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Half-Stable Solution Branches for Ordinary
Bifurcation Problems *)

W.-J. Beyn, Konstanz

Communicated by K. Kirchgdssner

It is shown that second order bifurcation problems with a positive, autonomous nonlinear-
ity have a smooth branch of positive solutions which tends to infinity. Moreover, this branch satisfies
a stability rule saying that the solutions are stable if the branch turns to the right and unstable if it

turns to the left.

1 Introduction

The present paper is concerned with the existence and structure of global
positive solution branches for the bifurcation problem

(1) - u” = f(u: uls A’) in [a) b]:
agu(a) — ' (@) = g, apu(b) + Bpu'(b) = yp

where fe C!' (R®) and
(2} uBuore=20, o+ >0 (x=ab), a +p >0

For positive f one can guarantee the existence of an unbounded
continuum of solutions ([18], [9], [1], [21]). However, in order to obtain smooth
global branches without secondary bifurcations, usually more restrictive assump-
tions on f are needed (such as concavity, asymptotic linearity [1]).

Typically, these assumptions are not satisfied for chemical reaction problems
with hysteresis where f may be neither concave nor convex with respect to u (cf.
[5], [23], [3]). Starting with an idea of Laetsch [14] we will show that the
autonomous problems (1) (and slightly more general equations) have smooth
global solution branches without imposing growth restrictions on f. A particular

result is

Theorem 1 For A = A, let (1) have a unique nonnegative solution uy which is
Stable. Assume further that

f(u,v,l)>0, fl(u,v,l)>0 Yu 20, UER,I{)}.‘).

*) This paper is an extended version of a part of the author’s work [2].
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Then there exists a Cl-branch of solutions
(u(s), A(s)), s =20, u) =uy, A0) =4
with the following properties

(i) u(s) > 0 1in (a, b), A(s) > 4y fors > 0,
(i) |lu(s) o is monotone increasing and||u.(s) |l + ||u(s){lo + |A(s)|— o0

ass — o,
stable >

(iii) (u(s), A(s))is 5 alimitpoint r & A/ s)y = 0.
unstable <

Here| |, denotes the maximum norm and the subscripts indicate the derivatives
with respectto AeR, xe[a, b] and s > 0.

The following general result is proved in [14]. If u is a solution of (1) with
exactly »n zeroes in (a, b) and if u f(u, ¥, 1) > 0 then

x,(U) <0 < 3, (u)

holds, where x,(u) denotes the k-th eigenvalue of the linearization of (1) at
u(y(u) 1= — 00),

In case n = 0 this inequality shows that the linearization of (1) at #» has at most
one nonpositive eigenvalue. We will call solutions of this type halfstable.

In fact, the solutions on the above branch are half-stable. But in contrast to [14]
we do not try to avoid critical points (i.e. »;(#) = 0) on the branch, which leads
to severe growth restrictions on f, but rather exclude secondary bifurcations
which can be achieved by a positivity condition on f; (cf. Theorem 3).
Moreover, a detailed analysis of half-stable solutions in sections 2 and 3 will yield
the specific properties (i) — (iii) of the branch. In particular, the stability rule (iii)
may be regarded as a global version of a known rule in the neighbourhood of
bifurcation points (cf. [8], [20], Ch. III).

2 Preliminaries on linear problems
Throughout the paper let C/ = ¢/ |a, bl (G eN). Foruve C = C,
g, heR"™ we set

u < (<)v e ulx) < (<) ovx) vx €la, b],

u < (Qvin 2 & u(x) < (<Jv(x) vx e 2 C [a,b],
g < (<)h e g, < (L) A viell,...,n},

um,g) < (w,h)su<v and g < h.

In this section we consider a linear differential operator
Lu=—-u"+pu +qu pgeC
and a boundary operator
3) Bu = (B,u, Byu) = (quia) — Bu' (@), apgu(b) + Pyu'(b)
where
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Be>0 or (B,=0,0a >0), x=ab.
Let us further introduce

e(x) = (x — a)e (b — x)?, [a,b], = xela bl:e(x) > 0
where i, = 0if 8, > 0,i, = 1if B, = 0 (x = q, b).

The operator P = (L, B): C? - C x R?, Pu = (Lu, Bu) is called inverse
monotone (i.m. for short) iff

Pu > 0, ueC?=u>0.

