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DEFINING EQUATIONS FOR SINGULAR SOLUTIONS
AND NUMERICAL APPLICATIONS

Wolf-Jiirgen Beyn

Singularity theory seems to play an important role not only in the
theoretical but also in the numerical analysis of bifurcation problems. In this
paper we establish a relation between the concept of a universal unfoldingand
direct methods for the numerical computation of singular points in bifurcation
diagrams. In a direct method the unknown singular solution is computed as a
regular solution of a so called defining equation. In particular, we discuss
a defining equation for a multiple bifurcation point and demonstrate its appli-
cation to a reaction diffusion system.

1. Introduction

The numerical computation of singular solutions in bifurcation
problems has received special attention recently. We refer to [12] for a survey
and comparison of numerical methods for turning points. There are by now also
various approaches to more difficult singularities (see the papers of this
volume), in particular to cusp points [16, 17] and bifurcation points [15, 13,
18,19,1, 9 1. Basically, most of these methods consist in setting up a system
of equations - we use the term defining equations - which has the unknown
singularity as a regular solution. Newton's method for the defining equation
would then converge locally and quadratically.

In this paper we present a list of defining equations and we want to
demonstrate their relation to the concept of a universal unfolding in singu-
larity theory. We consider a system of equations

(1) T(z,c) = 0, where T € C(R'«RP, RY), M2 N,

z and ¢ are called the state and the control variable resp. We note that for
some of the following definitions and results the operator T need only be
defined locally andsatisfy less smoothness assumptions. A solution (zo,co)of
equation (1) will be called regular with respect to z if the Jacobian of 7

w.r.t. z at (zo,co) has maximum rank, i.e. rank Tz(zo,co) = N. Otherwise it is
called singular with respect to z.
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Let (ZO’CO) be a singular solution of (1) with respect to z. Then
one of the fundamental results of singularity theory shows how to obtain in a
qualitative way all possible solution sets of (1) in a neighbourhood of Z0 in
the state space if ¢ is kept fixed at a value close to Co- We refer to[6] for
a brief account of some ideas and results of standard singularity theory as we
use it. The harder parts of the proofs may be found e.g. in [5, 10]. It
should be noted that standard singularity theory is distinct from classical
catastrophe theory (which deals with gradient systems T(z,c) = vzf(z,c) = 0,
fe Cm(RNxRp, R), compare [ 5,14 ]) and from the "x-singularity theory" of
Golubitsky and Schaeffer [8 1. In the approach of [ 8] there are three types
of variables: the state variable x, the bifurcation parameter » and the control
variable c. The (x,x)-solution branches of a system

(2) T(x,hsc) = 0, T € ¢(RM RxRP, RY)

are then classified under the restriction that A-slices are preserved. This
turns out to be a refinement of the equivalence classes of singularities which
are obtained in the standard theory by setting z = (x,2), M =N+ 1. For
example, the bifurcation points defined by Tn(x,A) = x(A—xn) =0 (ne N) are
all different in A-singularity theory, whereas they are equivalent to the
simple bifurcation point T(zl,zz) =292y = 0 in the standard theoryf

Figure 1
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Qur approach is to compute the bifurcation points of the types in
fig. 1 by one and the same defining equation. However, if the particular
behaviour of the emanating branches with respect to a bifurcation parameter i
is of interest then one should rather use the defining equations of Spence and
Jepson (this volume) which are based on [8].

Our final remark concerns the question whether it is useful to compute more
complex singularities at all. Usually, a dynamical system, which has (1) as
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its steady state equation, only exhibits drastic changes near the most simple
singularities of (1), namely folds (or turning points). As for the higher
singularities we rather think of them to play the role of an "organizing
center" [ 71 for the solution diagrams of the steady state equation (1). This
aspect has been emphasized in [7, 1, 4].

I would 1ike to thank Dipl. Math. J. Bigge for some of the numerical
results and heipful discussions of the algebraic conditions for multiple
bifurcation points.

