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For a general class of finite difference equations approximating linear two-point boundary
value problems we prove the convergence of the discrete Green’s functions to the continuous
Green’s function. Using this result we obtain various strong stability properties of the finite
difference method, such as the convergence of stability constants for linear problems and of
contraction constants for nonlinear problems.

1. INTRODUCTION

There is a well developed theory of stability ([2, 9, 13, 14, 15]) for finite
difference approximations to linear two-point boundary value problems

k-1
Lx=x®+ Y pxP=r in [a,b] (k=1),
j=0
(1.1)
(Rx), = z (oc,Jx(’)(a)+ﬁljx(’)(b)) 0 (=1..k,
o
where r,p;e C[a,b](i=0,. —1).

If we write the discrete equatlons in the form (see Sectlon 2 for details)

thh=r;,, thh=0 (h:mes‘h Size) (1.2)
73
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then typical stability inequalities are
Ixalli—1 SC (|Laxall« + ||Rexallo) for all  x,, (1.3)

where || ||, denotes the maximum norm and || ||,-, the maximum norm
which involves the difference quotients up to the order k— 1. The weakest
norm || ||, —known so far—for which (1.3) holds is the discrete L;-norm
(see Esser [9,11]).

If (1.1) has a unique solution it may be represented as

x(t) =_If G(t, s)r(s)ds (1.4)

where G is Green’s function. Similarly the solution of (1.2) may be written
as

x(O=hY Gyt s)rs). (L.5)

whereby the discrete Green’s function G, is defined.
The purpose of this paper is to establish the convergence

Gi(t,5)>G(t,s) as h—-O0 (1.6)

with respect to various norms. In particular, for each fixed se(a,b) this
convergence is uniform in ¢ (if k= 2). The precise statements will be given
in Section 3.

The problems encountered in the proof of (1.6) become apparent from
the fact that y(f)=G(s,s) may be regarded as a solution of the weak
boundary value problem

Ly=48,Ry=0 (6,=d-distribution in s), (1.7)

whereas y,(t)= G,(t,s) is a solution of

1o .

Lo=2, Rn=0 @0={")" {1 17} 8)
Indeed, the stability inequalities (1.3) mentioned above, even with the
weakest norm || ||, (see [5]), are not sufficient to prove that (1.8) is a
convergent discretization of (1.7). As we will show in Sections 4 and 5
these difficulties can be overcome by the use of suitable weighted
maximum norms on both sides of (1.3).



DISCRETE GREEN’S FUNCTIONS 75

In Section 6 our results will be applied to the convergence of stability
constants for linear difference equations and of contraction constants for
nonlinear equations. We also give some numerical results for boundary
value problems with non smooth solutions such as (1.7). These confirm the
convergence result (1.6). However, the question of determining an order of
convergence in these problems is still unresolved.

This paper extends some results which were stated without proof in [3].

2. NOTATIONS AND BASIC ASSUMPTIONS

Let H be a null sequence of mesh sizes. For each he H we assume an
equidistant grid

Jv={ay, a,+h,.. ,by,—h, b}
which satisfies
lay—a| +|b,—b|<Ch for Aall he H and some C>0. (2.1)
Moreover, we have an interior grid
Jy={ay=a,+kha)+h,..., bp—h, b)=b,—k,h},

where k ,k,eN are independent of h and satisfy k, +k,=k. Let X, and
X9 denote the space of real valued functions on the grids J, and Jjy

respectively. )
Then our difference equations (1.2) are determined by r,e X7 and by

linear operators

L, X,—X}J, R,: X,—R-

Hence (1.2) is a system of |J,| linear equations for the |J,| unknowns x,(),
ted,.

The discrete Green’s function G,(t,s), teJ,, se J§—if it exists—is then a
4| % (|J,|—k) matrix defined by (1.5). Let us now choose an interval [4,b]

such that
Jyula,bl=(db) forall heH (2.2)

and let us extend the coefficients p; in (1.1) continuously to [a,F]. We then
have an extended operator

k—1
L=8"+M:C"a,b]—-Cl[a,b], where M=) p;&. (2.3)
j=0 _
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If the Green’s function G for (1.1) exists, then a careful inspection of [8,
p. 190] shows that G may be extended to [d, b] x [a, b] with the following
properties:

3iGeC([a,b] x[a,b]) for j=0,.. . k—2

(6,=partial derivative with respect to f), the restriction of G
to the domain a<t<s<b, a<s (resp. a<s<t<b, s<b) has
continuous derivatives & G and &¢G,

& 1G(t+0,0)— 0k 1G(t—0,00=1 Vte[ab],

LG(-.: =0 i "B g
.5)=0 in [a ]\‘S’} for se[a.b]. (2.4)
RG(-.5)=0

Note that & 'G(a—,a) resp. & 'G(b+,b) has to be inserted when
evaluating RG(-,a) resp. RG(-,b).