The following well known characterization of this property [17], [22], Ch. II, will
be frequently used in the sequel.

Lemma 1 The following conditions are equivalent
(1) Pisim., L
(ii) there exists ue C? with u > 0, Pu > 0 (u is called a majorizing element),
(i) ueC*, Pu>0=u =0o0ru = KeforsomeK > 0,
(iv) the smallest real eigenvalue A of Pu = (Au, 0) is positive.

By the classical Sturm-Liouville theory [4] the eigenvalue problem Pu =
(Au, 0) has real simple eigenvalues 4; < 4, < 43 < ... with corresponding eigen-
functions ¢; which have exactly (i — 1) simple zeroes in (a, b), i € N. Note that ¢,

can be scaled such that ¢, > e.
Lemma 1 characterizes the case A; > 0 in terms of monotonicity. A correspond-

ing result for the case A, > 0 is the following

Lemma 2 A, > 0 holds if and only if
“ there exists X € (a, b) such that (Lv, B,v, v(x)) is i.m. in [a, X] and
) (Lv, 0(R), Byo) is i.m. in [%, b].
Proof. Without loss of generality we may assume
(5) @, > 0 in(a, X), ¢, < 0in (X, b) forsome x €{(a, b).
If A, > 0then Ly, > 0in (a, X), By, = 0, 9,(x) = 0and L(—¢,) > 0in (x, b),
—@5(xX) = 0, By(— @) = 0. Hence, by Lemma 1 we may put X = X in property
(4).

On the other hand let (4) and A, < 0 be satisfied. In case ¥ < x we have (Lv, v(x),
Byv)isi.m. in [x, #] from (4) and Lemma 1. But this contradicts (5) and

L(DZ = AZ(DZ 2 O in [)E, b]’ WZ(f) = O! Bbﬂﬂz = O'
Similarly, the case x > X leads to a contradiction.

Remark. The result of Lemma 2 is partially contained in [13] where splittings of
the interval [a, b] are used to estimate solutions of non inverse monotone

problems (see also [22], Ch. IV).

Definition 1 P = (L, B) is called half inverse monotone or h.i.m. if it satisfies
one of the equivalent properties in Lemma 2.
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If Pis h.i.m. we consider the non void set

J = {xela, bl,: (Lv, B, v(x))isi.m. in [a, x] and
(Lv, v(x),Bpv) is i.m. in [x, b}].

Here (Lo, B, v(x)) (resp. (Lv, v(x), Byr)) is always assumed (o bei. m. in [a, x]
if x = a (resp. in [x, b] if x = b).
Using Lemma 1 it is easily seen that J is an interval which is openin [a, b],. We
will call J the splitting interval of P.

If we use ¢, as a majorizing element in Lemma 1 we obtain

(6) Ay 20=J=|qb],.

In general, the endpoints x,, x;, of J can be determined as the largest and
smallest zero of certain fundamental solutions of L. More precisely, let v, and v,
be fundamental solutions of L which satisfy v(a) = B,,v'(a) = q,and v(b) =
By, v'(B) = —ay, thenx, = inf {x € [a, b): v, > 0in (x, b)}, x, = sup X € (a, b]:
v, > 0in (@, x)} (cf. [22], IV, Prop. 4.5). Moreover, the theory of initial value
problems shows that x,, x; depend continuously on the coefficients p, g of L.

The following lemma will be the basis for the stability rulein Theorem 1
(iii).

Lemma3 Let P = (L,B) be h.i.m. and let reC, r ; 0. If (v, ))eC2 x Risa
nontrivial solution of

(7) Lv —ur=0,Bv =0
then v(x) + 0 vxeJand
(8) sgn (A,) = sgn(u) sgny(v),

where sgn ;(v) denotes the sign of v in J.

Proof. Suppose that »(¥) = 0 for some X € J. Since it is no restriction to assurne
u = 0 we find

9 Lv=ur 20 inla, x], B,v = 0, v(x) =0
©) Lv =ur >0 inlxb], v(x) =0, Byv=0.

Therefore, XeJ yields v > 0 and v'(x) = O (note that f; > 0, By = 0 in case
xe{a, b}). If u > 0 then either ur % 0in [a, ¥] or ur > 0in [x, £] holds. Using (9)
and Lemma 1 (iii) we conclude v’ (x) # 0, a contradiction. Hence y = 0 and also
v = 0 because of (9) and x €J. But (v, 4) was a nontrivial solution of (7) by our
assumption.

