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The Exact Order of Convergence for
Finite Difference Approximations to
Ordinary Boundary Value Problems

By Wolf-Jiirgen Beyn

Abstract, This paper deals with the problem of determining the exact order of con-
vergence for the finite difference method applied to ordinary boundary value prob-
lems when formulas of different orders are used at different points of the grid. Un-
der rather general assumptions, it is shown that the global discretization error is O(hf)
if the local truncation error is O(hT) on the boundary and at interior grid points,
while it is only O(hr—(k—‘u)) at grid points near the boundary. Here k and u denote
the order of the differential and the boundary operator, respectively.

1. Introduction. For finite difference methods it is a standard procedure to
conclude convergence from consistency and stability. Moreover, the order of conver-
gence is shown to be at least the order of consistency (cf. Stetter [16]).

However, Bramble and Hubbard have shown in a series of papers [3] —[5] (see
also Price [15]) that the order of convergence may be improved in special cases. For
various finite difference approximations to ordinary and partial boundary value prob-
lems they established the following rule: The order of convergence is 7 if the order of

consistency is 7 for the boundary conditions and

7 at interior grid points,

differential equation,
7 — (k — p) at grid points near the boundary} for the differential equation

where k& and u denote the order of the differential equation and the boundary condi-
tions, respectively.

In order to obtain this rule it is evident that instead of the usual stability ine-
qualities one needs weighted stability inequalities (see Section 2). These are derived
in [4], [5] from the monotone properties of the difference equations and from the
existence of appropriate grid functions (for a systematic approach see Ciarlet [6]).
For a more elegant method, which avoids the construction of special grid functions,
we refer to Lorenz [13], [14]. All of these results basically require that the differ-
ence equations lead to an inverse monotone matrix. Hence, they are applicable to
ordinary as well as partial boundary value problems but are mainly restricted to second-
order equations which are inverse monotone (i.e., which have a nonnegative Green’s

function).
The first general result for the ordinary finite difference method is due to
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1214 WOLF-JURGEN BEYN

Kreiss [12] (see Esser [7] for an extension) who obtained the above rule in the cass
w=k—1and u =k — 2, but his method seems not to generalize directly (cf. Sec-
tion 2).

In this paper we shall prove the rule of Bramble and Hubbard in the ordinary
case under rather general assumptions. We consider an m-dimensional system of or-
dinary boundary value problems of order &

(1) Lx = i pxP=r infa b], Rx=71,
i=0
where x € (C¥[a, b])™, r € (Cla, b])™, y ER™*, p(1), t € [a, b},i=0, ...,k
are continuous m x m matrices, p,(¢) is nonsingular for all ¢ € [, b] and
R: (C*'[a, b])™ — R™F is a linear mapping.
Let H be a real positive sequence converging to zero. For every mesh size h € #
we approximate (1) by finite difference equations

) Lyx,=ry, Ryx, =1,

where x, and r, are grid functions and the pairs (L,, R},) are discrete analogues of
(L, R) (see Section 2 for details).

In Section 2 we derive weighted stability inequalities for the pairs (L,, R;) by
means of stability itself and an additional condition for the difference operator L.

Furthermore, using the stability theory of [12], [1], we shall show that both
assumptions are satisfied if certain root conditions hold for the principal part of the
difference operator L, (see Sections 3 and 4). These root conditions have been veri-
fied in [1] for a wide class of difference approximations.

Throughout our analysis we use maximum norms of difference quotients over the
given grid. Therefore, we also obtain a modified rule which determines the order of
convergence of the difference quotients, or of certain difference formulas, applied to
the solution of the discrete system (2). This will be illustrated in Section 5 by some
numerical examples.

Finally, it will be shown that the weighted stability inequalities derived in Sec-
tions 2, 3 and 4 cannot, in general, be improved.

2. Weighted Stability Inequalities. Let us briefly describe the difference equa-
tions (2) and introduce some notation.

For h € HletJ, = {ay, a, + h, ..., b, —h, b,} CR be the underlying equi-
distant grid, where the endpoints ¢,, b, satisfy

3) h7'(b, ~a,)EN, a, —aand b, — bforh — 0 (h € H).

