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ABSTRACT

We consider an autonomous dynamical system discretized by a one-step
method. The point z = 0 is assumed to be fixed under the continuous and
the discrete flows. We allow z = 0 to be non-hyperbolic. The continuous
system has a center-unstable manifold and we show the existence of approx-
imating invariant manifolds for the discretizations. The manifolds for the
continuous and the discrete systems share the property of being locally at-
tracting at an exponential rate; the dynamics inside the manifolds can differ

qualitatively, however, for all step-sizes h .

1. INTRODUCTION. Consider an autonomous system

(1.1) dz/dt = f(z), =(t) € R"
discretized by a one-step method
(12) Z541 =~ ¢(zj’h’f)s .7 =0,1...

with uniform step-size & . Under very general conditions individual trajec-
tories of the continuous-time system (1.1) are well approximated by (1.2) if
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382 BEYN AND LORENZ

the time interval of consideration is not too long. However, over long time
intervals the error will, in general, grow exponentially with time and any
accuracy of the approximation will finally be lost. Thus it is a fundamental
question if — and in what sense — the discrete dynamical systems (1.2) ap-
proximate (1.1) in cases where long time phenomena in (1.1) are of interest.
This paper gives a contribution to this question for the case where (1.1) has
a stationary point at 2z = 0 which is not necessarily hyperbolic, i.e. the
matrix f’(0) may have eigenvalues with zero real-part. If 2z =0 is hy-
perbolic, then the dynamics of (1.1) near O is well understood. For this case
Beyn [1] has shown in what sense (1.2) approximates (1.1) as h —0 under
quite general conditions. The case of a non-hyperbolic fixed pointis much
more complicated, however, and indeed our analysis given here is much less

complete; it can only be considered as a starting point.

A fundamental tool used in the theory of dynamical systems is the center
manifold theorem which states — in non-technical terms — that one can ‘split
off’ the influence of the stable and the unstable eigenvalues; more precisely,
(1.1) has a local invariant manifold, a so-called center manifold, tangent to
the sum of the generalized eigenspaces to the eigenvalues with real-part equal
zero. In the directions of stable or unstable eigenspaces the flow of (1.1) is
exponentially attracting or repelling, respectively. Inside the center manifold
the dynamic can be very complicated, however.

The exponential behavior of the flow of (1.1) near the center manifold
makes it plausible that the manifold persists under small perturbations, and
thus one can also expect the existence of approximating manifolds in (1.2)
for small h . It is the aim of this paper to establish such a result. (For
perturbation results of invariant manifolds in the theory of ordinary differ-
ential equations, see Fenichel [3]). We will say nothing, however, about the

comparative dynamics inside the center manifold and its approximations.

The formulation of our result is complicated by the fact that the cen-
ter manifold for (1.1) is usually not unique, ihough all center manifolds are
tangent to each other at z =0 to all orders; see Sijbrand [5] for anenlight-
ening discussion. To keep the technical difficulties of this paper limited we
will actually establish our result for the center-unstable manifolds instead of
the center manifolds. Of course, if f’(0) has no unstable eigenvalues, there
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is no difference. If there are unstable eigenvalues, however, then a treatment
of the center manifolds would require an additional split-off of the unstable
subspace. This could be done using the same techniques as described below.

We now give a more technical outline of the paper. The smooth function

f(2) is assumed to have the form
(1.3) f(z)=Lz+N(2), [N(2)]l=0 (ll=*)

with a linear operator L which has complementary invariant subspaces
X and Y :

L(X)cX, LY)CY, R*=XoY,
(1.4) A:==1L|x, Reo(A) >0,
B:=1Lly, Reo(B)<0.

Thus all eigenvalues of A have nonnegative real-parts. It is known that one

can construct local center-unstable manifolds for (1.1) of the form
(1.5) Metoe = {(z.2()) : 2 € X, [lal] < €} .

Each manifold M, .. is locally invariant under the flow of the differential
equaiton (1.1) and the function u.:X — Y satisfies u.(0) =0, »,(0) =0.
(Indeed, the existence of such manifolds will follow from our results.)

After discussion of the (weak) assumption for the one-step method in
section 2 we describe certain cut-off and scaling processes which we apply to
(1.1) and (1.2). Then the main results are formulated, namely the existence
of the center-unstable manifolds M., for (1.1) and of approximating
invariant manifolds M, 1oc for (1.2). We like to emphasize here that we

do not assume
(1.6 Re A =0 implies |y(kA)| =1

for the growth-function ~ of the one-step method. Thus eigenvalues A of
L = f'(0) with Re A = 0 might lead to stable or unstable eigenvalues
for the discrete dynamical systems (1.2), and consequently M, p 1oc is not
necessarily a center-unstable manifold for (1.2). If one wants to compare the

long time dynamics snside M, o and M ploc » however, it seems advisable
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to insist on the implication (1.6). (The term ‘growth-function’ of a method
will be explained in section 7.)

The existence proof for invariant manifolds is given in section 4 using the
graph transform technique. We investigate the influence of the discretization
parameter h . The existence proof applies to (1.2) and also to the h-flow
of the differential equation (1.1). Due to the semigroup property of the
differential-equation-flow the latter manifolds turn out to be independent of
h . This establishes the existence of the center-unstable manifolds M 1. for
(1.1). Though this result is known we indicate its proof in section 5 for
completeness. Section 6 proves the error estimates as h — 0. Insection 7
we give additional information about the invariant manifolds for the discrete
systems. First it is shown that they are exponentially attracting. This allows
us to sharpen — under special assumptions — a recent result of Kloeden and
Lorenz [4] about uniformly attracting sets A for differential equations and
corresponding sets A(h) of their one-step discretizations.