For the proof of (8) it suffices to consider the case v > 0 in J and show that

Ay=0eu=0 and 4, >0e u>0

hold.

If u = 0 then (L, B) has the eigenvalue 0 and 4; = Osince 4, > 0. If 4, = 0 is
assumed we select ¥e Jand let w = v — v(¥) @,(X) ~! ¢,. The pair (w, ) is then
a solution of (7) satisfying w(x) = 0 and we conclude w = 0, u = 0.
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In the case 4; > O the operator Pis i.m. and we already know u # 0. Then it
follows from (7) and Lemma 1 that sgn(u)v > 0 in (@, &) and hence u > 0.
Finally, let 4 > O be satisfied. We choose ¥ € J and find (9) with “v(x) = 07

replaced by “v(¥) > 0”. Thus v > 0 holds and Lv = ur i 0,Bv =0.4, >0is
now a consequence of lemma 1.

3 Half-stable solutions

We consider the boundary value problem
(10) T(ul A') = (_u” + pu’ - f(u: u,: A-)a Bu - (ya’ yb)) = O
where B is given by (3) and satisfies (2). Moreover, we assume

B.r(a) < a, ifa, > 0,

1 '
) peCLP <0, By > —a, ifa, > 0.

T is considered as an operator mapping C? X R into C x R?, the respective
norms on these spaces are

IGe, Mlz = Ju"llo + ' llo + [Jullo + 4], (u,4)eC? X R
1w Do = llollo + llg o> (v,g)eC x R?,

where | ||, always denotes the maximum norm.

As usual (cf. [11], [8]), a solution (i, 1) of (10) is called stable if the
linearization 7T, (u, A) has only positive eigenvalues or equivalently if it is i.m.
(u, A) is called unstable if T, (u, A) has a negative eigenvalue.

Definition 2 A solution (u, A) of (10) is called half-stable if T,(u, A) has at most
one nonpositive eigenvalue or equivalently if it is h.i. m.

(12)

The significance of this notion is demonstrated by the following theorem
the first part of which is due to [14] (for constant p). Although our proof here
employs monotonicity methods the essential idea is the same as in [14]: the
linearization of (10) can be studied by differentiating the differential equation in

(10).
Theorem 2 Let (u, A) be a solution of (10) such that f(u, u', 1) 0.
Then (u, )) is half-stable and u > 0 in [a, b],.
Moreover, if J denotes the splitting interval of T,(u, 1) there exists X € |a, b]
which satisfies u(X) = Mab)]< u and either X € J or (X € {a, b}, Bz = 0, yz > O).
la,

Proof. Let (L, B) = T,(u, A), then by differentiating in (10) we obtain
Lu = —u" + pu" — fu(u,u'A) ' — fyu,u',A)u' = — p'u’.
The pair (- D? + pD, B) is i.m. du¢ to (2). Thus Lemma 1 and (10) yield

u'(a@) >0 ifp,

. )’ﬂ = 0’
(13) u>0 inla bl, u'(b) <0 if B,

?b=0.

o
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Moreover, the function

X
(14) exp (— §p(O) dy) u'(x) is monotone decreasing in [a, b).

a
Next, we choose an x € [a, b] such that u(X) = Max u.
[a, b]
Because of (14) we may require in addition that

(15) x=a ifu'(@ <0 and x =0 ifu'(b) 20

holds (note that the case ' (@) < 0 < u'(b) implies ¥’ = 0 and hence contradicts
S, u', 1) # 0).
In case u'(a) > 0 we find

a,>0,x>a,u 20 inla,x], Lu' = —p'u’ 20 in[a x]

and B,u' = (o, — Bp(a)) u'(a) + B, f(u(a), u'(a), A) > 0.

Thus (Lv, B,v, v(X)) is i.m. in [, X] by Lemma 1.

Similarly, by using — 4’ as a majorizing element, (Lv, v(X), Byv) turns out to be
iom. in [x, b]if u'(b) < 0.

Hence (i, A) is half-stable (cf. (15)) and we may conclude X € J unless X € {a, b},
B; = 0. However, in the latter case y; > 0 has been excluded and yz = 0 is
impossible because # cannot attain its maximum in X due to (13).