Before we can state our main assumptions on the difference scheme (1.2)
we need some further notation. For real functions

x:D(x)cR-R

we set

[x], =restriction of x to D(x)nJ,,

[x]? =restriction of x to D(x)nJY,

Ex(t) =x(t+h) if t+heD(X),

Ax(t) =h {E—-Iyx(t) if t,t+h,... t+iheD(x),

J .
[x[}j.0 = Y, sup{|A’x(r):te R such that ¢, t+h,...,t +iheQd}
i=0

and |lx|; =|lx|l;.pe if ReDx)<J,.

By analogy to (2.3) we assume a decomposition
Lh=PhE_k1Ak+Mh (2'5)

with linear operators P,: Xp—XP, M,:X,— X} (cf. [2]). Our assumptions
on (1.1) and (1.2) read (cf. [4])
A) (boundary value problem)

the homogeneous equation (1.1) has only the zero solution,

B) (boundary conditions)
Bl: R, is consistent with R, i.e.
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|Ru[x],—Rx|[o0—0 as h—0, VxeC* ‘[ab],

B2: R, is locally || ||¢-,-bounded, ie. INeN, C>0s.t.
”thh”0§ C”xh”k*1,{ak,....a,,+Nh,b,,—-Nh,‘..,b,,}
Vx,e X,, heH,

C) (terms of lower order)

C1; M, is consistent with M, i.e.
M, [x],—[Mx]0]|o—0 as h—0, VxeC* ![q,b],
C2: M, is locally || ||s—,-bounded, i.c. 3K eN, C>0 s.t.
.thh(t)l = C“xh“k—l,J,,n {(t-Kh, ... ,.t+Kh
VieJ?, x,eX,,heH,
D) (principal term)

D1: P, may be written as

g{E)xay), t=ay+jh, j=0,...,0—1
Px(t)=< P(E)x,(t), t=af +oah,... b —dh
g E™ " x,(by), t=by—jh, j=0,..,d—1

where P(E)= ) &E'x,deN) and g,4;

i=—«

are polynomials independent of 2 which satisfy the consistency
relations P(1)=1 and

gil)=q(1)=1 for j=0,..,a—1, i=0,...,0—1,
D2: the root conditions hold:
P(z)#0 VzeC,iz|=1;

let o; j=1,...,d (resp. 6;,j=1,...,d) denote the roots of z*P(z)
(resp. z8P(z 1)) inside the unit circle with multiplicities v; (resp. 7;),
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then

d d
x= Y v, &= y, 0; and the matrices

are nonsingular.

These somewhat technical assumptions become more transparent upon
noting that (B), (C) and (D1) are satisfied for almost every reasonable
difference scheme (with the exception of schemes which use the so called
boundary extrapolation [9, 15]). Moreover, B2 and C2 will follow from Bl
and C1 by an application of the uniform boundedness theorem if we
assume that R, x, (resp. M, x,(t)) only depends on the values

x)(8), SE€{ays...,a,+ Nh, b,—Nh,....b,}
(resp. x,(s), se{t— Kh,...,t+ Kh}).

Finally, the crucial condition D2 has been verified in [3,10] for a broad
class of schemes.

3. THE MAIN RESULT

Let us briefly consider the special case Lx=x" where the difference scheme
(1.2) is generated by a,=a, b,=b, k, =k, =1 and the formulas

X"(t)~h ™ 2(x(t — h) — 2x(2) + x(t + h)),
x'(@)~h~Y(x(a+h)—x(a), x'(b)~h1(x(b)— x(b—h)).
Then it is easily seen (cf. [12, 16, 17]) that
G,(t,5)=G(t,s) Vtel,, seJ? (3.1)

holds. However, as Lorenz [16] has shown, if one uses a difference
formula of higher order for x'(a) instead, then ‘

|Gut, a+21)— G(t,a+2k)|2C>0  Viel, heH
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occurs while (3.1) is still valid for points a+ Nh<s<b— Nh (N large).

Hence there is no convergence for the columns of the discrete Green’s
function which are close to the boundary and the best result we can
expect is for columns G,(-,s), s€J, where

Jy={seJy:|s—al,|s—b|=Ch},

2

C >0 sufficiently large.
Our main theorem only states the convergence for the slightly smaller
set

JE={sel}:|s—a

|s—b|=hIn(r™1)}.