2. ASSUMPTIONS FOR THE ONE-STEP METHOD
To illustrate the — rather weak — assumptions we use m-stage explicit

Runge-Kutta methods; for these the function ¢(z,h,f) of (1.2) has the
form

(2.) Behof) = 2+ b B kile, b, f)

i=0
with ko(z,h,f) = f(z) and
i-1
ki(2,h, f) = f(z+ R _ Biski(z,h,f)), i=1,...,m.
=0

The numbers B;, B;; are constants defining the specific method. E.g., the
standard fourth order Runge-Kutta method is obtained for

m=3, fo=fs=%, P1=f=1

Bro=PB21 =13, Bsa=1, Bao=Pao=fa1=0.
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We will assume that the function f:R"™ — R™ of (1.1) is globally defined,
for simplicity; also let f € CP%+2 The number p > 1 will denote the order
of the one-step method whereas k& > 0 denotes the number of derivatives
for which convergence of the manifolds will be obtained. We did not try to
minimize smoothness assumptions for f . In the following ¢;, ¢z ete. will
denote positive constants independent of the step-size h, 0 < h < hy . The
step-size hg will not necessarily be the same at different appearances.
To ensure that 2z =0 stays fixed for (1.2) assume

(A0) #(0,h,f) =0 for 0<h < hy if f(0)=0.

Assumption (A0) and also the following two technical assumptions are easily
seen to be fulfilled for all methods (2.1).
(A1) Given ¢; there exists ¢ and hg > 0 such that

ap+1+]a|

anrtigge Pz k, f)

exists for |a| < k+ 1, |z]] < e1, 0 < h < ko, is continuous at these

arguments and can be estimated by

c2{1+sup{

(A2) The value ¢(z,h,f) only depends on f-values in an O(h)-
neighborhood of z . More precisely, given ¢; there exist ¢z and ho such
that

olel

T el s pr k2, el <20} )

#(2,h, f) = #(2,h,9), O<h<ho,

whenever ||z|| < ¢, and

f(¢) =g(¢) for [lz—¢|l < e2h.

With ®(z,t,f) we denote the flow of (1.1); i.e. the solution of (1.1)
subject to the initial condition 2(0) = zo is

z(t) = ®(20,t, f), [t] < to(z0) -
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The usual formulation of p-th order accuracy of the method (1.2) is
l¢(2,k, £) = (2, b, ) = O(RPTT) .

Under our smoothness assumptions this is equivalent to

o a

(A3) ki ¢(z’03 f) = ahgé(‘z!oa f)
for1=0,...,p andallz€ R" .

As is well known, fulfillment of (A3) for the methods (2.1) depends on

the specific choice of the constants f;, B;; . For example, the standard
Runge-Kutta method fulfills (A3) with p=4.

A final assumption, which will simplify an argument below, is invariance
of the one-step method with respect to scalings of f :

(A4) If € #0 and f(2) = 1f(e2), € R™, then (3, h, f) = Lé(c5, b, f) -
To see that (A4) is fulfilled for all methods (2.1) first note

ko(3,h, /) = f(2) = % f(e3) = }e-ko(eé,h, f) .

Then proceed inductively:

i—1
ki(é, h, f) = f(é +h2ﬁi.1'k.‘i(§’hv f))

J=0

t-1
= F(z+ 823 Biskiles, b, )
i=0

1 ) i—1 .
= -E-f(ez + h Z ﬂg'jkj(fzi h’ f))
5=0

- -i—k,-(eé, hf) .

Thus (A4) follows from (2.1).

For other classes of methods, like implicit Runge-Kutta methods, for
example, the assumptions (AQ) to (A4) are also easily established.
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3. ESTIMATES FOR FLOWS AND FORMULATION OF THE MAIN
RESULTS.

In this section we describe certain cut-off and scaling processes applied
to (1.1), (1.2) and show two technical lemmata about the modified flows.
A global existence and convergence result for invariant manifolds will be
proved in sections 4 and 6 for the modified flows; reinterpretation in terms
of the original systems (1.1), (1.2) leads to local results which we formulate in
Theorems 3.8, 3.9 and 3.10. We always assume (1.3), (1.4) for the differential
equation and conditions (AO) to (A4) for the one-step method. The following

lemma is a consequence of (1.4):

Lemma 3.1 1. There exists 0 < <1 and anorm || ||y on Y such that

(eBly <1—Bhfor 0<h<ho.

2. Given N; > 0 there exists a norm || ||x on X such that
—Ah B
lle™#*llx <1+ ~hfor 0<h<ho.
1

The number N; and hence || ||x will be chosen appropriately in the
existence proof of theorem 4.1. The norm for z = (z,y) € R" is always
defined by .
2]l = max{|zl|x, llvllv}

and henceforth we drop the indices X and Y .
Let ¢ : R™ —» R denote a C* cut-off function, t.e.

fo. <1 n
o< v <1, ¥ ={5 fmldsz ER"

We define cut-off systems to {1.1) by
(3.1) dz/dt = Lz + ¢(z/)N(2) =: fe(2), 0<e<1.

The flows ®(z,t,f.) are defined forall ¢. It is convenient to int;roduce the
scaled variables Z = z/e for which the cut-off system (3.1) reads

(3.2) dz/dt = fe(z),' fe(3) = %fe(ei) .
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One easily checks that the flows scale similarly:
S 1 ..
®(2,t,f) = —G-(I)(ez,t,fe) .

The flows for (3.2) have the following property:

Lemma 3.2 There are positive constants C and K independent of 0 <
t<1 and 0<e <1 suchthat

(3.3) 8(3,t, f) = e*3 + p(3,1,¢), € R™
with
(3.4) p(2,t,e) =0 for ||Z| > K,
alel
(3.5) 5-2—ap(z,t, e}l <Ce for 2e R"™, |o)<k+1.

Proof: 1. First note
(3.6) fe(8) = Lz + %rb(E)N (e2) ,

thus f.(2) = L3 for ||3]|>2.

Define
1

©T 0% e

andset K=2/c.If || >K and 0<t <1, then

>0

K <[z <lle™™| le¥2] .
Thus |le£*Z|| > Ke¢ =2, and therefore

B(z,t,f) =ez, |Z|>K, 0<t<1.

This demonstrates (3.4).
2. With r.(2) := 1¢(Z)N(e£) we can write

fe(3) = Lz + r.(3)
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by (3.6). Note that r.(2) = 0 for |[|Z|| > 2. Hence the assumption
IN(2)ll = 0(]2]?) implies

| )
lre(2)]] < '6-0162 =ci1e, 2€R".