Remark. Ingeneral Theorem 2 is false if f depends explicitly onx (cf. [14]). As
an easy example consider the linear problem

—u" = Au + (n? — V)sinnx =:f(x,u, A) in[0,1], u(0) = u(1) = 0,

where f(x,u,A) > 0 in (0,1) at the solution u#(x) = sin(mx). Note that the
linearization at # can have any fixed number of negative eigenvalues for a

suitable choice of A.
In [15] half-stable solutions are guaranteed by a different method which also
works for nonautonomous problems but needs growth conditions for f.

Let N and R resp. denote the null space and range resp. of a linear
operator. Further, let T: U x R — Y (U, Y Banach spaces) be a C!-mapping.
Then a solution z = (u, A) of the equation

Tu,A) =90

will be called simple iff the total derivative 7 (z) = (T,(z), T,(z): U X R > Y
satisfies

dim N(T'(2)) =1, codim R(T"(z)) = 0.

If T'is defined by the boundary value problem (10) with norms and spaces
as given in (12), then T,(u, A) is always Fredholm of index 0. Hence (u, 1)
is a simple solution of (10) iff either N(T,(u, 1)) = {0} or dim N(T,(u, 1)) = 1,
T;(u, A) ¢ R(T,(u, 1)). (u, A) is called isolated in the first case and a limit point
in the second case (cf. [12] for these notions).
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A branch of solutions of (10) in C? x R will be called simple if it consists of
simple solutions and has a parametrization z(s), s, <5 < s; which is
continuously differentiable w.r.t. the norm (12) and satisfies

Z5(8) :—jf(s) #0 forsy; <s < sy.

With these notations we may summarize some results from [8], [12] in the
following

Lemma 4 For any simple solution z, = (1, A¢) of (10) there exists an open neigh-
bourhood V of zy in C* x R, such that all solutions of (10) in V are given by a
simple branch z(s) = (u(s), A(s)), |s]| < 6, z(0) = z,.

Let us introduce the norm
[ ) ly = lullo + Ju'llo + 1A, @A) eC' x R.

If z(s), sy < s < s, is a simple branch of solutions we can reparametrize z(s) in
an obvious wayas y(¢), 7, < t < ty where y(;) = z(s) (i = 0, D) and |y ()|, = 1
fori, < t < ¢.

This will be called the arc length parametrization.

Theorem 3 Assume (2), (11) and let (1, A) be a solution of (10), where

fa,u,A) 20, fiwu,r)3Zo.

Then (u, A) is a simple solution and hence a unique simple branch of solutions of
(10) passes through (u, ).

Proof. Since (%, A1) is half-stable by theorem 2 it suffices to consider the case
where 7,(u,A) has A, = 0 as its smallest eigenvalue. Let ¢, > e be the
corresponding eigenfunction. If (u, A) is not a limit point we have 7T, (u#, 1) v =
(f1(e, u", 1),0,0) for some ve C% Thus v + Ko =0 holds for some K > 0 and
T,(u,A) (v + Kp)) = (f(u,u’,1),0,0) = 0, which by Lemma 1 leads to a
contradiction.

4 The existence theorems

Let us consider (10), (2) again. A pair (x, A)yeC? x 'R is called a (s'trict)
subsolution of (10) if T(u, 1) € 0(< 0) and it is called a (strict) supersolution of
(10)if T(u, 1) = 0 (= 0) (cf. [1, §9D).

In our existence theorem sub- and supersolutions will be used to control
the global solution branch as described in the following lemma.

Lemma 5 Let {4, A] C R and let (u(s), 1(s)), s € [0, 1] be a continuous solution
curve of (10) which satisfies A(s) € [A, A] for s €[0,1]. If (v(1),A) € C?xR, e
[4, 1] is @ continuous curve such that each (v(1), A) is either a strict subsolution
or a stable solution, then v(A(0)) < u(0) implies
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v(A($)) < u(s) vs € [0,1] and

(16) v(A(S)) < u(s) inla, bl, if v(A(s)) is a strict subsolution.

The same statement holds with “supersolution” instead of “subsolution” and
with all inequalities reversed.