Here the In(h™') term is caused by the fundamental solutions of the
difference operator P, from D1 in our stability theorem below. In fact, if
the difference scheme is compact ie. P,=identity for all h, then some
modifications of our proofs show that J¥ may be replaced by J,. But we
do not know whether this is true in general.

TueOREM 3.1 Under the assumptions (A), (B), (C) and (D) there holds

Max |Gy(-,5)— [G(-» I sflu-1.,~0 as h—0, (3.2)

seJ¥
where
Xalle - 1.s=xalle—2 + [|A* 2 x4lly,  for  x,€X,,

». = Max l-y—"g-]:)—':tesﬂ for y,:QcJ,»R.
: wy(t)

vh

Furthermore the weight function w, is of the form
w()=1+h""c" '3 teR
where k, o >0 are constants which satisfy (compare D2)
o, |[6]< o<l for i=1,...4, j=1,...d
0<k=Min(1, —In(o)). (3.3)

As an immediate consequence of Theorem 3.1 we have the following.
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COROLLARY Let (AHD) be satisfied, then

Max||Gy(-,5)—[G(-,)]yi-2—0 as h-0(k=2) (3.4)

F
seJh

holds and for every ¢>0

M?}“Gh('as)‘[G('sS)]hHh1.,1,,\15 s+ 0 as h—0. (3.5)

SeJy

(3.5) follows from Theorem 3.1 and the estimate
w(<1+h™*6" *<C for |t—s|ze heH.

The proof of Theorem 3.1 will be based on special consistency and
stability theorems for Eq. (1.8) where §'eX}). For a gid function
Y@y ... by—vh} >R let us define the summation operator I (. [4]) by

(Zylay)=0

Ey)O=h Y y) for t=a,+h,. ., by—(v—1h (3.6)

ted
t_ﬂ_t—hh

and the weighted norm

(3.7)

HthE.sz “zyh

Wy

with || ||,. as given in Theorem 3.1. Note that || ||z, is a norm weaker
than any discrete L,-norm (1 £p < o0).

THEOREM 3.2 (Consistency) Let (B), (C) and D1 hold, then

Max {|LLG(, 14— 8., +IRLGC . )lfJo} >0 (3.8)

as h-0.

THEOREM 3.3 (Stability) Assume (A), (B), (C) and (D), then there exist
C>0, hg>0 such that

Hx"Hk—1,s§c{”thh\HE,s+”thh”()} (3.9

holds for all x,€ X, seJF,h<h,.
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Theorem. 3.1 now follows from Theorems 3.2 and 3.3 when (3.9) is
applied to x, =[G(-, )]s —Gy(", ).

4. PROOF OF THE CONSISTENCY THEOREM

Our first auxiliary lemma shows that the discretization error of the
difference operators P,, M,, R, in (1.2) tends to zero uniformly for a certain
class of functions.

Let us write x e C/(Q) for real functions

x:[@,6]->R with x|qaeCiQ),

where Q is a finite union of closed subintervals of [4,5] and let

J
Ixlli.o= X sup {x*0)]: 1€}, |lx]]; = [x]|.i0.n (4.1)

Usually there should be no confusion with the corresponding norms for
grid functions as defined in Section 2.

LEMMA 4.1 Let (B), (C) and D1 be satisfied. Then there exists a null
sequence p, (he H) and C>0, N eN such that

IMx(t) — Mh[x]h(t)| §Ph||x||k,[r—xh,z+xm
Vxe C¥[t—Kh,t+Kh], teJp, he H, with K from C2,
||Rx—R,,[x],,”_S_p,,Hka,Qh VxeCHQ,), he H (4.2)

where Q, =[Min(a,a,), Max(a,a,;)+Nh]u

[Min(b,b,)— Nh, Max (b, b,)] with N from B2, (4.3)
|x®Xt) — P,E “HAMX](O|SC sup  x®(0)—x®(7)|
lt~t| S Nh
VxeC[t—Nh,t+ Nh], teJ?, heH. (4.4)

Proof Let us first prove

IEMx1 — MyLxillo S pillx]le  ¥xe€C*[a,b], heH. (4.5)
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(4.2) will then follow from C2 and from an application of (4.5) 1o a smooth
extension of xe C*[t—Kh, t+ Kh].