To estimate derivatives of r, use Leibniz’ rule and find

(3.1 <cg, ZER", |af<k+1.

’ O (s

3. We now show (3.5) first for « =0 and thus compare
&,(t) = ®(3,t,f.) with ®,(t) = ®(3,t,L) = '3
The difference
6(t) = ®a(t) — ®41(8)
satisfies §(0) =0 and

5'(t) = LQl(t) -+ Te(Ql(t)) - Lég(t)
= L&(t) + re(®1(2)) -

Hence ,
6@l = | / L=y, (B, (s)) ds|

¢
< 026/ e?t=2)ds < caet .
0

This shows (3.5) for a=0.

4. To obtain estimates for derivatives of p(,t,€) = ®(,¢, fc) — e*Z w.r.t.
Z note that the function
alel

olt) = 3=z(E:t,6)

fulfills ¢(0) =0 and

o'(t) = Lo(t) + {re(@(z,t fc))}
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Since f. differs from r. only by a linear function, it follows from (3.7)
that the derivatives of f. are uniformly bounded. As is well known, this
implies uniform boundedness of the corresponding derivatives of the flow
&(3,t,f) wr.t. Z. But then (3.7) shows that the term

aled
35 U
in the equation for o(t) is O(e) . Thus an estimate ||o(t)|| <cet follows
in the same way as the estimate for &(¢) . |
We need similar estimates for the discrete-time flow ®(Z,h, je) of the
one-step method applied to the scaled cut-off systems (3.2).

Lemma 3.3 Let K denote a given constant. There exists another constant
C = C(K) independent of 0 <h < hy and 0 < e <1 such that

(3.8) - &(z,h, fe) = e¥*5 + o(3,h,€), € R"™,
with

alad
(3.9) H — 0(2,h,¢){| < Ch{e+h)

for ||| < 2K, la|<k+1,
alal L
(3.10) ” QS(Z h f€) - (Z,h fﬁ)“ < Chp+
for ||Z| < ZK, Ial <k+1.

Proof: The estimate (3.9) follows immediately from (3.10) and (3.5) since
p=>1 and

o(Z,h,€) = p(2,h,€) + $(3,k, ) — ®(,h, f.) .
To show (3.10) we use Taylor expansion at h =0 to obtain

alal P plaj+i

25 b(Eh, f e)—Z aah,qxs(zo)z) Ry

=0

Slalti
= Z 2 &amd?(z 0, fe) + Ry (by (A3))

3%&!
<I>(z h fe) +R1 R2 .
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R; — R is the difference of the remainder terms, i.e.

R R—— 1— p_a_!a_[iti — @) 5. sh. f.)ds hPH!
1 — &2 ( 3) aahp+1(¢ )(z’s 3fe) S .

It suffices to show that the integfand stays uniformly bounded. For the ®-
part this follows from the differential equation for ® and uniform bounds
for derivatives of fe . (Compare part 4 of the proof of lemma 3.2.) For the
¢-part boundedness follows from assumption (Al). n

It will be convenient to apply an additional cut-off to the discrete flows

by setting

w(z, h,€) = Lh”+¢(z/K)o(z h,€)

(3.11
) =:elhz 4 (2, h,€) .

Here K will denote the constant defined in the proof of lemma 3.2. Since
£ =0 for |Z]| > 2K we have by (3.9)

Alal

(3.12) I35z #(E he)ll < Chle+h)

for 2¢ R", |a|<k+1, 0<h<hy 0<e<Zl.

The h-flow of the differential equation (3.2) is
@(s h,fo) = e“P3 + p(%, hy€)
(3.13) with || P(Z h,e)|| < Ceh
for zelR”, la| <k+1, 0<h<1 0<e<l.

Also, from (3.4) we find

Y(2/K)p(2,h,€) = p(Z, hy€)
and thus the estimate (3.10) implies a global estimate between w and ®:

el |
12wz ko) - o (e Tl < ot

(3.14)
for 2€R”, |a|j<k+1, 0<h<ho, O0<e<l.
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This summarizes the essential estimates for the modified flows.

We now formulate the main results of the paper. Let
(3.15) v ={ieCHYX,Y): 4(0) =0, [la]le+1 <1}
where

e

o
dze

lilless = sup {u @)z X, ol <kt 1} .

Let V denote the closure of V w.r.t. || ||& , thus

V= {fi € C"(X,Y) :4(0) =0, |jills £1,
the k—th derivatives are Lipschitz bounded with constant 1} .

With a contraction argument w.r.t. || ||z in V we show in section 4:

Lemma 3.4 The flows w(Z,h,e) have a globally defined invariant manifold

My = {(Z8en(2) :2€ X} for0O< h<ho, 0<e<¢.

Here i, €V .

The proof of the result relies mainly on the estimate (3.12) for the p-
part of the flow

w(z, h,¢€) = e“*z + u(z, h,€) .

According to (3.13) the result can also be applied to ®(Z, A, fe) . We show

in section 5 that the corresponding manifolds do not depend on k . This
leads to

Lemma 3.5 The flows ®(z, &, fe) have a globally defined invariant manifold
M€= {(i,t‘ie(fiz)) 1z C X} for 0<e<e¢.

Here i, € V . In addition, 4,(0) =0 if k> 1;thus M, isa global center-
unstable manifold for the scaled cut-off system (3.2). The global estimate
(3.14) allows a comparison of the manifolds M. and ]\"Je,h . In section 6

we prove an error estimate in terms of the defining functions #. and . :
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Lemma 3.6 The manifolds constructed satisfy an estimate
ite — tienlle < Ch?

with C independent of 0 < h < hg, 0<e<e¢q.

The global results formulated in the previous lemmata for the modified
flows w(%,h,e) and &(%,t,f) lead to local results for the given flows
¢(2,h,€) of the one-step method and &(z,t, f) of the differential equation.
The following definition, in which we restrict ourselves to ¢t > 0, is standard.