Proof. By the mean value theorem and our assumptions we have
(17) 0 < T(s), 4(s)) — T(v(A(s)),  As)) = Q(s) (u(s) - v(A(s)))
with suitable linear operators

Q(s) = (-D* — p(s) D — q(s) I, B), p(s), q(s) € Cfor s € [0,1].
Let us define

§ = sup {s € {0,1]: v(A(¢)) < u(t) vt e [0,s]}

and o = v(A(S)), # = u(S). Then v < w holds. :
If (v, A(5)) is a strict subsolution we have Q@) —v) >20andhence 4 — v > Ke
for some K > 0 by Lemma 1. In case § < 1 this contradicts the maximality of S.

Now let (9, 1(5)) be a stable solution. If # — v > Ke for some K > O then
we obtain § = 1 as above. Otherwise there exists X € [a, b] such thati#(x) = v(x),
u'(x) = v'(x), which implies # = ©. Thus Q(§) = T,(#1, A(§)) isi.m. by our
assumption and a perturbation argument using Lemma 1 shows that Q(s) is i. m.
for|s — §| < & s€[0,1] (¢ > O sufficiently small).
Then (17) yields

u(s) = v(A(s)) forl|s — §i< ¢ s€[0,1]

and hence a contradiction if § < 1.

The strict inequality in (16) follows easily from (17) and Lemma 1, Finally, the
results for supersolutions are obtained from those for subsolutionsif we replace
S, u', 1)in (10) by —f(—u, —u', 1).

Theorem 4 Let (2), (11) be satisfied. Further, for some Ay € R let (v(1), 1) and
(w(A),A), A = Ay be continuous curves of sub- and supersolutions which are
strict if A > Ay(we also allow for w, = oo forall A > Ay). Assume that (10) with
A = Ay has a unique solution uy in the interval v(dy) < u < w(ly) and assume
that (uy, Ay) is stable. Further, let f satisfy

(18) f(.y: U:A) > Oaf},(.y, U,/l) > OformA <y < Ml’ UER,A > J‘O

where m; = Il\/Izn v(A), M, = Max w(A).
a, b}
Then there exists a simple solutton branch (u(s), A(s)), 0 < s < ®9f (10) which

satisfies (u(0), A(0)) = (ug, Ag), u(s) > 0 in [a, b], for s > 0 and which has the
Jollowing properties.

(D) v(A(s)) < u(s) < w(A(s)) in[a, bl,, Ay < A(s) fors > 0,
(i) [[(u(s), ANy = o ass - oo,
(iii) the solutions (u(s), A(s)), s > O are half-stable and in particular
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Stable
(u, L) (s)is S alimit point ¢ & A/(s)
unstable

0,

ALV

(iv) |ju(s)]lp = Max u(s) is monotone increasing. In addition, it increases strictly
la. b}
if neither (f, = 0, y, > 0) nor (8, = 0, y, > 0) holds. Moreover
u s) > 0inla, bl if A,(s) 20,5 > 0.

Proof. Since (1y, Ap) is a stable solution there exists a stable initial branch of
soluttons which after a parametrization by the arc length (as in sect. 3) may be
written as

z2(s) = (u(s), A(s)), 0 <5 < g where g5 > 0 and

(19) z(0) = (ugy, Ag), A(s) > 0 for0 £ s < &.

Let us now define

s* = sup {¢ > 0: there exists a simple branch of solutions with arc length
parametrization z'(s), 0 < s < ¢ such that
ZI(O) = (Uy, AO)’ (;Lr)s ©0) > O}

Clearly, s* > g > 0 holds because of (19). Moreover, any two branches z", z°2
of the above kind coincide in [0, ;] n [0, t,] as follows from the local uniqueness
of simple branches (Lemma 4). Hence we can construct a simple branch of
solutions z(s) = (u(s), A(s)), 0 < s < s*satisfying z2(0) = (u,, 4¢), A;(0) > 0 and
this branch coincides with the mmal branch (19) in [0, £,]. We shall now prove
assertions (i) — (iv) for the parameter interval [0, s*) instead of [0, oo).

Proof of (i). The first inequalities of (i) will follow from Lemma 5 once we have
shown that A(s} > 4,4, 0 < s < s* In order to prove this, let us assume that there
exists a least § > &, where A(§) = A,. Then by Lemma 5 and our uniqueness
assumption u(§) = u, holds. Hence from Lemma 4 we may conclude that the
branches z(¢) and z(§ — ¢), 0 < ¢ < § are identical, which contradicts the sim-
plicity of the branch. By a similar reasoning it can be seen that the branch z(s),
0 < s < s* has no double points.

