period T, ie, 1 is a simple Floquet multiplier and the only multiplier
on the unit circle (cf. [11], Chap. 5). We show that, for h sufficiently small, the
one-step method (1.1) has a closed invariant curve y,, i.e, (I+hf,) (3)="Vs. Vs
converges to the periodic orbit of (1.2) with the order r of the method.

Moreover, y, may be parametrized as

Ye=1%4(t): teR}

where x,: R —>R™ is T-periodic and the invariance condition may be stated
more precisely as

I +hf) (0 =x,(04(1)),  teR

where o, —I is a T-periodic Lipschitz function satisfying a,(t)=t+h +O(* ). The
asymptotic expression for o, will allow us to draw some conclusions for the
dynamics on the invariant curve (see Sect. 4) by using the theory of rotation
numbers (cf. [8]).

In Sect. 3 we investigate in more detail the case of an asymptotically stable
periodic orbit. Then the invariant curve is stable too [3]. Using our previous
theory we give rather precise estimates between the discrete and continuous
trajectories on an infinite time interval. In particular, the Hausdorff distance of
both trajectories converges to zero as h—0. It seems that one has to resort to
distance measures of this form since the discrete and continuous trajectories
certainly run out of phase after some time. It is an open problem whether a
result of this type is still valid in the general hyperbolic case provided both
trajectories are allowed to have different initial values as in [1].

Finally, we like to note that the existence of invariant closed curves
probably carries over to one-step methods with variable step size - although
we have not gone through all the analytical details. The basic additional
assumption would be that the step size h varies smoothly with the value of x,
Le., the right hand side of (1.1) is given by a mapping x +h(x)f,,(x). The role
of the constant step size is then taken over by the maximal step-size.

Remarks on the Literature

Our work was largely motivated by the results of Brezzi, Fujii and Ushiki [2].
It is shown in [2] that the one-step method (1.1) creates a family of invariant
curves if the system (1.2) passes through a Hopf bifurcation. Under these
circumstances the techniques for Hopf bifurcation of maps are appropriate.
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Later on we learnt of the work of Braun and Hershenov [3] where
mvariant curves for (1.1) were shown to exist close to periodic orbits of (1.2)
which are asymptotically stable in either time direction. The basic technique in
[3] 1s the use of a moving coordinate system (see Hale [9], Chap. 6) which is
also employed in this paper.

After submission of our paper the work of Doan [4] appeared and we were
informed of the forthcoming papers of Eirola [5, 6]. In [4] the existence of
invariant closed curves is shown for multi-step methods although no precise
orders of convergence are given. In the case of one-step methods these orders
of convergence for the invariant curves itself are also contained in [6] and a
relation between discrete periodic orbits and the invariant curve is established
in [5] by a technique different from the use of rotation numbers as in Sect. 4.

2. The Main Result

For some open bounded set Q <IR™ we assume
(P1) feC3(Q).
(P2) The system (1.2) has a hyperbolic closed orbit
y={X(t):05t<T} of period Tin .
Our assumptions on the one-step method are of consistency type:
(P3) f,—f and f/—f uniformly in Q as h—0,
£, is Lipschitz in € uniformly in A
(P4) for some positive constants C, h,, r
sup {[|(%(h; xo) = xo)/h ~fy(xo)ll: xo€R} S if h<h,,.

Throughout we will denote the solution of (1.2) by X(; x,). Our principal result
is

Theorem 2.1. Let (P1)-(P4) hold. Then there exists an hy>0 and an open
neighborhood U of y such that the one-step method (1.1) has an invariant closed
curve y,cU for all h<h,. More precisely, there exist T-periodic functions
x,: R-U, 6,—1: R->R for h<h,, which are uniformly Lipschitz and satisfy

PRy (I+hf) %, () =%,(0,()), tcR.

(2.2) o,)=t+h+O0MR*")  uniformly for teR.

The curves y,={X,(t): 0<t<T} converge to y in a Lipschitz norm, in particular
(2.3) Max {||x(¢) —X,(t)| : teR} = O(K).

(24)  sup{l(x—%)(t,) — (X=X ) )l/lt, —t3}: t;%2,} 20 as h—0.
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Remark. Our proof will show that, if (P4) is omitted, then our assertions are
still valid with O(h"), O(h"*?) replaced by o(1), o(h). We will also see that y, is
unique within the class of those closed curves which admit a T-periodic
parametrization close to X in the Lipschitz norm.

The proof of Theorem 2.1 needs some preparations. By R*/, resp. C*' we
denote the space of real, resp. complex kxI[-matrices. Further, we set K,
={xeR™ !: | x| <&} for some norm on R™~*.