2. Some fundamentals about singular solutions

For a singular solution (zo,co) of (1) there are at least three
important numbers to know:

the index i = M - N, the corank n = N - rank Tz(zo,c and

the codimension K€ NU f{ed}.
The codimension measures in some sense the complexity of the singularity and

will be explained in detail later on (cf. [6, V § 2]).

o)

let (zo,co) be a regular solution of (1) w.r.t. z. Then the solution
set of T (z,co) = 0 in a neighbourhood of 2, is a smooth i = M - N dimensional
manifold. In general, this is nolonger true near a singular solution with
respect to z. However the solution set of (1) in a neighbourhood of (zo,c&
in the complete space RMxlﬁ)may be smooth again. For example, the equation
22 - ¢ =0 has a fold w.r.t. zat z =0, c=0 (i.e a singular solution of
index 0) but defines a regular branch in Rx R. Similarly, z% - z% -~ ¢ = 0has
a simple bifurcation point w.r.t. z at (21’22) = 0,c = 0 (i.e. a singular
solution of index 1) but defines a regular surface in sz R. In what follows,
the term "singular” will always mean "singular with respect to the state
variable" and we will use the terms "point singularity” if index = 0 and
“branch singularity" if index = 1.

The corank n of a singular solution (zo,co) gives the number of
equations to which the full system (1) can be reduced by the Liapunov-Schnidt
method. The reduced equations are usually called the bifurcation equations.
For numerical purposes it is important to note that this reduction may be
performed without knowing the null space N(Tg) or the range R(Tg) (the upper
index "o" always indicates the argument (zo,co)).
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We start with a decomposition into subspaces

(3) R" = vew, RV= xeV, where dim X = dim V = N - n,

and we write z = (v,w)€‘RM,zO = (vo,wo). From {3) we obtain dim Y = n,

dimW=M-N+n=:m Let P: RNs X be the projector along Y. Our basic
assumption is that for some open sets <V, Tclx RP the equation

(4) PT(v,w,c) = 0, vEq, (W,cC)ET
defines a unique implicit function v(w,c) such that
(5) PTv {v{w,c),w,c) : V=X is nonsingular.

For example, this is satisfied in some suitable neighbourhoods if

- o . . A .
(zo,co) = (vo,wo,co) solves (4) and PTV : V=X is nonsingular. In this case
v(wo,co) =V, holds.
The mapping S : 2x I »Y, defined by

(6) S(w,c) = (I-P)T(v(w,c),w,c)
will then be called a Liapunov-Schmidt reduction of T w.r.t. (V,W,X,Y).

Theorem 1

Let (ZO’CO) = (vo,wo,co) be a solution of (4) where Tecr(RMx ]Rp,RN),
I<r<w and let S(w,c) be a Liapunov-Schmidt reduction of T with respect to

(V,W,X,Y). Further, let R : V- X be linear and bijective. Then in a neigh-

bourhood U(zo,co) a relation
(7) 1(z,¢)T{p(z,c)sc) = (R(v-v ), S(w,c)), z = (v,W)

holds where t{z,c) is a Cr'l-family of regular Nx N-matrices and
pE Cr(U(zo,co), U(zo)) satisfies p(zo,co) =2, pg nonsingular. Moreover, if

(zo,co) is a singular solution of (1) w.r.t. z of corank n then S{w ,c ) = 0,

Sw(wo,co) = 0.

Remark: Formula (7) means that in a neighbourhood of a singular solution of
corank n the operator T may be decomposed into a regular part R and a singular
part S after a parameter dependent change of coordinates in R and RN (cf.
[8, Lemma 3.131).

Proof: We drop the control variabie ¢ from the proof because it can simply be

inserted at each step. By our assumptions the mapping o(z) = (v0+R'1PT(z),w)
satisfies o(z;) = zo,cz(zo) nonsingular. Hence
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a'l(z) =: p(z) = (pl(z),w)eVew has the same property. By the definition of

p we have

(8) R(v-vg) = PT(p(2))s 2 = (VW)

Setting v = v, in (8) we obtain pl(vo,w) = v(w) from (4) and hence

() S(w) = (IP)T{e(vpoW)).

Now let t(z) be given by its representation (121(2)01) with respect to XeY

where To1 will be defined below.
Then (8) yields
(2)T(p(2)) = (R(v=¥,)s Tpy(2)R(V-Vy) + (I-P)T(o(v,W))).

Expanding the last term to first order in v and using (9) we end up with the

relation (7) if we set
1

121(2) = - {;(I-P)Tz(p(v0+t(v-v0),w))ov(v0+t(v-v0),w)R'1

dt.