Proof of (iii). Using (i), (18) and Theorem 2 we find that the solutions (u (s)
A(s)) are half-stable. In addition, we will show

(20) wu(s) >0 inJ(s),0<s <s*

where J(s) denotes the splitting interval associated with Tuﬂ(u _(S), A()) = (L(s),
B). For each s € (0, s*) the tangent vector (u,(s), A,(s)) satisfies

(21)  L(s) uy(s) — A,8) fr(u(s), u(s), A(s)) = 0, Buys) =0

where f; (u(s), 1, (s), A(s)) ; 0 holds because of (18) and (i). Now (L(s), B) is
i.m. and A (s) > 0 for 0 < s < & and hence we have by Lemma 1

u (s) >0 infa, bl.for0 < s < &,
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which proves (20) for 0 < s < g,. But then (20} also holds for 0 < s < s*since
the endpoints of J(s) depend continuously on s and u,(s) is of onesign in J(s) by
(21) and Lemma 3. Moreover, the sign relation (8) implies the stability rule in (iii).

Proof of (iv). The second assertion follows from (6) and (20). Consider an
arbitrary s € (0, s*), then Theorem 2 ensures that either || u(s)|, = Max u(s) =
[a, D]

u(s, x) for some x e J(s) or ||u(s) o = u(s, ¥), X € {a, b}, fz = 0,7 > 0.

Using (20) we obtain for § > 0 sufficiently small ||u(s)|lo = u(s, X) < u(s + 6, X)
< ||lu(s + d)|qin the first case, and | u(s) llo = vz = u(s + &, X) < |lu(s + )|
in the second case.

Proof of (ii). Let us assume that ||u(s,) ||, is bounded for some sequence s,, /s*.
By a standard compactness argument we have a subsequence N' C N and a solu-
tion (u* A *) of (10) such that

(22)  [(u(sy), A(sy)) — W A%)[; >0 asn—> o, neN.

Moreover, 4, < A* v(1* < u* < w(i*) and hence our assumptions and
Theorem 3 guarantee a unique simple branch of solutions with the arc length
parametrization y(z) € C* x R, [t] < 6, y(0) = (u* A%).
From (22) we have z(sy) = y(Zy) for some|#y| < J and some N eN’ sufficiently
large. After possibly changing the orientation of ¥(¢#) we may join the branches
z2(s), 0 < s < syand y(¢), ty < ¢ < 6. The maximality of s* then shows that
y(t), |t| < dis a subbranch of z(s), 0 < s < s*and hence that z(§) = (u* A*) for
some § € [0,5%).
We thus obtain double points for z(s) near z(§) by using (22) and the local
uniqueness from Lemma 4.
This leads to a contradiction (cf. proof of (i)).

Let us finally note that s* = oo follows from (ii) and the estimate

+
0

1Ges), sy =

iux,s(t) ds + u,(0)
0

ius(t) dt + u(0)
0

0

+

12, dt + 2(0)
0

< }H(us(t), As(1)) || df + const = s + const.
0

Remarks. Theorem 1 is obviously a special case of Theorem 4.

If we assume f; (¥, v, A) < Oinstead of > 0in (18) then the assertions (i), (ii), (iii)
are still valid whereas | u(s)|, is now (strictly) monotone decreasing.

The special assumptions for the starting point (u,, Ay) frequently occur in the
applications. However, it is clear how to modify Theorem 4 if we start with an
arbitrary solution u,, v(dg) < uy < w(dy) and continue the branchto both sides
as far as the positivity of f and f; is guaranteed.

Let us finally note that we can assert

23)  fluts)lo + [A(s)| > o ass - o

if fis independent of ' or — more generally — satisfies a Nagumo condition [21]
uniformly on bounded A-intervals.
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Theorems 1 and 4 deal with the so called forced case. The case of bifurca-
tion from the zero can be treated in a similar way. To be precise, let us assume
that for some 4, € R

24) feC*(R?,f(0,0,4) =0 VvieR,y,=y,=0,

25 T,0,Ap) = (-D* + (p — Jurs (0,0,40)) D — £,(0,0,A 1, B) has the
smallest eigenvalue 0 (with positive eigenfunction ¢),

(26) T,;(0,4p) ¢ & R (T,(0, Ap)).