Definition 3.7 Let B.(0) = {z € R": ||z|| < €} and let M 1o C B(0) de-
note a manifold. M, 1, is called locally fnvariant under the flow ®(z,t, f) if
the following holds: Whenever z € M., and ®&(z,t,f) € B.(0) for
0<t<ty, then ¥(z,t,f) € Mcioc for 0 <t <ty . In other words,
trajectories starting on M, 1oc stay on Mo as long as they stay in
B.(0) .

An analogous definition applies to discrete-time flows z;41 = ¢(2;, h, f) .
In the unscaled variables the function %.(Z) of lemma 3.5 reads

(3.16) ue(z) = etic(zfe), z€ X,

with |Ju.(z)]| <€, u.{0)=0, ul(0) =0. Clearly the manifold
M, = {(z,ue(z)) rz GX}

is globally invariant for the flow ®(z,t, fc) of the cut-off system (3.1). Since
the cut-off process does not effect vectors with norm < ¢ it follows that
®(z,t, f) € Be(0) for 0<t <ito implies
®(z,t, f) = ®(z,t,f) for 0<t<to.
Therefore lemma 3.5 leads to the center-unstable manifold theorem:

Theorem 3.8
The flow ®(z,t,f) of (1.1) has locally invariant manifolds

M¢oc = {(z, ue(z)) :z € X, |lz|l < e}

with u,.: X - Y, ue(0)=0, u‘;(G):O, 0<e<eé€p.
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We now interpret lemma 3.4 in terms of the original one-step method
(1.2) applied to the given differential equation (1.1).

First recall that the number K which is used in the additional cut-off
in (3.11) does not depend on ¢ . If ||2|| < K then w(Z, h,€) = ¢(;, A, fe) ,
thus

M. x = {(i,ﬁe,h(ﬁ:)) :ze X, ||F] < K}
is locally invariant under ¢(Z,h, f¢) . (Note that K > 2 and |[é.a(f)|| <1,

thus a restriction of the y-components of Nfe,h is superfluous.) Using the
scaling invariance (A4) of the flow of the one-step method this implies that

M. hx = {(:c,ue,h(x)) ze X, |zl < eK}
with
(3.17) Uen(z) = et p(z/e), z€ X,

is locally invariant under é(z,h,fc) . If ||z]| < ¢/2 and ||z—¢|| <¢/2 then

fe(¢) = f(¢) ; therefore, using the locality assumption (A2) of the one-step
method, we have

d(2,h, f) = d(z,h, e} for |z|| < €/2, h<ef2¢,.

This shows:

Theorem 3.9 The discrete-time flow z;11 = ¢(2;,h, f) of (1.2) hes locally
invariant manifolds

Mansoo = { (5 9en(s) € X, ol < £}

for 0 < €< ¢, 0<h < minfho,c ¢} . Here Upe: X =Y with
uh,e(o) = 0 .
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Finally, if € is kept fixed, the manifolds constructed for the one-step
method converge towards the local center-unstable manifold of the differen-
tial equation. This follows directly from lemma 3.6 and the back-scalings
(3.16), (3.17).

Theorem 3.10 For the constructed locally invariant manifolds M, 1, of the
differential equation and M, 1, of the one-step method,

|ue(z) — vn,e(2)||x < cchP

where ¢. is independent of h .

4. CONSTRUCTION OF THE MANIFOLDS VIA GRAPH

TRANSFORMS.
Henceforth we drop ~ in the notation for the scaled variables and

consider a family of flows z;4+1 = w(z;,h,€) where

w(z, h,€) = eL*z + p(z, h,¢€) ,
zeER™, O0<h<hy, 0<e<l1

and g4 satisfies (3.12). If unimportant, the dependency on h, ¢ is suppressed
notationally. In (z,y)-coordinates the function w has the form

wl(‘”:y) = etz + pi(z,y) € X,

4.1
1) wa(z,y) = PPy + pa(z,y) €Y .

A manifold _
M = {(z,u(z)) :z€ X}, veV

is invariant for (4.1) if and only if
(42)  ePPu() + (6 u(8) = u( e+ pa(60(6) ) forall €€ X

We turn this into the following: For given z€ X, v € V determine

ez E(x,u,h,f) eX
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as solution of

(4.3) eAh e+ p1(€u(8)) ==

and define
(Fa,cw) (2) := €7Pu(€) + pa(&,u(d)) -
Then (4.2) requires

(Fn,eu)(z) = u(z) ,

i.e. we ask for a fixed point of ¥ = 7, . Our aim is to show:

Theorem 4.1 Under the above conditions there exist hg > 0, ¢y >0 such
that the operators %, 0 < h < hg, 0<e< ¢ ,map V ino itself
and contract w.r.t. | | with a contraction constant 1 - hx, k >

0 independent of h,e. Consequently, the operators %, . have unique fixed
points up €V .

Proof: 1. We give a detailed proof for kK = 0 and make some remarks towards
the general case in the end. In lemma 3.1 choose N; = 4 and construct
I llx accordingly. As explained after lemma 3.1 this fixes the norm for
z = (z,y) ; the construction of the cut-off function % and the constant

C* of (3.12) refer to this specific norm. Then let ¢ > 0, hy > 0 be
chosen such that

B 1 B g 1
L ohe<l, 4Cteqrhg)<L-=B L
N, S 3 (o +ho) < - =3 <3

Always assume 0 < h < hg, 0<e<e¢g.

2. Emstence and estimates for £ = £(z) . Write (4.3) as

(4.4) E=e APz — e ARy (€,u(€)) =: g(8) .
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Lemma 3.1 and (3.12) imply
B

w@n—ﬂ&ms(+-@ Mo (€1, 9(82)) — b1 (82, u(£2)) |

ggcm&+m{wy—&WHW@ﬂ—ﬂ&N}
< 3C*h(e+ h)||&1 — &
< ghliés - &l

397

This shows that ¢ = £(z) exists uniquely and is a C-function of z for

u€V . For ¢(z) obtain from (4.4)
¢'(z) = e — e {u1a () + w2y (J'(€) }£'(2)
=:e74* _R¢'(2) .

Here [|R|| < (1+ £:h)2C h(e+h) < & , thus

(4.5) ¢'(zx) = (I+ R)" e 4% .