We make constant use of the one dimensional manifold §;:=R/T-Z and
of the calculus on manifolds (e.g., [11], Appendix). The distance of two equiva-
lence classes §;,=[t;]eS,, i=1, 2 is given by

(2.5) 16, —0,|=Min {[t, —t, +nT|: neZ}.

We will also frequently identify functions defined on the sphere S; with 7~
periodic functions defined on RR.

Let us first briefly summarize the technique of a moving orthonormal
system along y from [9] and the corresponding transformation of the system
(1.2). Because of (P1) and (P2) there exists a ZeC3*(S,, R™"~’) such that
(X (0)/IIX'(0)], Z(0)) is orthogonal for all #€S... Then, for ¢ sufficiently small, the

mapping
I':S;xK,-»U, TI6,w=X0)+Z(O)w

is a C3-diffeomorphism onto some open tubular neighborhood U of y. The
transformation x=rI(y), y=(6, w) puts (1.2) into the form

Y= f(=:80), geC*SpxK,, S;xR"™)
In (6, w)-coordinates this may be written as
(2.6) O=1+f,(0,w), w=A(B)w+f,(0,w)
where f, e C*(S, xK,, S;), £, C3(S; x K, R™~ 1), f,(6,0)=0,

of,

f2(9’0)=09 6w

(0,0)=0 and A(6)=Z(0)"(f"(X(6)) Z(0) ~Z'(6).
Let ¥(¢; y) denote the solution of ' =g(y) with 5(0; y)=y. Further, we set
— oy — — _ X

Y(t; y)=% ) Y=Y 0, X( x)=% %),  X()=X(;X(0)).

Then the relation X(T)=1"(0) Y(T)I"(0)~! holds. Moreover, (2.6) implies the
representation

(2.7) Y(t):((l) 5y((:)) ), teR

where ¢eC*(R,R™" ") and YeC*([R,R™ "™ 1) is the fundamental matrix
given by Y'(1)=A(t) Y(t), Y(0)=I. Hence the eigenvalues of Y(T) are exactly
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the Floquet multipliers of the orbit which are different from 1 (cf. [9],
Chap. 6.2). For Y(r) we have the Floquet representation [9]

(2.8) Y(t)=P(t)exp(tB), tcR
where
(2.9) Pe CZ(ST, Ccr-bm=1)  BeCr-bm-1 Y(T)=exp(TB)

According to the stable and unstable eigenvalues of B we can decompose
C"-! into B-invariant subspaces €"~'=C"~ '@ C"~ . Following [11] (4.37),
there exist norms on €”~! and €7~ ! and an «>0 such that B,:= B|g.-,, B,
=B|Cum_1 satisfy )

(2.10) Max (llexp (¢BJl, fexp(—tB,) ) sexp(—a7) V20

The norm on €"°' is given by |z]|=Max(|zl,lzl) where =z
=(z,,z,)eC" '@ Cr- 1
We use the following notation for functions we C(S,, R™~!) throughout

w(O)=P(O)~tw(d), 6eSy,|w|, =Max{[|%(0)]:OeS,}.

The parametrization of the invariant curve within the moving orthonormal
system will be found in the following class of functions

(2.11) Wie, L)={we C(Sz, R™ 1): jw| , L&, [W(0,) —W(D,)]
<L|6,—0,| V6,,0,65.}

¢ and L will be taken sufficiently small during the proof while ¢<1 and L=1 is
assumed throughout. The term P(6)~' in (2.11) is suggested by the final
transformation for the w-equation from (2.6) ([9], Chap. 6.2). We note that
Wi(e, L) is closed with respect to || ||, and that it is sufficient to require the
Lipschitz condition in (2.11) for |0, —0,|<b and for some b>0.

For h and ¢ sufficiently small we can define the transformed discrete flow
b

g E, 0, )=I""(I1+hf)T'(6,u), 6eS,, uek,

as well as the transformed continuous flow with time step h by
F6,wy=Ir""%h;I'0,u), 0S;, uek,.

To any element we W(e, L) we associate the functions

(2.12) (6,(0), u, () =E, (0, w(®), 0€S;.
Then I'(6, w()) is an invariant closed curve for the one-step method if
(2.13) w(o, (@) =u,(0) VOeS,.

This is the equation we want to solve for w.
Some important properties of the mappings E,, F, are summarized in the

following lemma.
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Lemma 2.2. The following asymptotic relations hold uniformly for 6eSy, ueK,:

(2.14) E, (0, 4)= F,(6, )+ O(* 1) =(0+k, u)+ O (h(e+H))
, (1 O(h)
(2.15) EL(0, )= (0 YO+ Y(H)_1)+O(he)+o(h).