Then a C'-branch bifurcates from (0, Ap) in the direction (¢, 1) for some ueR
(cf. [7]). Therefore, this branch (u(s), A(s)) initially satisfies u# (s) > 0 in [a, b],
and we can employ a continuation procedure as in the proof of Theorem 4.
Although the zero is no longer a strict subsolution now, the branch cannot
reattach the trivial branch since |#(s) ||, is strictly monotone increasing.

Theorem 5 Forsome Ay > A, let (2), (11), (24), (25) hold and assume that w(i),
A = Ay is a continuous curve of nonnegative, strict supersolutions (or w; = oo,
A = Ay). Moreover, for A = Ay let u = 0 be the only solution of (10) in the
interval 0 < u < w(ky).

If f satisfies
Q7 fO,v,4) >0,f,(0,0,A) >0for0 <y< h[d%)]( w(d),veR, A > A,
a,

(28)  f,1(0,0,49) @' + £,,2(0,0,4p) ¢ # O,

then there exists a simple solution branch (u(s), A(s)), 0 < s < o of (10) with
(u(0), A1(0)) = (0,4p), A(s) > Ay fors 2 0and 0 < u(s) < w(A(s)) inla, b], for
s> 0.

Moreover, the assertions (ii), (iii) and (iv) of Theorem 4 hold.

Proof. We merely note that (24), (27) and (28) imply 0 < 1}{101 t=1f (e, e, Ay)

= f1,u1(0,0,40) @' + £;.,(0,0, Ag) » # 0 and hence condition (26) by an argument
as in the proof of Theorem 3.

Remark. In a neighbourhood of the bifurcation point (0, 4¢) the stability rule
(iii) of Theorem 5 is known in more general situations (see e.g. [8], Th. 1.16 and
note that the quantity »'(do) in [8] is negative under our assumptions). If we
assume f,(v, v, A) < 0 in (27) then in accordance with [8] we have to reverse the
inequalities in (iii) while all the other assertions remain unchanged.

S Applications
The range of applications of Theorems 4 and 5 is quite.clear and we just
briefly mention some problems which frequently occur in the literature.

Example 1. (Exothermic catalytic reactions with diffusion and convection [5],
[23], [3], Kap. VII, VIII)
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—u"” + vu' = u(f — u)exp (— T—E—;) in [0,1], u(0) = u(1) = 0,

where v, u, B, v are nonnegative constants. The sub- and supersolutions are # = 0
and ¥ = B and any of the parameters y, §, y may be used as the parameter 4 in
Theorem 4 with A, = 0. Note that ||z (s)]|, is strictly monotone increasing if A =
¢ or A = B but strictly monotone decreasing if A = y. Moreover A(s) — o0 as
s — oo in any case. Finally, we remark that our results complement those of [23]
on the existence of at least three different solutions for this problem. By an
additional uniqueness argument it is then possible to rigorously prove the
hysteresis effect for certain values of the parameters. Related nonlinearities in
thermal ignition problems such as

/uexp< 7 ) v =0 (cf. [10])
Y+ u

can be handled in much the same way.
Example 2. (Enzyme reactions with diffusion [16], [3], Kap. IX])

v" = AvR(v)in [0,1], R a nonnegative rational functionin R
via) - Bv'(a) = y, av(b) + v'(b) =0, wherea,f20,y > 0.

By the transformation ¥ = y — v we obtain the standard form

—u" = Ay —u)R(y — u) in[0,1], u(@) — pu'(a)= 0,
au(b) + u'(b) = ay.

Now Theorem 4 immediately applies with v(4) = 0, w(d) =y, 4= 0, uyy = 0.
Example 3. (Buckling of rods [6], Kap. 1II, [19], {3], Kap. 1I)

—u" = Asinuin [0,1], #'(0) = u(1) = 0
—u" = du(l + wH¥?in[0,1], u(0) = ' (1) = 0.

In both cases we may apply Theorem 5 with 4, = n2/4, Ay = 0. The supersolu-
tions in the first case are w(A) = n whereas w(A) = oo in the second case.
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