Let us assume on the contrary to (4.5) that there exists a subsequence
H’'c H and a sequence x"e C*[a,b], he H', such that

”xh“k:L

ILMx"]) — M, [x"])/|[o=C>0 VheH'
Then we have
llx —x*||;- ;>0 (he H" = H') for some xe C*™'[4,b]
and by Cl1, C2
ML) — I T30 < || MALx" — xTalo
+[[M,[xT — EMx R0 + [[EM G — x5 o
< CYE" —xTulle— 1+ | ML0xT — EMXTR] + [ = %1} -0

a contradiction.

(4.3) follows along the same lines from B1, B2.

The proof of (4.4) will only be given for te{ap +ah,..., b)~dah}. With
suitable #,, [t—#»,|< Nh we obtain from D1

It — PLE S AMLxT 0] = k0 — Y Exin)|

1= —a

< Z 2| [x®(e)—x®(n)- Q.E.D.

1= —a

The following lemma is an easy consequence of the mean value
property of A’. Note that the norm (4.1) can be extended in an obvious

way to C/7' functions x, for which xY~ Y is piecewise continuously
differentiable.

Lemma 42 Let xeC'™'[a,b](j=1) and xY~V be piecewise continuously
differentiable, then

[[eSA[P <jlixl;- (4.6)

Proof of (3.8) Using Lemma 4.1 and (2.4) we find
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Max ||[R,[G(-, 5)]4/|o =Max ||R,[G(-,5)],— RG(", )0

*k *
seJk selp

<ousup||G(-, )|, =0 as h—0,

seJ¥

since Q, N J¥ = @ for sufficiently small he H.
Let v}, = L,{G(+,s)],— 6" e X?, then there exists N € N such that

Max |[vj[jo.s—0 as  h—0, J;=JN\[s—Nh, s+ Nh]. 4.7)
J*

seJy

This follows from Lemma 4.1, (2.4) and the estimate

[103l0, 5= 1 L4LG(-» )]s~ [LG(-, )Tfllo.
<l PuEBAMG(, 51— [35GC 98]0,
+||MWLG(-, )1 —[MG(-, )1} o, 15
Using the behaviour of w, our assertion will be a consequence of
1Zvillo. =0, [[Z5illo, - mm,....s+am=C (4.3)
uniformly for se Jj. ~
First, note that (Zv§)(t)—0 uniformly for t <s— Nh as follows from (4.7).
If [t —s| < Nh then (C), (D) and Lemma 4.2 yield
@] AT || LLG(9)Tllo £h ™1+ ClILG(- . )1k
<h Y1+ LG, )l - 1) Sh 1+ |G, 9)fe— 1)-

Hence for |t —s|< Nh
N t—h
|Zv3()| £ |Zvs(s — Nh)| +h FZ_M wi(n)| = C.
Finally, the convergence (Zv{)(t)—0 uniformly for t>s+ Nh follows from
(4.7) and the above estimates, if
s+ Nh

2. U

t=s~Nh

Max h

seJ¥

—0 as h-0 4.9)
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holds. For the proof of (4.9) use D1 to obtain

s+ Nh s+Nh
b Y w@lsh 3 MILGC )

+ Z ‘fi{h +2Nh A"G(t+(i—k1)h,s)——1}\.

i=—a t=s-Nh

The first sum tends to zero as follows from (C) and Lemma 42. For the
second one we use the jump relation from (2.4) and

s+Nh R
h S AG+(i—k)hs)=A1G(s+(N +i—k, + Dh,s)

t=s—Nh

_AIGs—(N—i+k)hs. Q.ED.

- 5. PROOF OF THE STABILITY THEOREM

Let us first summarize some known stability inequalities from [2, 9, 11].

LeEmMMA 5.1 Under the assumptions (Ay{(D) the following stability
inequalities hold for sufficiently small he H

lxalle < CQILwxH o +HIRixllo) VX, E X, (5.1)

xall— 1 < CULaxille, + | Rexallo)  VXnE Xa, (5:2)

where

“yh“Ll’_"h ZO r}’h(f)l, thXl(x)'
ey

Our proof of (3.9) is a successive reduction to a problem for difference
operators with constant coefficients which can be dealt with explicitly.