This shows that £’(z) is an O(h)-perturbation of the identity. Consequently,
§ = £(z) is a 1-1 map onto IR™ ; this ensures that (4.2) holds for all
£€ X once u is a fixed point under ¥ = 7, . . Equation (4.5} also yields

the estimate

|mwﬂns(1+§%€)u—4cm&+wn‘l

B Bk B
(1+jv—1-h) (l—le) 1+2N1

8. The inclusion F(V)CV. For u€V and z€ X:

1(Fu) (@) < 2 lu(E) + llnz(& w(ON
<1—ph+C*hle+h)<1.

For the derivative we have

(Fu)'(z) = {0 (&) + p22() + pay()u'(€) }€'(2) »
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thus ‘ ]
|(Fw) ()] < {1 - Bh +2C*h(e + b))} (1 + zi,—lh)

5(1—%};) (1+-§—h) <1.

Here the choice Ny = 4 was used. Finally, 4(0) =0 and 44(0,0) =0 imply
£(0) =0. Thus (Fu)(0) = p2(0,0) =0 ,and so FueV .

4. The contractivity of ¥ wrt. || o
Let ui,ug € V, £ € X . We first estimate the difference between &; =
£(z,u1,h,€) and £ = £(z,uz, h,€) . From (4.4)

b~ & = a6, 01(6)) — s (6n(E) |
thus
s = &l < (14 F-h)e"le+ 1) (1 = €all + ua(€s) — e
+ llua(€s) — ua(&2)l)

< 20 e+ B2 €all + s o}

and so
3

& - €all < gy © bl + Mllus — uslo

é 2C*h(€ + h) ”!L]_ — ‘uguo .
This yields the following estimate for Fu; — Fuo :

1(Fur)(z) — (Fua)@)| < B Jlus(6r) — uala)]
+ Nz (€1, u1{&1)) —uz(€2,ua(&2))|
< (1-Br){lI&1 — &)l + llus — uallo} + C*hle + A){2(|&1 — &a|| + |u1~uallo}
< (1—Bh+2C*h{e + b)) {||&1 — &2|| + ju1 — uzllo}
< (1 - Bh+2C*h(e + h)) (1 +2C*h(e + h))|lus — usllo -

The coefficient of |lu; — uz|lo can be estimated by
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1 1 7
1—-8h+ —Bh 14— <1 — =
( B +16ﬂ) ( +16ﬂh)__1 Sﬁh,
which finishes the proof of the contractivity.

5. Treatment of higher derivatives Consider the case of a general integer
k and recall for v € V the estimates

u(.z')

Also, recall the estimates (3.12) for u . The function £ = £(z) clearly has
k +1 derivatives and for 2 < |a| < k+1 one shows

, z€X, |laj<k+1.

< C1h(€ + h)

f (=)

3.7:"‘
where ¢; depends only on C* and k . To prove the inclusion (V) C
V' one has to differentiate

(Fu)(z) = " u(€) + n2(§ u(€))

repeatedly with respect to z-variables. One finds for jof < k+1:

‘B k+1
|enu@] < a-m(1ragon)  rentern
where ¢, depends only on C* and k. If Ni, ho, e are chosen
appropriately we find ||, c¢|lx+1 < 1. To prove contractivity of 7 w.r.t.
| iz differentiate the identity
(Fui)(z) — (Fuz)(z) = " {u1(&) — v2(&2)}
+ uz(€1,v1(£1)) — H2 (€2, u2(£2))
w.r.t. z-variables. Similarly we find for |a| <k:
alel
| (Fu)@ - Fu@)

< (1= Bh+ cah(e + k) (1+ csh(e+ h))llus —ualle

< (1 _ §ih) s — ualle

for O<h<hy, 0<e<ep,if ho, €0 are sufficiently small.
This finishes the proof of Theorem 4.1 and also of lemma 34.

alel
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5. THE MANIFOLDS FOR THE FLOW OF THE DIFFERENTIAL
EQUATION.

According to (3.13) the result of Theorem 4.1 applies to the h-flows of the
scaled cut-off differential equations (3.2). Again, we drop the ~ notation for

the scaled variables. Let Gj:V — V denote the operator corresponding
to the flow (3.13):

&(z,h, f) = eXPz + p(2, h,€) .

Henceforth fix € < ¢, and write @ in the (z,y)- coordinate system:

Ql(xay) h) = cAh-T’ + pl(z,y,h) €X ’
®3(z,y,h) = e y + pa(z,y,h) €Y .

The operator G = Gj ¢ is defined by
(Ghu)(z) = 82(¢, u(), k)

where ¢ = ¢(z,u,h) € X is the unique solution of

B (s, ulc),h) =z .

In other words, the operator G}, is determined by the flow z — #(2,h, fe) in
exactly the same way as the operator Fy,c is determined by the flow 2z —

w(2,h,€) . According to Theorem 4.1 the operators G, have unique fixed
points up €V for h < hy . We first show:

Lemma 5.1
If h+h' <hy then

GhoGp = Ghryn = Gp oGy, ,
and consequently up = uy .

Proof:
1. Let u€V and z€ X be given, and let ¢ € X solve

®1(s u(¢),h+h) ==z
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Then
(Gh+h'u) (z) =& (gi u(g)’ h+ h’)

(5.1) _ <I>2(<I>1(s*,u(s*),h'),‘1’2(9’“(‘)’h’)’h) '

The latter equality is due to the semigroup property of the flows. Now let
§=®,(¢,u(¢),h'), v:i=Gpu.
By the definition of Gpu we have
(5.2) v(§) = (Garu) () = 22(¢,ulc), 1) -
Using the semigroup property again yields
z = ®;1(¢s,u(¢), h+ ')
= <I>1(<I>1(g,u(g),h’), Qg(g,u(g),h’),h)
= <I>1(§, v(¢), h) )
This identity implies
(Ghv) (=) = 22(5,0(8), %)
by the definition of Gjv . Summarizing:
{(Gh o Gp)u}(z) = {Gnrv}(z)
= &2(¢,v() k)
= («Pl(c,u(s’),h'),%(s,u(c),h’),h) by (5.2)
= {Gh+nu}(z) by (5.1).