E, is uniformly Lipschitz in Sz x K.

Remark. Some caution has to be taken with the expression Y(0+hY(6)™'
since Y(t) is not a T-periodic function but Y(t+h) Y(£)~! is.

Proof. The first equality in (2.14) follows immediately from (P4). Then we note
that F;(0, u)=Y(h; (0, u)} and that

Y(h;(0,0)=Y(h+0)Y()~*' 0OeS,

follows from the differential equation for Y. Using (2.7) we obtain

1 O(h) )
F, = '
A(0,0) (0 YO+h) Y(©) 1) 0eS ;
Y —
Now —— (0; (6, u))=0 holds for all feSy, ueK,. Since Y is of class C? this
implies
(2.16) Y(h; (6, w)=Y(h; (6,0))+0(he) for OeSy, uek,.

In particular, F,(6, yy=I+0(h) and thus F, (@, u)=F,(6, 0)+(0, u) + O(h¢) which
proves (2.14). By (P3) we have

X(h;x)=X(0;x)+h % (0; x)+ O(h*y=1+hf, (x)+o(h).

Differentiating E, (6, u) and using (2.14) then shows
E,(6,u)=T"(E,(0,w)~ ' X (h; ['(6,w) I" (6, u)+ o(h)=F,; (8, u)+ o(h)

so that (2.15) is a consequence of (2.16). Finally, the uniform Lipschitz bound
for E, follows from the uniform Lipschitz bound for f,. [

Next we discuss the asymptotic and Lipschitz properties of the functions
o, u, defined by (2.12).

Lemma 2.3. For all functions we W(e, L} we have

(2.17) (0,(0), u, (0)=(0+h, w(B)+O(he)+o(h), 0O€S,
and for 0,,8,€S, with |0, —0,|<he

(2.18) 0,(0,)—0,(0,)=0,—0,+(O(h(e+L))+o(h)|6,—0,|,
(2.19) u,(0)—u,(0,)=P(6,+h) exp (hB)(W(0,) —W(6,))

+(P(6,) —P(0,)) w(6,) +(O(he) +o(h)) |6, —b,].
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Proof. (2.17) follows directly from Lemma 2.2. Since E, is uniformly Lipschitz
and w is Lipschitz bounded we obtain the following relation from (2.15) for |6,
—8,|<he.
(0,(61), 1,,(01)) —(7,,(0,), ,,(6,)
=(E}(6,, w(0,))+0(he))(0, —0,, w(,) —w(0,))

(1 o) 0,0,
"{(0 Y(6, +h) Vo) +"(h)+0(h6)} (@) i)

This proves (2.18). With regard to (2.19), we note in addition that
Y(0,+h) Y(0,)~ ' =I+0(h) implies
Y(0,+h) Y(0,)~ ' (w(0,) —w(0;))=Y(0,+h) Y(0,)" P(0,)(W(0,) —W(0,))
+(P(8,) —P(0,) w(0,)+O(he) [0, —0,
and Y(8,+h) Y(0,)~ ' P(8,)=P(8,+h) exp (hB) by the Floquet formula (2.8).
O

Similar to [10], Chap. 3.1 we use (2.18) and the following lemma to con-
clude that ¢ ,: S; — S is bilipschitz.

Lemma 2.4. Let the mapping o: S; — S, satisfy for some 0Sa <1
(2.20) l6(6,)—0o(6,)—(8,—0)|=al0, -0, V0, 0,&S,.
Then o is invertible and for all 8,,0,€S8
lo=1(8,) =~ (O =(1 )~ "6, —0,],
6= 1(0,) =0~ (0,) ~(0, — )| Sa(l—0)~ 10, —6,].
Proof. By (2.20) the mapping 0 —6—0a(0)+0, is a metric contraction for each
6,€S5,. Hence ¢ is invertible and (2.20) yields
10, —6,121671(0)—a"(0)))
o [ AR C2) B G (79 R Ca CAY R ()]
2(1-w)|o™'(6;) -0~ '(6,)l
as well as
lo=2(8,)—0~1(0,)— (8, —0)ISalo™1(0,)— 071 (0,)]
<a(l—-2)~110, -0, O

By Lemma 2.3 and Lemma 2.4 we see that ¢, ! exists for all weW(e, L) and
h sufficiently small and that it satisfies the following estimates

(2.21) loZ1(0,)~a;(6,)]
S(1+0MmE+L)+oh)l0,—0,] V8,,0,e5,,
(2.22) loy, *(0,)—a, {8,)—(6, —0))]

Z(O(h(e+L)+oh)|0,~0,] V0,,0,€Sy,
(2.23) o (0)=0—h+0(he)+o(h), OcS;.
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We may now write (2.13) as a fixed point equation for the operator @, defined
by

(2.24) 0, w(O)=u,(c31(0), 0eS;, weWl(, L).