. Reduction to initial conditions

Let Rpx,=(A'x,(a,):j=0,..,k—1), then (3.9) follows from the stability
inequality

”xh”k— 1S C(IIthh”E,s+ “R;?xhllo) Vx,e Xy, seJf, h<h,. (5.3)

Proof Each x,eX, may be written as x,=y,+z, where y,,z, are
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defined by

Lyyy=L,x,, R%y,=0
L,z,=0, Rz, = Ry(x,— y4)-
Now (5.3) yields
||x,,|[k_ 1,s§”yh“k—1,s+ thHk—l,sé C”thh]|z,s+”2h”k—1
and by Lemma 5.1 and B2 we obtain
zallk— 1 = CIRwxaljo +{[¥hlle-1,1,)
< C(l|Rixallo + [[vallic— 2 + (|5~ il [Wsllo.1,):

where I'y,={a,,...,a,+Nh, b,— Nh,...,b,}.
An elementary calculation using (2.1) and (3.3) shows

Wllo.r,<C VseJ¥, heH,

which proves our assertion.

Il. Reduction to the principal term

(5.3) is a consequence of

th”Z,sg C“Phuh“E,s VuhEXga SEJ}T» hého (54)

Proof We shall use the following properties of the weight function w,:
wlt) <o "wyt) Vt,1€J,, [t —t|<nh, se J¥, heH, (5.5)
|[Zwylo || Will, S C VseJ¥, heH. (5.6)
Let us again write x, € X, as x,=y,+ z, where
P,E MA*y, = L;x,, Ryy,=0

Lyzy=— My, Riz)=R})x,,. (5.7)
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By (5.4), (5.5), (5.6) we have the estimates
1A%yl S CILET A%y ls, = Cl Liiulls. o

1A 2pillo = [|EA* ™ yillo S NIA* Tyl [Ewillo

Wy

< Cl|A* yw,

and by successive summation ||y|c- 1 ¢S C||Lyx)||s.,s» Moreover, using
Lemma 5.1 and C2 we obtain

ll2alle - 1 < C(IMyal|z, +||REx4][0)

S C(“yh”k— 1,s“Ws||L1 -+ ”Rl(z)thO) =< C(”yh“k ~-1,sT ”R;?tho)-

Combining the estimates for y, and z, gives the desired result.

ill. Stability of the principal term

The method of proof of (5.4) follows [15] and the techniques are quite
similar—although more involved here—to those in [4, Thecrem 5] for
different weight functions. Let us introduce complex valued grid functions
and identify Jp and {0,...,n}, X} and R""', P, and the real part of the
complex operator

a{E)X(0), j=0,..,x—1
(anj(j)= PE)x(j), j=a,.. ,n—d, xeC"*1 neN.
gu— (E " )x(n), j=n—d+1,..,n
Now se JF is of the form
s=ay +ih where i,n—i,=Cln(h™!).

Moreover wy(i)=1+h"*¢" % and for xe C/*!

_ G _ o
e, =Max {50 1.1,

i—1
Zx()=h 3, x() for i=1,...j+1, Zx(0)=0.
P

Our proof is divided into three steps.
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SI:

VreC"t13xeC* st P x(j)=r(j) for j=a,...,n—d

and x|}y, < Clir]lz...

S2:

|Pox|s. s < Cl|x]|5.s VX €C** 2,
S3:

" VreC"t! with r(j)=0 (j=a,...,n—d) there exists xe C"*! such that P,x=r
and [|x|lz,, < Cljr|ls.-

These properties hold for n=n, and the constants n, and C are
independent of se J¥.

Proof of (5.4) For a given xeC"*! determine ye C"*! by S1 such that
P,y=P,x in {«,...,n—d} and ze C"*! by S2 such that P,z=P (x—y).
Since P, is invertible for n large ([2, Satz 3]) we have z=x—y and

Xz s £ ¥l s +l2]z.s < CQPuxlls, s + | Pax — W]z 5)
g C(”an”E,s_'_||y”E,s)§C”an“):,s°

Proof of SI By property (D) there exists a factorization

P(E)=cE&°‘1£[(E o) f[(aiI*E"l)""’,c#O.

i=1

Therefore, it is sufficient to prove that for any ge C" """ where 5, 7eN,
n=o, <& and any

S {O',(Iz 13-- -ad):- O_:j(jz 1" i a}
the following implications hold
(E—ADy=g, yim=0=|\y|ls..=Clells.. (5:8)

(AMI—E Yz=g, z(n—9)= 0r~>”z”z,s = C”g”z,s. (5.9)
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The grid function u=Zy satisfies
(E—ADu=2Xg, u(n)=0.