Thus G}, o Gp» = Gpr o G, is proved.
2. The function uy is a fixed point of Gp . This implies

Gh'uh = (Gh! [/ Gh)'ﬂh = (Gh o] Gh')uh = Gh(Gh’uh) .
‘Using uniqueness of the fixed point of Gp it follows that

Gpiup = tp -
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Then uniqueness of the fixed point of Gpr yields up = ups . [ |

. As a consequence of lemma 5.1 the fixed point up,c of G is inde-
pendent of k for 0 < h < hy = ho/2, 0 < € < €0 , and we write u = up,c -
The manifold

M, = {(z,ue(z)) rz € X}

is globally invariant under the discrete flows
zi+1 = ®(z;, h, fe) for 0O<h<h;.

Again, the semigroup property implies invariance of M, under the
continuous-time flow

®(z,t,f), t>0.

In order to finish the proof of lemma 3.5 it remains to show that u.(0) = O for
k > 1. To this end take an arbitrary v € V with u’(0) = 0 and let
v = Ghu . From the defining equation for G, it follows that:

U(IC) = cBhu(s‘) + P2(§a u’(g)ih)! ¢ = S‘(Z) ’

and thus
v'(0) = P2’ (¢(0))¢' (0) = ePPu'(0)¢*(0) = 0.

Therefore all functions in the sequence of iterates G¥u, v =1,2,... have

the derivative 0 at z = 0. Since the sequence converges to the limit
u, wrt. | |[x the assertion follows.

6. ERROR ESTIMATES FOR A — 0.

In this section let wuj,,. denote the fixed point of 7, . where 7, is
the operator corresponding to the flows w(z,h,e) of the modified one-
step method, see section 4; furthermore, let u. denote the fixed point of
Gh,e where G corresponds to the flow &(z,h, fe) of the scaled cut-off
differential equation (3.2), see section 5. We want to estimate

llte — unellx
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using the relation (3.14) between the flows w and ® . Recall from Theorem

4.1 the contractivity
| 7n,ete — Fn,evls < (1 — he)fju — vl
which implies
e — Facu — (v — Fn,ev) |l
2 flu —vlle — | Fn,ev — Fn,evllx > heflu — vl ,
ie. |lu—vlx < Z|lv — Fnett — (v — Fn,ev){x . Then in particular

1
”ue - uh,e”k < R“ue - 7h,eue”k

(6.1) .
= E‘c‘”Gh,eue - fh,eue”k .

We first estimate the right sidefor k = 0. Let = € X be fixed, and let
€ and ¢ € X be determined by

wi(& ue(é)) =z and Bi1(s,uc(s)) ==,
respectively. Then by definition
(Gh.euc) (@) = (Fn,eue) (2)
= ®2(¢, ue(s)) — w2 (€, ue(8))
= &5(¢, uc(s)) — B2(&,uc(€))
+ ®3(&, ue(£)) — w2(€,ue(€))

(6.2)

thus 1(Ghee) (@) = (Faete) ()]

<eill¢ — €l + e2h??
using the uniform boundedness of the first derivatives of ® and the estimate

(3.14) for a =0 . It remains to estimate [|¢ — €]} . Note
wy (¢, ue(¢)) — w1 ue(€))
= 81 (¢, uels)) + O(hP*?) — wi(& uel€))
==z +o(hp+1) —_—z = O(h”‘“) ,
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where the O(hP*!)-term results from (3.14). In part 2 of the proof of
Theorem 4.1 we showed unigue solvability of the solution £ of

x = wl(f’uc(f)) = eAhf + ﬂl(ﬁ: ue(E)) .

The contraction argument given there clearly reveals
lls — &)l < eah?*?

as a consequence of

“wl(g, ue(g)) - w2(£aut(£))" _<_ C4hp+1 .

This finishes the proof for k = 0, i.e. the estimate |jue— upcllo <ChP .
To obtain the result for general k it suffices to show

“Gh,cu’e - 7h,c"c“k < ChPt!

because of (6.1). To this end apply the operator

aleal
g lel<k

to the identity (6.2). Using the uniform bounds for the derivatives of #; and
of u. and using estimate (3.14) it clearly is sufficient to prove

lle — &llx < esh?* .

But this follows from

wy (fs ue(&)) =@, (ga uc(g))

and (3.14). This finishes the proof of lemma 3.6.

7. oP OF NIFOLDS OF THE ONE-STEP METHOD

One of the main features of the center-unstable manifolds M, for
the differential equation (1.1) is their property of being attracting at an
exponential rate. This is well-known and plausible: The influence of all stable
eigenvalues A of f’(0), i.e. eigenvalues with Re A < 0, can be separated
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from the influence of the other eigenvalues. The dynamical behaviour inside
M, 1, reflects the influence of those eigenvalues A with Re A > 0 whereas
the stable eigenvalues lead to exponential attraction towards M, o .

In this section we show that the property of being exponentially attract-
ing also holds for the constructed invariant manifolds M, j, 10 of the discrete
flows (1.2). This holds true whether or not M 1oc is the center-unstable
manifold of the discrete flow. To obtain a clearer understanding of this fact
and of the role which the implication (1.6) plays let us first define the term
‘growth function’ of a one-step method.

Definition: If the method (1.2) applied to (1.1) with an arbitrary linear
function f(z) = Lz can be written as

zjy1 = ¢(z;,h, L) =~(hL)z;, 7=0,1,...

then « is called the ‘growth function’ of the method. Here ~y is a complex
valued analytic function defined in the neighborhood of the origin in C .
(The function ~ is naturally defined also for all arguments hL , where L is

a square matrix and k is sufficiently small.)

Simple examples are:

~1(hA) = 1+ h) for the explicit Euler method,

Yo(hA) = i *1 %) for the implicit Euler method,

~3(hA) = Z i— :2 for the trapezoidal rule.

