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Abstract: In a recent paper, Bigge and Bohl [2] found some interesting
bifurcation diagrams for a discrete diffusion reaction model. We give an
interpretation of their results from the view of singularity theory and
we will also indicate how this theory may be used to set up numerical
methods for singular solutions such as bifurcation points or isolated
points.

1. Introduction. This paper is intended to show how singularity theory

(e.g. [4, 5, 6]) may help to understand bifurcation diagrams that have

been obtained numerically for a finite dimensional system of N equations

in N+ 1 variables ‘

(1) T(z)=0, T: ]RN+1—»IRN, z = state variable.

In contrast to the standard situation in the theory we assume that we do

neither know the singularity of (1) (i.e. a point z € I§q+1 such that

T(zo)==0, rank (T'(zo))<'N) nor do we know its type. Moreover, we are

usually not even given a system (1) which has a singularity, but rather

a parametrized system of equations

(2) T(z,c)=0, T: IRN"'1 x IRP»]RN, c = control variable

for which solution diagrams have been computed for various values of

c. The problem then is to guess from these data the type of a singularity

Z, of T(z,c,) =0, where cy is close to the numerical c-values. The choice

of a correct singularity depends on its universal unfolding (cf. [5,6])

which should generate in a qualitative way the bifurcation pictures which

have been observed numerically. Once a proper singularity is detected we

can use the theory of unfolding to predict further types of solution

curves of the system (2) and try to find them numerically by varying c.
We will illustrate this process for a specific example recently dis-

cussed in [2]

=0 and for i=2,...,N=1

X1=XN

(3)
™2 (-x,
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where h = 01—1)_1. We put (3) into the form (2) by setting
(4) z==(x1, Ko peeer Xy A), c=(v,u,B8).
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The system (3) may either be viewed as a discrete cell model with
diffusion and an exothermic reaction or as a discretization of a
corresponding boundary value problem ({2, 3]). Our special singularity
proposed here is based on the results of [2] and should also appear in
the more general equations described therein.

Finally, we show how the above interplay of singularity theory and
numerical computations can be made more rigorous. The crucial point
here is to actually compute a singularity as a solution of a so called
defining equation (cf. the inflated systems for bifurcation points in
[7, 10}). In the case of bifurcation points and isolated points we will
present some defining equations and show their relation to singularity

theory.

Acknowledgement: I am particularly indebted to Dipl. Math. J. Bigge for

providing me with several solution branches of the example (3) which

are not contained in [2].

2. Finding and analysing the singularity in the discrete model

Let us first recall some solution branches of (3) from [2] as given in

figure 1 for the values N=11, v=0, u=7 and v =12, B=1.
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Fig. 1: solutiocns of (3) for p=7,12
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We are interestd in the upper configuration for u =12 which was called
a double-figure-eight in [2]. Here the main branch of symmetric

solutions {i.e. X{ = Xyiq-4
unsymmetric solutions at two bifurcation points (marked by a dot).

Vi) is intersected by a closed loop of

The topological type of these branches is more clearly seen when

projecting them ontoaa(x1o,x2)—plane as is done in figure 2.
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Figure 2: projection of the double-figure-eight onto (x1o,x2) for

various values of u.

The symmetric branch now covers the diagonal and the loops of unsym-
metric solutions shrink as u decreases. At pu =7 they have vanished.
We draw the following conclusion from these pictures. There should

exist a set of parameters
Cy = (0, Hor 1) where 7<u0<8

and a singularity z, of (3) at c=cy such that an upward perturbation
of u instantaneously creates the bifurcation diagram of fig. 2.

In order to find the type of the singularity we use the model
equations
(5) A=x3—ax+b, A=y3-cy+d, a,b,c,d>0
which were derived in {2] from the numerical values and shown to create
the double-figure-eight as well as some of its perturbations. Upon
eliminating A from (5) and setting a=b=c=d=0 we end up with

3
(6) f(x,y) : = x3-—y =0,
which has (x,y) = (0,0) as a singularity.

Our hypothesis is that (6) gives the correct type of the singularity Zg

for the equation T(z,co)==0. More precisely, we assume that there exists
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a relation

(7) ©(2)T(p(2),0,) = (Elzg2y) 1Z3re-0r2ygyq) VZEUO SR

where p € C*(U(0), U(z,)) is diffeomorphic, p(0) =z  and t(z) are nonsin-
gular N x N-matrices infinitely differentiable with respect to z. Here
and in what follows U(0O), U(zo) and U(co) denote suitable neigh-
bourhoods not always the same at different occurrences. In terms of
singularity theory, the relation (7) states the (contact-) equivalence
of the germs associated with T(-,co) and £(-,+) xI

denotes the identity in ®V!

N-1 Where I .
{cf. the V-isomorphy in [6, Ch.II]).