Furthermore, let J, = {a, =a, + k\h, a; +h,..., b, —h, b, = b, —k,h}, where
ky,k, ENand k| +k, =k By X, and X; we denote the space of grid functions
with values in R™ and with domains J,, and J, , respectively. We assume x, € X,,
r,€X,andL,: X, — X, R,:X, — R™F are linear operators, so that (2) constitutes
a system of m|J, | linear equations in m}J, | unknowns (17, | = h\(b, —a,)+1).
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Nearly every reasonable difference equation which approximates (1) on an equi-
distant grid may be written in the form (2). We consider as an example the following
Sturm-Liouville boundary value problem:

(4) x"+pox=r inleg b], x'G)= Yo o X(B) =y,
and the difference equations
A2, (¢ = 1) = 2%, () + x,,(t + h))
fort=qgand t =5 -h,
(5) r(t) = po(t)x, (0) + & (12h) 71 (=x, (¢ = 2h) + 16, (t — h) — 30x, ()
+ 16x,(t + h) ~x, (¢ + 2h))
fort=a+h,...,b-2h,

© Vo = (60) 71 (= 2x,(a = h) = 3x,(a) + 6x,(a + h) = x,(a + 2h)),
Y = xh(b),
where h = (b ~@)N ™', N> 4. Witha, =a—h, b, =b k; = 1, k, = 1 the system
(5), (6) may obviously be written in the form (2). The difference formulas used for
x"(f)areof order 2at t =a, b~ h and of order 4 at t =a + h, ..., b ~ 2k, while the
formula for x (@) is of order 3.
For a grid function x,: K, — R™ with domain K, CJ, we set

E’x, (1) =x,(t +vh) ifr+vh€K,,vEZ and
A’x, () = h™(E - TVx,(t) ift+prekK, (u=0,...,v),» EN.

Furthermore, we define
j
D) Nxyllpg, = 32 Max {[(A%x, (D))l i=1,....m t + ph €M, (u=0,...,v)},
p=0

where j € N and M, is any subset of the domain K. In case M, = K, we write
W= oz, - I llo will also be used to denote the maximum norm in R”, n € N.

A sequence of linear operators L, : X, — X, (h€H)or R, : X, — R™¥ (h € H)
is called || II’.-bounded if there exists a constant C > 0 such that |IL, x|l < CHthj or
IR x,lly < Cllx, 1, holds for all x, € X,,, h€ H.

The minimal j having this property is usually equal to the order of the differen-
tial operator L (the boundary operator R) which is approximated by L, (R}).

For example, it is easily seen for our difference equations (5), (6) that L, is

Il l,-bounded and R, is || |I,-bounded.
The pairs (L,, R,) (h € H) are called || l|-stable if a stability inequality

(8 I3, ll; < CUL, Xl + 1R, X llg)  ¥x, € X),

holds for almost every & € H and for some constant C > 0.
Let [4, B] be a real interval containing [a, b] and J, for all h € H (such an in-

terval exists by (3)) and let [x], € X, and [x1, €X ,, denote the restrictions of a
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function x: [4, B] — R™ to J, and J,, respectively. Furthermore, let us extend the
coefficients of L continuously to [4, B], then L, (R,) is called consistent with L (R)
if 1L, [x], — [Lx],llp — O (IR, [x], — Rxlly — 0) holds for all x € (C*l4, B])".
In view of (3) this definition turns out to be independent of the continuous extension
chosen above.

We now assume that, for each A, J ,'1 is decomposed into two disjoint subsets,J,?
and J,: , on which L, has different orders of consistency with respect to the solution

X of (1), eg. IIL,[X], — [Lﬂ;’“o,f’ = O(h") and ||L,[X], — [Lf];’“o,/‘ = O(h"™P)
h h
for some p € [0, 7}. Furthermore, let |RX — R, [x],ll, = O(h"). Suppose that the

following weighted stability inequality is valid
©) x,lly < C([thxhlio 0 + h"lthxhll0 J’l‘ + R, x,llg) Vx, €X,.