For all commonly used one-step methods a growth function is well de-
fined. Furthermore, in addition to the conditions (AQ) to (A4) of

section 2 assume:
(A2*) For each ¢; there exist cz, ¢3, ho such that

6z, by £) — (2, h,9)|| < casup{[I£() — 9()l, [z =)l < ez}

whenever ||z]| <¢; and 0<h <ho.
This condition is slightly more restrictive than (A2), but it is also sat-
' ) *
isfied for all commonly used methods. We note that (AO), (A4), and (A2¥)

imply
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a3

(7.1) %(O,h, f) = ~+(rf'(0))

This is important, since the local behaviour of the flow of the one-step method

near the origin z = 0 is governed by its linearization %f(o, h, f) ,and thus

by the growth function ~ of the method. To prove (7.1) first note:
”¢(za h, fe) - ¢(z’ h, f’(O)) ”
1
< c3sup {l];f(eg) —f'o)ll, Nle—¢ih < Cgh} —+0fore—0

by (A2*) and (A4). Furthermore, we have

é(z,h, e} = -d)(ez h,f) = -—{¢(ez h, f) — $(0,h, f)}
E(O,h,f)z for e =0

and
| #(z,h, £'(0)) = v(r5'(0))= .
Thus equation (7.1) follows.

Let us point out relevant implications of (7.1). From our consistency

assumption for the one-step method it follows that ~(hA) = exp(hA) +
O(h?*!) and thus

(7.2a) Rel < 0 implies |y(hA)| < 1 for h < ho(A) ,
(7.2b) Rel > 0 implies |y(hA)| > 1 for h < ho(R) .

For this reason, if L = f’(0) has no eigenvalue A with Re A =0, then
the stability characteristics of the flows near 2z = 0 are exactly the same
for the differential equation flow and for the discrete flow of the one-step
method. This follows from (7.1) and (7.2). If there are eigenvalies A of
L = f'(0) with Re A = 0, then the situation is more complicated. For
example, assume there is an eigenvalue A %0 with Re A =0 . Then

Iva (k) = f1 + hA| >1,
ra(h)] = g <

2 + hA
|'73(h,\)|=|2:'_'u| =
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for the three growth functions mentioned above. For the differential equation
flow the eigenvalue A contributes to the center space. For the discrete flows,

however, the corresponding eigenvalue
7%(RA), 1=1,2,3

of the linear operator (7.1) contributes to: the unstable space for + =1 (ex-
plicit Euler), the stable space for ¢ = 2 (implicit Euler), the center space for
1 =3 (trapezoidal rule). The constructed invariant manifolds M, j 1o for
the discrete flows always approximate the center-unstable manifolds M, jo.
of the differential equation. Nevertheless, as the example of the implicit
Euler method shows, M, 10c Wwill, in general, contain contributions of
eigenvalues ~(hA) which are stable for the discrete flows. This explains why
M, p.10c is, in general, not the center-unstable manifold for discrete flows.
However, because of the implication (7.2a) it is plausible — and indeed true
— that M, o attracts trajectories at an exponential rate. For technical
reasons we consider first the modified discrete flows w(z,h,¢) defined in
(3.11) for which the following global result holds:

Lemma 7.1

Let (zo,y0) € X ®Y denote a starting point with lwoll < % and consider

the iterates
(zj-{-layj-f-l) = w(a:j’ Yis h, G)v 7=0,1,...
Then '
Ny — une(z)]} < €7 lyo — un,e(zo) |l

for 7 = 0,1,... . Here k£ > 0 is the constant governing the contraction

ratio in Theorem 4.1.

Proof:

From part 3 of the proof of Theorem 4.1 it is easy to see that the operator
7 = %, actually maps the set

1
wev:fulo< 3}
into itself. (Possibly ho and €o have to be chosen smaller.) Thus we can

assume

flen,ello <

|
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Now consider the functions
vi(z) = “h,e(z) +y; —unelz;), z€X, 7=0,1,...

which differ from u ((z) by constants dependingon 7. If |ly;—us, fz)l <

3 then |lvillo < lun,ello+% < 2, and therefore v; € V' . The contractivity

of ¥ yields
|Fv; — nelle = || Fvi — Funelx
< (1= &h)|lv; — unelle = (1 — ch)|ly; — une(z5)] -

Clearly

zi+1 = wi(z;,y5) = wy (1’1‘: ”J‘(If))
and

Yi+1 = w2(z;, ;) = w2 (IJ':"J'(“’J'))

implies (Fv;)(zj+1) = ¥;+1 ; thus we get

Nysi+1 — vn,e(zi41)l| < (1~ xh)|ly; — vn (z5)]]
< e Mly; — un,o(z5)]f -
The proof of the lemma now follows by induction on j .

Again, this result proved for the modified flows can be reinterpreted in

terms of the original one-step method. To this end compare the remarks
preceding Theorem 3.9. One obtains:

Theorem 7.2

Let ¢ >0 and A > 0 denote sufficiently small numbers for which the
manifold

Memioe = {(“'“h'f(x)) 1z € X, ||] < 5}

constructed in Theorem 3.9 is locally invariant. Let (xo,y,) denote a
starting point with ||yo|| < £ and assume the iterates

(zj+1:yj+1) = ¢(xj$yja h’ f): J =0,1,...
stay in B/(0) for j=0,1,...,J . Then

ly; — une(z5)l| < €77 llyo ~ un (zo)|| for J=0,1,...,J
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Here + > 0 is the number governing the contraction in Theorem 4.1, thus
v is independent of ¢ and h .

We want to apply this theorem to sharpen — under special assumptions
— a recent result of Kloeden and Lorenz [4] about attracting sets A for
differential equations and corresponding sets A(k) for one-step methods.
To illustrate the result in [4] first consider two simple examples which can

be analyzed explicitly.