Hence. with the notation £ ;=0 we obtain from (3.3)

|u(i)| = *f;‘ At “"'(Eg)(i)} < Hgllz.slznlll"‘ L)

J=n

i—l—j)} §“g”z,s{c+ fkgli—isl

Min (i, is)— 1 lll i-1—j

( Z 2(M1n(1 ig—N—1 +O.—1 Z ( ) )}
i=n =i\ 0

<Clgl. () and

il _ Min(i,i)—1 .
éHgHZ,S{ZGiAI_J‘}‘hﬁK( Z G—‘s“‘l‘l*?.j

i—1
+ Y 7742
=

M. =t} < Cllg]|z. -

Now let u=Xz where z is defined by (5.9). By a change of summation
we find for i=#,..,n—+1

uli)= —h Z Z AT g(v)= _112g(l)+g(l) A8}

—1lv=j+1

n—an R
where g(i)=h Z A" g(v)

and by partial summation

DS C{{Zetn—i7+ 1|+ |[Zg + 3

v=i

APz

For the last sum, a calculation very similar to the proof of (58) leads to
the bound C||gl|;, ;w, (i). Collecting the various terms we end up with

|Z20)| =u(3)] < C||g}z. JWi(i) + wyl) + wi(n— 17+ 1)).
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Since wyn)+wy n—#7+1)<C holds uniformly in seJf (cf. (3.3)) our
assertion follows.

Proof of S2 Let xeC""! and consider the case je{0,...n—g+1}. For
N eN sufficiently large we obtain from D1 and (5.5)

lEP,,x(j)l§Ch Maxilx(i))—kh i ¢, jZ x{i+ )
i=0....,N x '

—1
n= - i=o

gCh‘:l})/Ialex(i)lﬂk i |EJIZx(+ )] +|[Ex(ec+ )

p=—a

< C{Vl\(»)/lax |ZxG)| +]|2x]|., i Wlj +/J)}

p=—a

é CHXHZ,S{WS(N) + Ws(])} é C”xHZ, sws(j)'

Using this result with j=n—da+1 we can estimate in the case je{n—d
+2,...,n} as follows:

|=P,x()| < c{ x|}z, swon—&+ 1) +h  Max ]x(i)]}

i=n—N,...,n

gC{Hxllz,sws(i)+2llz>cllws _ Max Ws(i)}

< x5, sws)-
Proof of S3 By [4, Theorem 5] we have the stability inequalities
lIx||. < C)|P.x|. ||x]le = C)|Pux]|s YXx €T, nZng (5.10)

with the weight functions e(i)=¢" ", &(i)=0d".
Given reC"*!, r(j)=0(=a,....,n—d) let us write r=r"+r

i), j=0,..,ax—1
0 otherwise

where rO(j)= {

Let P,x'=r(i=0, 1), then (5.10) yields

el Clr e Cht Max [2r0)

é Chm 1||r”2,sws(a)§ Ch_ lur“?_‘,s
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and similarly [|x||.<Ch™Y||rlls.
Now x=x°+x! satisfies P,x=r and

el o < |2

ws+||2x1

w SN2+ [1Zx"1lo

< 0llzello+ e el  C(, + x5 il

Q.E.D.

6. CONVERGENCE OF OPERATOR NORMS AND NUMERICAL
EXAMPLES

Let us assume for simplicity that
J)<[a,b] VheH. (6.1)

(6.1) is very natural for common finite difference schemes, since J?
contains the points at which the differential equation in (1.1) is discretized.
Because of (6.1) we may define a |J,| x (|J,| — k)-matrix [G], by

[Gut,8)=G(t,s), ted,, sely.

Our first concluston from Theorem 3.1 is

THEOREM 6.1 Let (6.1) and (A)(D) be satisfied. For je{0,...,k—1} let
F,: X, —X, be linear, consistent with &' and locally || ||-bounded (cf. C2).

Then the convergence

|F s dhG) —h[3GT,)|o»0 as h—0 (6.2)

holds with respect to the operator norm || ||o. Moreover, in the case jSk—2
we have for any fixed se(a,b) with se J} for a.e. he H

“Fh,tGh( ) S)—' [a{G( Ty S)];,“Q -0 as h—>0 (63)

Remark F,, indicates that F, is applied with respect to the first
variable ¢.