This operator has the following properties.

Lemma 2.5. For all w,veW(e, L) and all 6,0,,0,€S; with |6, —0,|<he we have

(2.25) 0, w(0,)—0,w(0,) =exp (hB)(W(o; '(8,) —P(a, *(6,))
+(O(he)+o(h) |0, —0,|,

(2.26) 0, w(0) — 0, v(0)=exp (hB)(W(a, ' (6) —Blo; 1 (B)))
+(Oth(e+ L) +o(h) lv—w| .,

(2.27) 0, w(0)=w(o 1(0) + O(he)+o(h).

Proof. (2.27) is obvious from (2.17). Further, (2.19) shows

0, w(0,) 0, w(0,)=P(6,)(P(8,)— P(8,) 0, w(0))
“"P(Oz)_l P(U; 1(92)+h) eXp (hB)("NV(U; 1(91)) —w(o, 1(92)))
+P(0,)" 1 (P(a; 1(0,) — Play 1(0,)) wlay, 1(8,)+ (O (he) + o(h) 6, -6, .

This expression leads to (2.25) if we use (2.27) and the following implications of
(2.22), (2.23):

P(U;1(91))"P(U;1(92))=P(91)“‘P(62)+0(h)|91 —0,l,
P(o, (0)+h)=P(0,)+0(he)+a(h), P(o,'(0,) ' =P(6,)~"+0(h).

For the proof of (2.26) we first note that Lemma 2.2 together with (2.8)
yields ¢ ,(0)—0,(0)=0(h) |w(0) —v(6)| and

u, (0) —u (0)=(P(6 + h) exp (hB)+ o(h) + O (he)}(W(8) —5(0)).
In particular, we have
(2.28) 16,(6)~0,(O)|=0(h) |w—v],, 6eS;
and hence | '(0)—a; ' (6)|=O0(h) |w—v| , by (2.21). Sumfning up we find

0, w(0) 0, 0(0)=P(O) *(u, (0 (0) —u, (07 ()
+P(O) u, (6] 1 (0) —u (07 (O =(O(h(e+ L) +o(h) |w—0| .
+P(0)~" P(a; 1 (6) + k) exp (hB)(W(o; *(8)) —(a; (O)))

and finally (2.23) proves our assertion. []

Our final conclusion from Lemma 2.2 is

(2.29) (4(0), u(0)=F,(6, 0)+ O(W* 1) =(0+h, 0)+O (k")
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which implies

(2.30) 12wl =0 1).

We will now complete the proof of Theorem 2.1 if y is orbitally stable. This
is equivalent to the stability of B, ie, €' !'=C™~! and B,=B. From Lemma
2.5 and (2.10), (2.21) we obtain

(231) 10, w(0,)—0, w8,
§(Le*“"(l +O0(h(e+L))+o(h)+0(he)+o(h) |6, —0,)

for weW(e, L), |0, —0,|<he and
(2.32) 1Quw =0, vl S(e™ " +O0(h(e+ L) +o(h) |w—vll,

for w, veWl(e, L), BeS,. A careful inspection of these estimates together with
(2.30) shows that there exist L,, &,, h,>0 with the following property: for any
Le(0, L,] and any ¢,€(0, g,] we find e=¢(L, ,)€(0, ¢,], h=h(L, £,)€(0, h,] such
that Q, is a contraction on W(g, L) with constant 1—oh/2 for all h<h(L, ¢,).
We may also assume &(L,, £5)=¢,, h(Ly, £g)=h,. In particular, Q,, h<h,, has
a unique fixed point w, in W(g,, L,).

Moreover, for any two functions w, ve W(g,, L,) we have the stability in-
equality

2
(2.33) IIU—Wllwéa— =@ v—U-0ywll, VhZh,.
Setting v=0, w=w, in (2.33) yields {|w,||, =0(h"). This proves (2.3) for the

invariant curve X,(0)=1I(0, w,(0)), 0S;. As we saw above, for any ¢, L small
we have w,eW(e, L) if h is small, thus (2.4) holds. Finally, by (2.28) and (2.29)

we find
l05,(0)—(0+ )| <oy, () —ao (D) + O =0 1)

In this way we obtain (2.1), (2.2) if we take g, to be the lift of o, from S, to R

(see [11], Chap. 2 for this notion).
In the general case of a hyperbolic orbit, we have to modify the operator

Q, appropriately. We introduce the projectors
o:cm'-»qcr-'Y, [n,=1-0;:C"'-¢y "