Example 1 (compare [2])
Transform the equation

dr/dt = —r® | dofdt=1
from polar coordinates (r,a) to Cartesian coordinates
E=rsina, n=rcosa
to obtain
d¢fdt =n — £(6% +n?) =: f1(&;n) ,
dn/dt = —€ — (€% +n°) =: f2(&,n) -

The point z = (¢,7) = O is asymptotically stable; the matrix f ’(0) has
the eigenvalues +: . Now discretize (7.3) by the explicit Euler method with

(7.3)

fixed (small) step-size h :
fj-f-l = 6_1 + h {ﬂj - 6:(6_;2 + ﬂ,z)} = ¢1(£J') nJ'rh) 3

(7.4)
Ni+1 = N5+ h {"'fj — n; (f_? + ’7,2)} = ¢2(fj’ I h) .
Here 22(0,0,4) = lh ’1" has the eigenvalues 1+ th which lie outside

the unit circle. Consequently z = 0 is an unstable fixed point for (7.4) for
each h . The general result of [4] shows, however, that the attracting set
A ={0} of (7.3) leads to nearby attracting sets A(k) for the discretization,
in general, the Hausdorff distance between A(h) and A tends to zero
with h — O . For (7.4) such a set A(h) can easily be constructed without

following the general approach of [4]. If we define
R; =f? = f?'l‘ﬂ?s J=0,1,...

then a simple computation shows
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Rj+1 = (1 + hz)Rj - ZhR? +’ th? .
In particular the flow (7.4) maps the circle

{(&,n): € +n® =R}
into the circle
{(&n): €2 +n* =F(R)}

with F(R) = (1+ h?)R ~ 2hR? + h*R? . The function F(R), R> 0, has
three fixed points:

The fixed point R{®) = 0 is unstable for all A > 0 in agreement with the

instability of z = (0,0) for (7.4). The fixed point R(}) is stable; this leads
to the attracting set

(7.5) Afh) = {(&,n) : € +n? < RW)}
for (7.4) with radius ~ vh .

If we apply the theory presented in this paper to Example 1 we do not
obtain any information since the center-unstable space X equals the whole
space R? . Now adjoin to (7.3) a (trivial uncoupled ) decaying part to get:

Example 2
d§/dt = 9 — 6(62 +712) :
dnfdt = —¢ —n(€* +n7) ,
Here
(7.6) X={(&n0):&ne R},

Y= {(0,0,;) :¢ € R} .
Again, 2 = (0,0,0) is asymptotically stable.
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The general theory of {4] applies to the attracting set A = {0} ; if
(77) Zi4+1 = ¢(Zj,h) ’ j = 0, 1,. .o

is a flow of a one-step method then, for h sufficiently small, there is an
attracting set A(h) for this flow. (A(R) is, in general, not unique.) The
following properties of A(k) can be obtained from the general theory:

(PO) A(h) contains A = {0} in its interior.

(P1) A(h) is compact and positively invariant under (7.6).

(P2) A(h) ‘absorbs’ nearby trajectories in finite time 7'(h) ; more precisely,
there exists an open set Uy independent of h, A(R) C Uy C R",
and for each h < ho there is a time T(k) such that 29 € Up and
hj > T(h) imply z; € A(h) .

(P3) The Hausdorff distance between A(h) and A tends to zeroas h — O;
in the present situation this just says that the diameter of A(h) shrinks
tozeroas h— 0.

Remark: The sets (7.5) for Example 1 have the properties (P0), (P1) and

(P3), but not (P2). If we increase R{!) by o(k) then also (P2) is satisfied.
A set A(h) with properties (P0) to (P3) for Example 2 and Euler’s

method is

AR) = {(6m,6) € +n? < BY + o(h), 5] < o(R)} -

If we neglect — for fixed h — the o(h)-terms we obtain the set
ao(h) = {(&,0): €2 +1* <RV}

with properties (P1), (P3) and, instead of (P2),
(P2)’ A.(h) attracts nearby trajectories, t.e. if 2z € Uy then
dist (z,-,Ac(h)) —~0 as j—00.
Clearly, A.(k) is contained in the center-space X for Example 2. In the

general case we will cut A(k) with My .1, to obtain

Ac(h) = Mh,e,loc N A(h) .
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Theoreni 7.3

Under the assumptions (1.3), (1.4) let z = 0 be asymptotically stable for
(1.1). Let A(R) be an attracting set for (7.6) with properties (P0)to (P3),
the existence of such a set being guaranteed by [4]. If ¢ > 0 is fixed and
h < ho(€) then A.(k) has properties (P1), (P2)’ and (P3).

Proof:

1. Fix € >0 and choose hg so small that
A(k) € B/4(0)

for h < hg . Clearly A.(h) is compact. Let 2z € A (h} , then z € A(h) ;
in particular 2y € B,4(0) . Thus 2, € Mj (1oc since this manifold is
locally invariant. This shows that (P1) holds.

2. To show that A.(h) attracts nearby trajectories let
2o = (zo,y0) € Up
denote a starting point. Since A(h) absorbs z; there exists J with
z; € A(h) C B¢y4(0) for > J .
We can apply Theorem 7.3 with starting point z; and find
(7.7) ly; — un,e(z;)]]| =0 as §j — 0.

Let 2;, denote a convergent subsequence of z; :
zj. = (25, 95) —~ (Z,7) =Z€ A(h) .

By continuity, up,(z;.) — Up,(E) =: %, and (Z,%) € My ¢1oc - But then
(7.7) shows §=1u, t.c.

ZE€ Mh,e,loc n A(h) = Ac(h) 4

and consequently

dist(z5,, Ae(h)) < 25, — 2] - 0.
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The final result
dist (z_,-, Ac(h)) —0 as 7 — oo
follows by a standard compactness argument.

3. Since 0 € A,(h) C A(h) the property (P3) is obvious for A.(h) .

Remark: The result of Theorem 7.3 is — for the special case of a single-
ton set A = {0} - an improvement over the result in [4] since the set
A(h) constructed in [4] always has a nonempty interior whereas the set
A:(h) constructed in the present paper generally lies in a manifold of lower
dimension: exponentially decaying parts are ‘split off’. This raises a more
general question. Suppose A C R™ is an attracting set for a system of
ordinary differential equations and suppose we can apply the result in [4] to
obtain an approximating attracting set A(h) for a given one-step method.
Now suppose A lies in a submanifold M of R"™ which attracts nearby
trajectories at an exponential rate. Under quite general assumptions — see
{3] -~ the manifold M will persist under small perturbations, thus it can
be expected that the one-step method has an approximating invariant man-
ifold Mj; of the same dimension as M . Will this allow us to conclude the
_existence of an attracting set A.(k) lying in M, which approximates A ?
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