Finally, S(wo,co) = 0, Sw(wo’co) = (0 are easy consequences of (7) if (z ) is

a singular solution of corank n.

o’co

a

The effect of theorem 1 is to concentrate the singular part of T
into a Tow dimensional mapping G(w) = S(w,co). In the following we need some
basic notations from singularity theory [6 ,V1. Let E; = C”(R';', R") be the
linear spaceof Cm-germs defined in a neighbourhood of 0¢ R™ with values in K",
Similarly, Ea’n = Cm(R'(')], R"™") contains the C*-germs with values in the
space R"" of nxn-matrices. Two germs Gl’ G.ZEE:;j are called contact

equivalent, if a relation
(10)  Gy(w) = t(W)By(p(w))

holds for some t€Ex*", pEEm with p(0) = 0 and p_(0),(0) nonsingular. This
essentially means that the solution sets of Gl(w) = 0 and GZ{w) = 0 near (
are diffeomorphic. The result of theorem 1 may then be reformulated as the
contact equivalence of the germs T(zo+-,c) and ReS(w0+-,c).

A germ FEiE'r;,"_-I is called an l-parameter unfolding of G€ E; iff G(w) = F(w,0).
It is called a versal unfolding of G if every j-parameter unfolding HE E;ﬂ-
of G satisfies H(w,B) = t(w,B) F(o(w,B),¥(B)) for some TEE;;S}, QGEr:l+j, yE E}
such that t(w,0) = I,p(w,0) = w and ¢(0) = 0 (i.e. the germs H(-,8) and
F(-,v(B)) are contact equivalent). A versal unfolding of G with a minimum
number of parameters is said to be universal.
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For the determination of a universal unfolding of G one needs the so called

tangent space
(11) T6 = {6+ Go : t€E", 0€E$}CE;‘].

TG is a Tlinear space over R as well as a moduie over Eé. The number

k = codim TG = dim Et?}/TGG N U =} is the codimension of the germ G at 0. It is
invariant under contact equivalence. Let us assume that G has finite codimen-
sion k and let F(w,a) be a k-parameter unfolding of G. Then the fundamental
theorem on universal unfoldings [ 6, V § 3] states that F is universal if and

only if the transversality condition

_eh
(12) 16 + Ib{Ful(-,O),...,Fak(-,O)} = E,
is satisfied. This condition means that the germs Fa.(w,O)(j=1,...,k) form
. n J
a basis of Em/QG'
- It is worth noting that the codimension of a singularity of (2) in the theory

of [ 8] is always greater than or equal to the standard codimension obtained
by setting z = (x,A), M= N+ 1.

3. Defining equations for singular solutions of low dimensional systems

We want to set up a system of equations which determines singular
solutions (zo,co) of (1) of a given corank n and a given codimension k. As we
will see in section 5, this task can be reduced by theorem 1 to the determi-
nation of a singular solution (wo,co) w.r.t. w of codimension k for a low

dimensional system

(13) G(w,c) = 0, Ge C°(R"™x RP, R")

with index i = m-n20.

The prescribed codimension k suggests that we have to have at
least p=k parameters in (13) in order to find a singuiar solution of codimen-
sion k. In fact, we assume p = k in (13). This can always be achieved by either
fixing some control variables or inserting new ones (these should be of
physical relevance for the underlying system).

A square system of equations
(D) Dg(Ws¢) = 0, where Dy€ C*(R™X, Ry
will then be called a defining equation for G if it has the following property
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P1: (wo,co) is a regular solution of (D) «=

(P)

of G(w,+w,C,).

P2: (wo,co) is a singular solution of G(w,c) = O w.r.t. w,

it is of corank n and G(w0+w,c0+c) is a universal unfolding

This is a rather strong requirement. For example, if we have computed a reqular

solution (wo,co) of (D) then we are sure that the variation of ¢ around Q)w111

exhibit all possible solutionpictures (up to diffeomorphisms) in the state
space R™. The introduction of additional parameters in (13) will not create

new phenomena. In the following table of defining equations the property (P)
is satisfied in the strict sense only in the case of corank 1. For the corank

2 singularities some additional nondegeneracy conditions (A2), (A3) have to be
added to P1 in order to make (P) correct.