Proof The proof of (6.3) follows immediately from our corollary in
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Section 3 and the estimate
[Fa, G-, ) —[OIG(-, 5140 = HF:. AGi(-, ) —L[G(-, 5o
+|[Fy, LG(-, $)1u—[BIG(-, ) allo = C||Gy(*» ) — [G(-» )T - 2
+||Fy, LG(-» $)1u—[HG(-, )1njo-

For the proof of (6.2) we use the grid J} from Theorem 3.1 and find

|Fy,{hGp)— h[aJG],,HOSMax{h 2 |6IG(t, s)— Fy, LG8, s)l}

tEh SE"

+Max{ J |Fp ALG1,—GuXt, S)l}

teJh

+h 3 IFedlG1= G 5)fo-

seJN\TF

For the first term, Lemma 4.1 and Lemma 4.2 yi¢ld for some K > 0:

éMax{hﬂh ” ”G( S)”J+1[: Kb, 1+ Kh]

k Is—t| > Kh

+Ch Y, ||G(- ,s)||j}§ Cp,+ Ch—0.
se 0
Is—tlgl_(h

Using (5.5), (5.6) and Theorem 3.1 we can estimate the second term by

CMaX{h Z ”([G];. Gu(, S)”J JpAlt—Kh, :+Kh]}

h SEh

< C Max ”([G]h Gh) S)”k 1,s Max {h Z s(t)}

SE" IEh SE;'

<CMax |([G1—GuX*» S)”k—-l.s“’o as  h—0.
seJF

As for the last term, note that

1Gu(-» k- 1 £ C||6%|,=C from Lemma 5.1 and (1.8)
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and use Lemma 4.2 to obtain

<Ch Y |0GT— Gu)-.9)|l;

Oy %
seJp\Jy

<Ch Y. {||GC.9)||;+ |G~ 9)||;} SChln(h™1)—0. Q.ED.

seJhI¥

We will now show the convergence of the operator norms. For that
purpose we introduce the operators (cf. (1.4), (1.5))

A:C[a,b]—-C*[a,b], Ar(t)= j' G(t, s)r(s)ds, te[a,b],

Ay X - Xy, Ayrit)=h ZO Gylt, s)rils), ted,

sedJy
B:C[a,b] x R*-C*[a,b], B(r,y)=Ar+ T

B,: X} x R=X,, By(ry, 7)=Ayry+ Ty
K

k
where Ty= ) yiz;, Tiy= ). iz and
' i=1

i=1
Lz;=0in [a,b], Rz;=v (i-th unit vector in R¥), (6.4)
L,'=0in J?, R,z"=u', (6.5)

B and B, are the solution operators for the inhomogeneous equations
(1.1), (1.2) with Rx=7y and R,x,=7.
Let us further introduce the norms

[4allo. ;= suplunl;

Tello =

IBulo.j=  sup  ||Burw )|, J=0...k

liryily + ¥, =1

and [Allo.

B||,,; analogously.

THfOREM 6.2 Under the assumptions of Theorem 6.1 we hae for each
jel0,.. . k—1}

|4allo.;~1l4llo,; as k-0, (6.6)
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|Bilo.,~||Bllo.; as h—0. (6.7)
Proof
Ll Aullo =140 £| | 4allo. ;= IRLGT4llo, ]

+| IRLGTu|o.; = | 4llo. A = || BGy—BLGu|o,; + | RLG 4]0, —|4l]o. I

f

For the first term we find

= sup {Z Max h

Nrllg=1 {¥y=0 teJ,

2, ANG,— G, )rifs)

seJk

< Z Max {h Z |A(G,—[G] }-»0

v= OteJ

by using the last estimates from the proof of Theorem 6.1 with F,=A".
For the last term

}1‘1_{1; (|rLGTnllo. ;= liAllo.p =0

follows by straightforward but nontrivial estimates which will be omitted
here.
Next we prove

tim [[T3lo. ;= | Tlfo, ; (6.8)
h—0
which by the use of

|1B]fo,;=Max {||4lo. ;| s=Max {|Alo. 5> | Tillo, 5}

yields our assertion.
Now (6.5) is a stable and consistent discretization of (6.4), hence

|2t —[z1ulk—0 as h—0 (i=1,...k). (6.9)

Let ye R, ||v]|o=1, then (2.1) and (6.9) show

-l S5, s #0—2

[t—s| Sk +}‘C)h

+ k MaX ”[Zi]h_Z:'”j}—)O
i=1,....k%k

and hence (6.8). Q.E.D.
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The convergence of operator norms (6.7) may be interpreted as the
convergence of stability constants, ie. if C* denotes the smallest constant
C such that

Il S CQILxo-+ [Reo) Vixe CHLa. ]
and C} denotes the smallest constant C, such that

[leall; < CalllLwxallo + [ Rixcillo) - Vxne X,
then C¥—C* as h—0.

This gives a stronger result than usual stability inequalities which only
state that Cf is bounded as h—0.