These are in fact real operators as may be seen from the construction of B via
Y(T)=exp(TB). Moreover, they satisfy

(2.39) I, exp(tB)y=exp (tB) II,=exp(tB) [1, for ie{s, u}.
Our modified operator is defined for we W(e, L) by
(2.35) R, w(@)=PO)II,PO)~'Q,w(O)+PO I, PO 'K, w(), 0SS,

where

K, w(8)=w(6)+ P(8) exp(~|o,,(6) — 0| B) P(c,,(6))~ ' (w(5,,(6)) — 1t,,(6).
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Let us first show that R, is a real operator. From (2.8) and (2.34) we find
that P(t) IT, ,P()~*=Y(1) I, , Y(t)~ ' is real for all t20.

Moreover, by (2.17) and by the definition of the metric on S; we obtain
that, for h and ¢ sufficiently small, there exist t€[0, T), TeRR such that §={t],
¢, (0)=[1] and |6, (6) —0| =7 —t. But then

P(0) exp(—|0,,(0)— 6| B) P(5,(0) "' =Y (1) Y(r)~

is also a real matrix.
We rewrite the definition (2.35) as

(2.36) IRw=1,0,% II,Rw=I,KWw.

It is easily seen that w is a fixed point of R, if and only if (2.13) holds. Now we
are going to prove the estimates (2.31), (2.32) with R, in place of {,. The
estimates for the stable parts

IR, w(0,)—Ryw(B,) and IR W—R,7)

follow immediately from (2.34), (2.10) and Lemma 2.5.
The second equality of (2.36) may be written as

1, R, w(O)=exp(—|o, (0)—6|B,) I, w(0)
where

W(0)=exp(|.,(6) — 0| B) w(6) + W(a,,(6)) — 0, W(o,,(0) = Ofe)

for 0eS . For 6, 8,8, satisfying |#, —0,| <he we obtain from Lemma2.3 and
(2.10)
11, (R, (0,) — R, WO NI < Clo, (8;) — 6, —(0,,(8,) = 0,)] | 1T, w(0,)
+exp(—ualo,(0,) —0,) [ IT,(#(0,) —W(@))
<O(he)|0, —0,]+exp(—ah/2) [W(6,) —W(0,)].

The last term can be estimated by Lemma 2.3 and 2.5

1W(0,) ~w(B)ll = Cla,(0,) —8, —(0,,(6,) —0,) [W(0,)]
+|(exp(|0,,(6,) —8,| B) —exp (RB))(W(6,) —W(0,)}
+[W(o,,(6,)) —¥(0,,(0,))] +(O(he)+0(h) [0, -0,

<{L(1+O(h(e+L))+o(h)+O(he)+o(h)} 6, —0,|.

Similarly, for any two functions w, ve W(g, L) we get from Lemma 2.3, 2.5
and (2.28)

| IT,(R, w(0) — R, 5(0))| £O(he) [w—v], +exp (—ah/2)[|W(6) —H(6)

and finally [[W(8) —6(8)]| =(1 +O(h(e+ L) +o(h) lw—v] ..
We also notice that |R,(0)|,=0(h"*") is satisfied because of (2.29). Then
the existence of a closed invariant curve as well as the specific estimates (2.2) to

(2.4) follow in the same way as in the stable case. This completes the proof of
Theorem 2.1.
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3. The Stable Case

In the case of a stable periodic orbit y, we can, in addition to Theorem 2.1,
discuss the behaviour of the discrete trajectories near the invariant curve y,.
For x in a neighbourhood of y we use the following notations:

X(nh; x)=(I +hf)(x),  wu(x)={x"(nh; x): n20}
w(x)={x(t; x): t 20}.

Moreover, we use the Hausdorff distance of two sets 4 and B given by

d(A, B)=Max (sup dist (x, B), sup dist(y, A)).
xed

yeB

Theorem 3.1. Let the assumptions of Theorem 2.1 hold and let y be (orbitally)
stable. Then there exist hy, a, f, C, p=>0 such that for h<h, and dist(x,y,)<p
the following holds

(3.1 dist(x*(nh; x), y,) < C exp(—anh) dist(x,y,), n=0.
(3.2) dist (x*(nh; x), w(x))

S C(h"+Min(h" exp(Bnh), exp(—anh))), nz=0.
Moreover, for any 6 >0 there exist p(d), h(6)>0 such that
3.3) sup dist (x*(nh; x), w(x))

nz0

<CR=?  for h<h(3), dist(x, 7)< p(d).
Finally, we have uniformly for dist(x, p))<p
G4 d(w,(x), o(x))=0 as h-0.