iln{k DG(w,c) name representative germs
7 G{w,0) near w = 0
0 1k [(6:G,---sG,k) | fold (k=1), cusp (k=2) wktl
where | swallow-tail (k=3)
.06 -
ka —_a—-"w]—(- butterf]y (k-—t")
2 2. .2
024 (6,6)) (wl) (wlzth)
2
(A2) Wo/ 5 \ WWy
111(6,6,) simpie bifurcation W & vl
point or isola center
(hermit)
or e
2 3
112 (G,Gw, det wa) cusp curve\\\v/" Wy - W,
. . . 2,.2 2.2 2
125)(6,6)) multiple bifurcation (wlth) (w1+w2 wa)
point 2. 2
(A3) Wyt W3/ -2w1w3+w
or or s

table 1
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2

(Am) {(m = 2,3) the homogeneous quadratic q(w) = %wa(wo,co)w satisfies

q{w) = 0, WE ", ws anw(W) has rank 2 over €.

(A2) means that the conic sections qi(w) = 0 (i=1,2) are nowhere tangent in @2
except at 0, or what is the same, 94 and q, have no common factor. Similarly,
(A3) means that the quadratic surfaces qi(w) = 0 (i=1,2), W€ t3 are nowhere
tangent except at 0. We note that the real version of (A3) is a well known
assumption in the study of bifurcation at a double eigenvalue {11, 8, § 5]
(the use of (A3) with R instead of € is sufficient in [8 , § 5] because of
the special way in which a = Wg enters into the problem there).

Table 1 shows that a defining equation does usually not determine a unique
class but several classes of contact equivalent singularities. These were
indicated by some simple representatives in the last column.

The proof of property (P) for all entries of table 1 would be too
Tong, so here we restrict ourselves to the question for which n and m

(18)  Dg(w.c) = (6,6,)(w,c) = 0, GECT(R"x RY, R")

is a defining equation. In order to make (14) a square system we need

k=n+nm-m

Theorem 2:
Let n<m, k=k{(n,m)=n+nm-m and let GE Cm(Rmx Rk, Rn). Then P2 implies Pl.

If Pl is assumed then (wo,co) is a singular solution of (13) w.r.t. w which
is of corank n and codimension = k. If the codimension is equal to k, then
G(w0+-w, c0+-c) is a universal unfolding of G(woi-w, co) and the pair (n,m)
must be one of the following

(15) either (n=1, m€ N) or (n=2, m€ {2,3}).

Remark: We have the somewhat surprising result that (14) satisfies the
property (P) only for some restricted values of n and m. This should be due
to the occurrence of so called modal parameters (cf. [8, § 4,5]1).

Proof: Without loss of generality we may assume (qrco) = (0,0). Let P2 be
satisfied. Then obviously G° = 0 and rank GS = 0 hold, hence Dg = 0. Moreover,

we have
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o[G0 62 0 G2
(16) Drl = { o0 ¢ 0 0

G G GIwc G GIwc
By the transversality condition (12) each g€ E:‘ may be written as
(17) q(w) = T(w)G(w,0) + G (w,0)o(w) + G (w,0)¥

k

for some t€ E;’", o€ Em, YER". Evaluating g and A at w = 0 yields

o o i
0,0 \e vy CLY)

Since the left hand sides span R™M we obtain that Déo is nonsingular.

Assume now that P1 is satisfied. If a relation (17) holds with q=0 then we
find o° = 0, vy = 0 from (18) and the regularity of Déo. Thus we have shown
that the functions ch(-,O) (i=1,...,k) are linearly independent in
E;/TG(-,O)' The codimension of G(-,0) at O is therefore at least k and incase
of equality G(w,c) is a universal unfolding of G(w,0) since (12) is satisfied.
It remains to prove (15). Let ch E:] be the Tinear subspace of homogeneous
quadratics. Each q€Q, has a representation (17). From (18) we again find

® =0,y = 0and differentiating (17) twice at w = 0 yields
(19) o 21 95 6 et 8 oot OTG? e (Lo an).
We consider this as a linear system for the nZ +m? unknowns TO and 03 Since
the left hand sides of (19) span a Tinear space of dimension 2nm (m+1) = din 02
we obtain 7nm(m+1) <n2+m2 But the homogeneous equatwn (19) also admits the
nontrivial solution °=-2I, 0 =] so that in fact -an (m+l) <n2+m2-1 An
elementary discussion of this mequaht_y using n<m then leaves us with the
cases given in (15). a
In the case n=1, m€ N the proof of property (P) is easily completed.
Let us assume P1. Now we have k = k{1,m) = 1 and from (16) and the regularity
of Dé° we find that the Hessian G° is nonsmgu]ar By the Morse lemma G(w,0)
is then contact equivalent to a quadratm g &, w2, & € {-1,1} and hence has

i=1
codimension 1 (cf.[6, IV § 4]1). The assertmn P2 then follows from theorsm 2.