Theorem 6.2 also yields the convergence of Lipschitz constants for

nonlinear boundary value problems. For example, let us consider the
nonlinear problem

Lx=f(",x,..,x")=:Fx in [a,b], Rx=0 (6.8)

where L, R are defined as in (1.1) and f € C([a, b] x R/*?) satisfies

i
|f(t, g, - o ) —f(t, 00, . v)| <K ‘Zo|ui—v,-|
!:

for all te(q,b], u,v;eR.
Then (6.8) may be written as an operator equation

x=AFx, xe C'[a,b],

where AF has a Lipschitz constant K|\, ; with respect to || |
Let us assume that (6.8) is discretized as

thh=f(.9Di?xh;---,Dixh)= :thha thh=0’ (69)

where D;: X, — X} are difference operators of the form

K

2

Dixyt)= Y nil\*x,t+ih)

I
h~]

1

(P1,p2,n; may depend on ¢, h) which satisfy

§ n=1,m20 G=py,...p)).

i=p1
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Under the assumptions of Theorem 6.1 we may then write (6.9) as
x;,= Athxh, )Ck S Xh'

It is easily verified that A4,F, has the Lipschitz constant K||4,|, ; with
respect to || ||;-
By Theorem 6.2 we have

K|\ 4ilo,;~K||Allo,; as h—0.

In particular, let K||A||o ;<1 so that (6.8) has a unique solution and the
Picard iteration is convergent (for a survey of results of this type in the
case k=2 see [1,6]), then (6.9) has a unique solution for & sufficiently
small. Moreover the discrete Picard iteration is convergent with
asymptotically the same rate of convergence. This behaviour is often
observed in numerical computations.

It is also obvious how to extend these results to different iteration
schemes or to boundary value problems where the contraction is valid
only locally or with respect to different norms.

Let us conclude this section with some numerical results. The following
tables show the behaviour of the error

&= H[G( 1 Gh('a%)HO

which tends to zero by Theorem 6.1. In addition we have computed
numerical estimates of the order of convergence

Ord(e,) = In (—8"—) / In2.
Epj2

These are not determined by our theorems but illustrate the speed of
convergence.

Example I —x"—4x=rin [0,1], x(0)=x(1)=0.
Our difference schemes are defined by

ah=0, bhzl, kl =k2-_-'—"1
and by the following formulas (the underlined position corresponds to 1)

Scheme I x"()~h~3(1, =2, 1),
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Scheme I1 x"(t)~h"*1,=2,1) for t=h, 1—h

X"(t)~h 3(—1,16, =30,16, —1) for t=2h,...,1—2h.

See [7] for an extensive analysis of these schemes.

Our example clearly shows that difference schemes which are of higher
order for smooth solutions may give poor results for non smooth
solutions-—even worse than those produced by a method which is of low
order for smooth solutions.

Scheme I(0(h?)) Scheme TT(0(h%)
h &y Ordg) & Ord (&)
1 0.3406E-2 2.01 0.7102E-2 0.98
75 0.8455E-3 2.00 0.3597E-2 0.99
i 0.2110E-3 2.00 0.1803E-2 1.00
%0 0.5273E-4 2.00 0.9020E-3 1.00
Téo 0.1318E-4 0.4510E-3

The situation for the higher order scheme is somewhat better for the
next example of a fourth order boundary value problem.

Example 2
x®—x=rin [0,1], x(0)=x"(0)=x(1)=x"(1)=0.
Let ay=—h, b,=1+h, k, =k, =2 and consider
Scheme I x"(t)~h"*1, —=2,1) for t=0,1
xP)~h"*1, ~4,6,—4,1) for t=h,..,1—h,
Scheme II ~ x"(0)~(12h%)~1(10, =15, —4, 14, —6, 1),
x*)(t) as in Scheme 1 for t=h, 1 —h,
X ~(6h%) "1 (—1, 12, — 39, 56, —39, 12, —1)
for t=2h,...,1—2h,
(1) ~(12k2)~ (1, —6, 14, —4, —15, 10)

Scheme II is O(h*)-convergent for C®-solutions (cf. [4]).
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Scheme 1 Scheme 11
h &, Ord(gg) £, Ord (g,)
5 0.4238E-3 2.00 0.2011E-4 2.89
= 0.1059E-3 2.00 0.2699E-5 3.00
& 0.2648E-4 2.00 0.3367E-6 3.00
36 0.6620E-5 2.00 0.4206E-7 2.99
% 0.1655E-5 0.5283E-8

—
=\
Q

As a conclusion of our theoretical and numerical results we may say
that ordinary boundary value problems with é-functions on the right hand
side (for example mechanical systems with point loads) may be well solved
by the simplest compact finite difference method. However, it usually
makes no sense to employ difference methods which are of higher order
for smooth solutions.
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