Remarks. (3.1) implies the stability of the invariant curve and this result is due
to [3]. The more detailed estimate (3.2) shows the approximation of the
continuous trajectories by the numerical trajectories, in particular the tran-
sition from the classical estimates for moderate nh to the asymptotic case
nh—o0. We also notice that we cannot expect any order of convergence for the
Hausdorff-distance d{(w,(x), w(x)), even if w(x) is restricted to the times ¢t =nh,
nelN. The reason for this is that w,(x) may or may not fill the invariant curve
depending on the dynamics on the curve (cf. Sect. 4).

Proof. Our first observation is an inequality
(33)  C,llu—w,(O)] Sdist(I(0, u), p) S C, lu—w,(@),  0€S,, uek,

for sufficiently small . The upper estimate is obvious whereas the lower one
follows from the Lipschitz property of w,. For all £€S; we have

170, u) =I'(&, wy(E)| Z C Max (10 — &, J|lu —w, (D)
2 CMax (10 =&l |lu—wy (O} —Lol0~ENZ C(1+Lo) ™" |u—#,(0)].
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From the proof of Theorem 2.1 we know w,eW(g,, L,) for hsh, and
w,eW(ey, Lo/2) for h<h,. For a given x,=TI'(0,,u,)eU we then find that the
function wq(8)=w,(8)+uy,—w,(6,) is in W(e,, L,) for h and g —W,(0,)l sui-
ficiently small. Hence, for some >0

(3.6) 105 wo —Wyll, Sexp(—ahn) [wo—w,l,,  VneN.
Writing (8, u,)=I""' x"(nh; x,) and using (3.6) we obtain

|xHnh; x0) = % () = [T (0, 1) = T (8,,, BB £ C [, —#,(6,)]
S Cexp(—ahn)llug—w,(6)l

which by (3.5) gives the stability of y,.

Let p denote a Lipschitz constant for f in some neighborhood U of y. Then
the estimate (3.2) follows immediately from (3.1), (2.3) and the standard es-
timates of the error x*(nk; x) —x(nk; x). Evaluating the maximum of the right
hand side of (3.2) we get an order ro/(a+ ) of convergence. This will be
sufficient for (3.3) if § could be chosen arbitrarily small on small neigh-
borhoods of y,. For a result of this type we need the following more subtle
analysis.

For any two sequences v,, w,€ W(e,, Ly) and h=<h, we have

||Un+1 _Wn+1||co é(l _ah) ”Un—‘wnnco—*" ”(vn—t-l —thn)_(wn+1 _Qhwnmoo

and hence by the discrete Gronwall Lemma [7], Chap. 1.3

3.7 [0, =W,ll  Sexp(—anh}i|lvg —wql
+(ah)~! y%xl v, 41— Qpv;— W1 —Q, Wil -

For functions weW(g,, L,) we define (cf. (2.12), (2.24))
(1,.(0), () =F,(0, w(0), G,w(®)=y,(t, " (0).

1, and y, have the same properties as g, u, and moreover, by (221) and
Lemma 2.2, we obtain

(3.8) y,=u,+0H*Y), 1 =0,+0h*"), 1, =0, '+0H*")

w

For x,=I'(0,, u,)eU we define w, as above and apply (3.7) to the sequences v,
=Ghwg, w,=07w,. By (3.8) we find

10, =Wl S @)~ sup [ly,,o75 " —u,, 007 = OH).

jgn—1

Further, we introduce the functions ,(0), ¢,(0), 6S; given by

T, =Ty, ,°Ty_1s %=1, ©6,=0, 00, ;,0,=1I

Un—1 n— n Wan—

Then we have
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1%(nh; xo) —x"(nh; x,)|
= [I'(z,(00), v,(7,(8o))) —T'(0,(0,), w,(5,(0x))l
= Clt,(05) —0,(0o)| + O ().
By (3.8) and Lemma 2.3 the first term can be estimated as follows
17,(0) = (O (1 + BR)|7,_ 1 (O) —0,_, (O + O™ ).

Here we have 0<f=0(e+L)+o0(1) provided that v,, w,e W(e, L). Gronwall’s
lemma now implies

It,(0) —0,(6)| < CB~'(exp(Bnh)— 1) ' < Cnh'** exp(Bnh), 0eS,.

Collecting terms, we find that the right hand side of (3.2) can be replaced
by
e(B, h, n)=C(h +Min(nh"* ' exp(Bnh), exp(—anh)).

It is ecasily seen that e(f,h,n)<Ch % for all nelN if B<éx/2r) and
[Inh|h%? r<a. Our previous proof shows that these conditions can be met by

taking h and dist (x,, ;) sufficiently small.