In the case n=2, me€ {2,3} we assume P1 and (Am) and define

F(w) = -2 we, we R". After some algebraic manipulations, which we omit, the
property (Am) turns out to be equivalent to
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2,2

for each q602 there exist matrices A€ R°*%, Be R™™ such that

(20)
q(w) = A F(w) +F, (w) Bw, w €R".

Since F agrees with G(-,0) to second order we obtain from (20)

a(w) = A 6(w,0) + G, (w,0) Bw + O( ilwi).

This result may be wmtten in a more formal way as M2 chG( s )+M M2 i
where M; m is the module generated by Q2 in E and M is the max1ma1 1dea1 in
E1 which is generated by the germs W, (i= 1 ,m) The lemma of Nakayama
[6 , IV § 2] then ensures M) < TG(- 0) Therefore, a basis of En]/Mn o which

2,m
consists of nm + n linear germs, also spans m/TG ,0) By the regulamty

of D(';0 we have G° vy=0, YE]R"':Y = 0. This proves that the linear functions
p;(w) = Gsw (1 1,...,m, e =i-th unit vector in R™) are Tinearly indepen-
dent. Moreover p.(-)=F ( Jel =G, (+»0)e" + (F, (+) - 6,(-,0))e' € T6(-,0)

+ Mg,mCTG(-,O), iz1,...,m so that finally d1m Em/TG( g)smm+n-m=k. Again

theorem 2 completes the proof of P2.

Let us finally notice that the nontrivial solutions W€ R3 of
(wo,co)W2 = 0 determine the bifurcation directions in the case m = 3. Due
to (A3) there are either 0,2 or 4 branches passing through W,

4. Two applications
Our first example describes the buckling of a spring (fig. 2) and

is taken from [14,§13.8] (with the exception of the parameter ¢).

Figure 2

‘lG

G,F : Toad parameters,
Y,€ : spring constants
o,L ; state variables

gl Y,

The total energy of the system is
_lY 2,1 3 2 .
U(a,Ls G,F,T,e)--z (2a) +3{(2a) + (L~1)"+FL cosa +GL sina.
From qu= UL==0 we can eliminate L and we find for the stationary states the

scalar equation
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2

(21) T(@,6,F,Y,¢) = 4val + 860 + G cosa - 2Fsina - GFcosza + (F-76) sina=0.

This system has a butterfly point w.r.t. a at
(22) a=0; G=0,F=71r,Y= 332,8=0 (see [141),

where the four parameters provide a universal unfolding. Figure 3 shows a
portion of the solutions in the («,G,F)-space at fixed values y=0.11, €=10
It also shows how we approached the butterfly point (22) numerically by solving
the defining equations (T,Tu,...,Tak)'--O for increasing k. Starting with a
regular solution (a=1.8785, G=0, F=0.4) we computed a branch of regular
solutions (r) by varying G. Then we switched to the defining equation of the
fold (T,T“)(a,G) =0 and computed a branch of folds (f) by varying F. Procee-
ding in this way we obtained a branch of cusps (c) and swallow tails (s) which
finally ends at the butterfly point (b).

(r)

\ Figure 3

(f)

-3

£
>

the jumps between the
curves (r), (f), {c)

4 and (s) are caused by
[) the switching to the

C

“ next defining equation
$

ST\ )

i/

Our second example is an N-cell model with diffusion and reaction as
discussed in detail in {2, 31. The steady state equations are of the
following form

F

v/
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(23) Dj(zj-zj_l)- Dj+1(zj+l-zj)+djzj=hjg(c0-zj,)\,u), i=1,...,N
zo=zN+1=0 where zj=c0-cj

and c. (resp. co) = substrate concentration in the j-th cell (resp. outer
reservoir), Dj(dj) =diffusion constant between the j-th cell and the (j-1)-th
cell (the outer reservoir), h. = thickness of the j-th cell,

g(xsA,u) = 10“x(1+x+>«x2)'1 =Jreaction rate of an inhibited Michaelis-Menten
process. The cells with numbers 0 and N+1 should be interpreted as part of

the reservoir. Since we are interested in the branches generated by varying A
we set z= (zl,...,zN,A), c= (Dl""’DN+1’d1""’dN’h1""’hN’“) and write (23)
in the form (1) with M= N+1.