Our first conclusion from (7) is a generalized relation

(8) (z,c)T(p(z,c),c) =(f(z1,zz,c),z3,...,z Yz € U(O),CGIJ(CO)

N+1)
where p € C(U(0) x U(co), U(zo)),p(-,c) are diffeomorphisms, %(z,c)

are nonsingular N x N-matrices with C®-entries and f is an unfolding of
£f, i.e. %(21,22,co)==f(z1,z2) ¥z € U(0). To see this, define

g €C™(U(0) x Ulc,),R) and ®€ C*(U(0) x Ulc,), RV 1) by t(2)T(p(z),0)

= (g(z,c), ®(z,c)) and use the implicit function theorem on
H(w,z,c) : = (w1-z1,w2-zz,®(w,c)— (z3,...,zN+1))==O

in order to obtain a function w(z,c). Note that Hw(o,o,co)==IN+1and
H(z,z,co)==0 hold, hence w(z,co)==z and w(-,c) are diffeomorphisms

for ce€ U(co). Finally, let yv(z,c)=g(w(z,c),c) and let the N x N-matices
T(z,c) be identical to I, except for the elements

1
~ 3
T1j(z’c)='_ IBZT

(Z,7Z0stZa,eee,tz ,c) dt, i=2,...,N.
0224+1 1772 3 N+1

Then a straightforward calculation yields
T(z,c)t(w(z,c))T(p(w(z,c)),c) = (g(2z,,2,,0,...,0,0),

and hence (8).

z3,...,zN+1)

From the relation (8) we obtain a local correspondence
z=p(%X,¥Y,0,...,0,¢c) between the solutions z of (2) and (x,y) of

(9) £ (x,y,c) =0.

For qualitative purposes it is therefore sufficient to consider (9)
instead of (2). In addition, if f(x,y,a) is a universal unfolding of
f(x,y) then to each c close to s there exists an a close to 0 such
that the solution curves of (9) and of

(10) f(x,y,a) =0

are diffeomorphic (cf.[6, Ch.II]). For the particular case (6), a
universal unfolding needs at least 4 parameters and one such is

3 3

(11) £(x,y,a)=x"-y +a4xy+cx3y+a2y+o(1, a=(a1,02,u3,a4).

Note that (11) with o, =0 is the hyperbolic umbilic in catastrophe
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theory [8]. Figures 3 and 4 show two three dimensional projections of
the bifurcation set
B= {ax € ]R4 : Ix,y€ R such that f(x,y,a) = fx(x,y,or) = fy(x,y,a) = 0}

along with some (x,y)-solution curves of (10} associated with special

values a € B (indicated by arrows) and o € ]R4 ~B.

Fig. 3: Projection of B onto 0(4=O

Fig. 4: Projection of B onto ay, >0 fixed.

3. Testing the singularity
Let us first note that we can recover the curves of fig. 2 from fig. 3

if we let & move towards the origin on the line a4=0, A3 = -0, > 0, a1=0.
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Here we have f(x,y,0, —02,0(2,0) = (X~y) (x2 +xy+y2+a2) so that (10)
describes an ellipse cut by a straight line. Our difference equations
(3) correspond to this 'nongeneric' set of parameter values because of
the inherent symmetry in the case v=0 ((3) is invariant under the
transformation X5 xN+1-i) .

If we fix u=12 and let v increase then this symmetry is destroyed
and the curves of fig. 5 show up numerically. The perturbations of
the upper configuration now correspond to parameters o moving on the
ray R, in fig. 3.

*
1.0
0.54
v =5.32
v =
2 (=
3455 7
0.08 X
0.08 0.5 170 10

Fig. 5: solutions of (3) for w=12, v=0,1,2,3,4,5,6,7

Note also that the sequence of branches at the right bottom of fig. 5
is obtained when travelling on the line R2 in fig. 3. This, however,
should be the influence of a second singularity which is of the same
type but located at a different point in the (z,c)-space.

A more serious test of our singularity consists in finding numeri-
cally the singular solution branches in the v-sequence, in particular
those singularities predicted by the intersections of the lines Ry and
Ry with the bifurcation set B. The resulting isclated points and
bifurcation points are shown in fig. 5. These were computed by tracing

one of the curves in fig. 5 and switching to a defining equation at
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various points. Defining equations for bifurcation points have been set
up in [7, 10] by inflating the system (2). The approach taken here
rather uses a deflation of (2), which seems to be simpler conceptio-
nally although not computationally. The numerical details and a proof
of the theorem below will be contained in a forthcoming paper.

We consider an equation (2) with one parameter c(p=1) and let
T € C°°(]RN+2,IRN) for simplicity. Let us decompose ?lRN+1 =00V, IRN=‘1' oW
into subspaces such that dim®=2, dim¥=1 and let P: RY> W be the pro-
jector along ¥. Further assume that there exists a solution
(9,v,c) €E (2BV) x R of (2) such that PTV(Q),\‘I,E) : V+W is nonsingular.
Now we can define an implicit function v{y,c) €V in some open
neighbourhood U of (®,8) by PT(9,v(yp,c),c) =0. The function S : ® x R-Y,
S(p,c) = (Iy-P)T(¢,v(9,c),c) may then be considered as a Liapunov-
Schmidt type reduction of T [9].
The defining equations for a simple bifurcation point or an isolated
point of S are simply the three equations
(12) S{w,c) =0, Sw(m,C) =0,
for which we have the following result:

Theorem: (wo,co)elj is a regular solution of (12) if and only if
z0==(mo, v(mo,co)) is either a simple bifurcation point or an isolated
point of T(z,co)==0 (i.e. T(z,co) is equivalent to either zf— z% or

2 2

z;+z5 in the sense of (7)) and T(z,c) is a universal unfolding of

2
T(z,co).

The regularity of (wo,co) means that the system (12) has a non-
singular Jacobian at (wo,co) which implies that Newton's method is
locally quadratically convergent (note however that the evaluation of
S needs the solution of an implicit equation). The right-hand side of
our above equivalence may be more conventionally written down in
terms of the null space No of Tz(zo,co), the range Wo of Tz(zo,co)
and the projector QO onto a complementary space Wo of Wo:
dimNO==2, Tc(zo,co)$ W and the gquadratic form QoTzz(zo,co): N,
is nondegenerate (i.e. there exist two nonzero eigenvalues either of the

X No—b wo

same or of the opposite sign [1,101).
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