Finally, we consider b(t)=dist (X(¢; x), w,(x)), t 20, xeU. Let n>0 be given,
then we may choose t,>0 such that dist(X(¢; x), y)<n for all t2¢,, xeU. By
the classical theory we have Max {b(1); 0=t =t,} <n for all xeU and h suf-
ficiently small. For times t=t,, by (2.3) and (3.1), there exist NeIN and ¢,,¢,20

such that 0 <r, <t,<t;+ T and
1%(2; %) =%, (eI <20, [ X"(Nh; x) =%, (t,) | <.
We choose keN with |t; +kh—t,]|<h and obtain from (2.1)

[X"((N + k) h; X} =%, (¢ ) SN+ XN R x) — (T + 1) %, (2))]
+ (1 X, (a4 (2,)) =%, ()]

This leads to our assertion (3.4) since k< T/h and
okt )=t,+kh+0O(H" by (22). O
For an illustration of Theorem 3.1 we consider the model example [2, 9]
(3.9) xXy= =X, +x,(1—7?), xp=x,+x,(1—-r?), ri=xi+x3.
In polar coordinates this system has the form
=1, r=r(l-r?.

This system has a stable periodic orbit given by the circle r=1. By an easy
computation one finds that Euler’s method applied to (3.9) has a stable in-
variant circle of radius r,=(1+(1 —(1 =A% 3)/h)"2=1+0(h) for h=1 (see [2]
and note that we are outside the chaotic region discussed in [2]). By Theorem
2.1 any Runge Kutta method of order r for the system (3.9) has invariant
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curves for sufficiently small . An additional reasoning shows that these are in
fact circles of radius

r,=1+0(n").

For the initial value x,=(0.5, 0), Fig. 1 shows the longtime behaviour of the
error

ey (n b, xo) = | x"(nh; x)) =X(nh; xo)ll,  h=4, % 76

for Euler’s method. Clearly, the two solutions run out of phase. From the
calculations we find that this happens at times which are roughly proportional
to h—2 From then on there is a fixed phase shift at each revolution of the
trajectories which leads to the oscillations in Fig. 1.

For moderate times the behaviour of e, is shown in Fig. 2 together with the
distance

e,(n, b, xo)=dist (x*(nh; x,), y)=||x"(nh; x Il — 1].

The minimum e,=Min(e,, e;) should be a rather precise upper estimate of
dist (x*(nh; x,), w(x,)) (see (3.2)). Figure 2 also shows how e, changs if x,
moves towards the unstable origin. In order to test (3.3) we evaluated

e (h, xo)=sup {e;(n, h, x,): n=0}

and estimated the order of convergence by

ord, =In(e,(h, x,)/e,(h/2, x,))/In (2).

The results are displayed in Table 1 for x,=(0.5,0) and in Table? for x,
=(0.005, 0). The latter value is certainly well out of the neighborhood of the
periodic orbit in which Theorem 3.1 is valid. Correspondingly, the errors

e (h, x,) are larger and it takes smaller step sizes to observe the expected
orders of convergence.

h=1/4

/ h=1/8 h=1/16

0 1000 2000 3000 4000
Time

Fig. 1. Error e, for Euler’s method, h=1,1, &
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Fig. 2. Errors e,, e, for Euler’s method, h=+5, x,=(5- 107/, 0)

Table 1. x, =(0.5, 0)

107

1072

1073

107

1073

Jed by U1

sl Loa el

St gagnl

gl

L

0

5
Time

10

h Euler Runge Kutta fourth order
eq(h, Xo) ord, e,(h, xo) ord,

1 0.414 1.7 0.334 E-1 3.74

3 0.127 0.32 0.250 E-2 4.12

i 0.102 0.46 0.144 E-3 3.77

3 0.0741 0.80 0.105 E-4 3.76

= 0.0427 093 0.780 E-6 3.77

3 0.0225 0.574 E-7

Table 2. x, =(0.005, 0)

h Euler Runge Kutta fourth order
eq(h, xg) ord, e, (h, x;) ord,

1 0.723 0.44 0.349 E-1 2.80

3 0.534 0.22 0.502 E-2 3.52

i 0.458 0.40 0437 E-3 374

L 0.348 0.60 0.326 E-4 3.87

T3 0.230 0.77 0.222 E-5 3.94

5 0.135 0.145 E-6
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For the general case of a hyperbolic orbit we have no approximation result
on the continuous and discrete trajectories as in Theorem 3.1. It is clear that
the estimate (3.3) does not hold in this case because x may lie on the stable
manifold of y but not of y,. In view of the results for trajectorics near
stationary hyperbolic points [1] we make the following conjecture. Forany x,
in a neighborhood U of y there exists a proper discrete initial value y,
=y,o(h, xo)eU and vice versa such that

sup {dist (x"(nh; y,), @(x,)): x"(jh, yo)eU for j=0,...,n} < Ch"

for some 0<p<r and w(xy)={X(t; x0): X([0, t]; xx) = U}
In some sense this specifies our intuition that a numerical phase portrait
near a hyperbolic periodic orbit is at least graphically correct.