Here we consider a special case of 7 cells where 3 cells are in contact with
the outer reservoir (Dj =0.3(j=2,...,7), DI=DB=1’ d4=2, dj = 0 otherwise,
h4=2, hj =1 otherwise, c0=4, u=1.4). A three-dimensional view of the

numerical solution branches in the (21,24,27)—space is shown in fig. 4.

Figure 4

close-up

The numerical results suggest 6 simple bifurcation points (Bl - B6) and 2
multiple bifurcation points (M1, M2). However, a closer look at the
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continuation procedure near these points reveals that only Bl and B4 are
bifurcation points (which we have computed by the defining equations of
section 3) whereas the others are actually separated as indicated by the
dotted lines in fig. 4. Moreover, near M1 and M2 there are in fact 3 closely
spaced simple bifurcation points as shown in the close up of fig. 4. These
could only be determined by using very good initial guesses for the defining
equation. A more detailed explanation of the branching structure in fig. 4
which uses the inherent symmetries in equation (23) is given in [4].

By table 1 we expect to find true multiple bifurcation points near M1, M2 if
we let 5 parameters vary in the system (23). We used c1==d1, c2==d4 and the
perturbations C3Zys C4Z7s CpZy in the equations (23) with the numbers 1, 4, 7
respectively. Newton's method for the defining equation was then successful
when started near M1, M2 and multiple bifurcation points with 4 bifurcation
directions were detected (see section 5 for details of the reduction process).
By varying the parameter p we then found an upper and a lower branch of
multiple bifurcation points (fig. 5). These seem to coalesce at a new
singularity the type of which we do not know at present.

Figure 5
|
|
3,5+
34
11 , 1.2 13 12 "

5. The reduction process

In order to compute a singular solution of the system (1) which is of codimen-

sion k=p we apply the defining equations from table 1 to a Liapunov-Schmidt
reduction S(w,c) of T w.r.t. (V,W,X,Y), i.e. we solve

(24) D (u) =Dg(w,c) =0, u= (w,c) €W @ RK (= R™)
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If DS has the property (P) and if the assumptions of theorem 1 hold then
theorem 1 can be used to prove the following: (wo,co) is a regular solution of
(24) ==-(z0,co) =(v(wo,co),wo,co) is a singular solution of (1) of corank n
and T(zo+z,co+c) is a universal unfolding of T(zo+-z,c0).

We used a two stage process for the numerical solution of (24). This
will only be briefly outlined here since less costly methods are available for
special singularities [12, 9, 19]1. In particular, in [9] singular solutions
of corank 1 and of codimension 1 but of arbitrary index (these have the defi-
ning equation (G,Gw)= 0, compare section 3) are obtained in an efficient way
by solving (1) together with a set of M+1-N scalar equations which
characterize the points where rank TZ=1V- 1.

Suppose Ds involves the derivatives S, Sw""’swr (r=1 in most cases),
then one Newton step for the system (24) needs S{u) and the derivatives
Swju(u)(j=0,...,r). We always used coordinate subspaces for V,W,X,Y and a few
Newton steps for (4) in order to obtain a good approximation to v(w,c)=v(u)
and hence to S{u) from (6). Differentiating (6) with respect to w and u shows
that Swju is of the form

(25) Swju=(I'P)(Tv iju+zj), Jj=0,...,r.
Here we have suppressed the arguments and denoted by K5 all terms which involve
only lower order derivatives of the implicit function v(u). The expressions for

kj getmore and more complicated, for example x =T , «y=T v +T v~
+ Tuvqu'Tuw' The derivatives Vi, are computed from the linear systems

(26) (PT,) Vyiy = -Px5 (3=0,..0r)

which are obtained by differentiating PT(v(u),u)=0. It is worth noting that
the same matrix PTv(v(u),u) appears in all systems (26) so that one LU-
factorization is sufficient. Moreover, our reduction process is essentially
independent of the special form of the defining equation (24).
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