4. The Dynamics on the Invariant Curve

The results of Sect. 2 also provide some information on the behaviour of the
one-step method on the invariant curve y,. Instead of (P3) we make the
slightly stronger assumption

(P3*) o@(h, x)=f,(x) if h>0 and ¢(0, x)=f(x) for some function
e C2([0, hy] x @, R™).

A careful inspection of the proof of Theorem 2.1 then shows that R,w from
(2.35) depends continuously on (h, w)e[0, h,] x W(e, L). Moreover, the oper-
ators R,, h,;/2<h<h, are uniform contractions with constant 1—ah,/2 for
every small h,. By the contraction mapping theorem with parameters [11],
Appendix we find that the parametrization X, of the invariant curve as well as
o, depend continuously on h.

Now, the homeomorphism

8,8, (0)=05,0T)/T

is Lipschitz and order preserving by Theorem 2.1 and its rotation number p,
depends continuously on & (cf. [8], Chap. 6.2). Since o, is the lift of o5, and
satisfies (2.2) we find for the lift 7, of 7,

h
(4.1) %mp4+?+ow”w, teR.

We may now use Lemma 3 of [10], Chap. II1.3 to conclude

h
(4.2) m=?+mW“)

We make p, a continuous function for he[0, hy] by setting p,=0 which is in
accordance with Ry=1 in (2.35). Then the intermediate value theorem shows

that any rational or irrational rotation number in (0, p, ] is posible for
suitable he(0, h,).
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Theorem 4.1. Let (P3*) and the assumptions of Theorem 2.1 hold. Then the
rotation number p, of the one-step function I-+hf, with respect to the invariant
curve y, is a continuous function of he[O0, h,] and satisfies (4.2). In particular,
there exists NoeN and a sequence hy, N =N, such that 1+hy f, has an orbit

(x¥=x, (M):i=1, ..., N}

of period N on y, . The following asymptotic relations hold

_T ry*! N _ N (; T Ty i —
(4.3) hN—N+0((N) ) ti—tl—i—(z—l)I—V——FO((]—v—)), z-l,...,N.‘

. . 1 .
Proof. We define hy as a solution of v It is well known [8] that 7,

then has an orbit sY,..., sy of period N in §,. With t¥=s"T we obtain the
orbit x¥=x, (¢}, i=1,..., N for I+hyf, . The first relation of (4.3) follows
immediately from (4.2) whereas the second is a consequence of the first and
(4.1). The formula for ¢ also implies that N is in fact the minimal period of
the discrete orbit. [

As an example we consider a simple model for a food chain [13].
(44) X1 =R(1 —x()—x, fi(x(), X;=—Rx,+x; fi(x)—(1—x; —x,) f5(x,)

where f(x)=x/(a;+b;x), i=1, 2. For a large set of parameter values a,, b;>0, i
=1, 2 this system shows a Hopf bifurcation with respect to R. We took the
values

a,=0.1, b,=1, a,=05  b,=05 R=03

at which (4.4) has a stable periodic orbit of period T=16.7.

Figure 3 shows the invariant curves for Euler’s method with step size h
=04, 0.1, 0.01. These were obtained by starting at x,=0.5, x,=0.1 and
plotting the points of the iteration after a ‘dark phase’ of length 500. After
some time these points filled a continuous curve depending on the resolution
of the graphics device. This indicates that, for the step sizes chosen, the
rotation number was sufficiently irrational.

Figure 4a-e show the faith of these invariant curves for increasing step size.
First the invariant curve starts to oscillate, then various finite orbits are
observed and at about h=0.8 a strange attracting set appears which is shown
in Fig. 4e for h=0.85. In view of the period given above we are certainly far
from the asymptotic behaviour h—0 and find the spurious solution effect as
discussed in [2].

The behaviour of the invariant curves for the standard fourth order Runge
Kutta method is completely different (see Fig. 5). With increasing step size the
invariant curves shrink towards the unstable stationary point which finally
becomes a stable fixed point for the RK-method at about h=3.75.
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Fig. 3. Euler's method: h=04, 0.1, 0.01 (*: stationary points)
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Fig. 5. RK-method fourth order: h=0.5, 3, 3.5, 3.7
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