Then (2) has a unique solution X,,, and if , = [r];, we obtain
”[f]h *fh”o < C(”Lh [-7_‘]]1 - [Lf];” 0 + hp“Lh[i—]h - [Lf];,ll 1
0., 0.y

_ O(hf), + “Rh [f]h _Rf”())

which is the desired order of convergence.

Thus, the exponent p in inequality (9) indicates precisely how the order of con-
sistency in J ,} may be reduced without affecting the order of convergence. Our further
study will, therefore, be devoted to weighted stability inequalities.

THEOREM 1. Let (L,, R,) be || Hi’stable and R, be || Hu-bounded for some
i w€A{0, ..., kY. AssumeJ, =J) UJL, JP and J} being disjoint, and let L, have
the property:

(V) For each y, € X ,'1, satisfying y, = 0 in J,?, there exists z, € X, such thgt

Loz, =y, lz,lly < Chklly,,“o with C > 0 independent of y, and h €H.
Then the weighted stability inequality

(10) eyl < CULxA | o + h"'M“W)||L,,x,,||O 1 H IR, xl0)
h *h

holds for all x, € X, and almost every h € H.

Proof. For x, € X,, define y, € X, by

L,x, inJ,li,
Yn =

0 inJ3.

Let z, € X, be given by (V), then we have |iz,,[l; < Ch* ||y, |i, for all & € H and
i=20,...,k Hence, by our assumptions,

xully < Wty = 2y lly + lz,ll; < CLILLX, —Lyzylly + IR, X, = Ryz,llg + iz,
<
=%

c{iL, xhiing TRy xullg + llz,ll, + Nz, I}

< c*{sua,,x,,uw?z + IR, xylly + HEMax Wy ) 3
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Since |ly,lly = 1L, x,l o1 Our proof is finished. Q.E.D.
0
Theorem 1 generalizes a result of Kreiss [12], who has obtained the inequality

(10) in the casesj = O and u = k — 1 or 4 = k — 2. His proof in the case u = k — 1
essentially uses a property similar to (V), where L, is replaced by its discrete principal
part (compare Section 3) and terms of lower order are treated as perturbations.

These results have been extended by Esser [7] to the casesj =u =k — 1 and
J = u = k — 2 where, in addition, a discrete L,-norm was used on the right-hand side
of inequality (10). For j = O Theorem 1 shows that inequality (9) holds with p =
k — u and, if J,} consists of grid points near the boundary, we obtain the rule of Bram-
ble and Hubbard as described in the introduction. If (L,, R,) is || ||;-stable then in-
equality (10) is even valid for allj € {0, ..., k}. We shall investigate this case in more
detail, since || ||, -stability and condition (V) will be satisfied under nearly the same

assumptions.

3. The Condition (V). The || ||, -stability of pairs (L,, R,) can be completely
characterized if L, can be represented as L, = sz—klAk + L, , where p: X, — X,
and L,: X, — X, are linear operators such that pﬁE—klA" and L,, are consistent

with p, D¥ and L' = Ek épID’ respectively. In other words, we assume that the
principal part of the dlfferentlal equation has a discrete analogue which may be written

~k . .
as a linear combination of the divided differences E ' A¥ at different points of the

grid. Here E 1A is considered as a linear operator mapping X, into X,. Such a
decomposition is natural for common finite difference schemes (cf. [1], [8], [9],
[17]). ’

For our example (5) we have L, x,(f) = po(D)x, (1), t €J,, x, € X, and

y(t) fort=ga b-nh

Py =1,
T5(=yale = 1) + 14y,(D) -y, (t+h) forr=a+h ..., b-2h,

where y, € X,.
For a proof of the following theorem we refer to [1] (see [8], [91, [12] for

related theorems).
THEOREM 2. Assume that 0 is not an eigenvalue of (L = kak + L', R). Let

PRE —klAk, L, and R, be consistent with p,D¥, L' and R, respectively, and let L,,
be || ||, _,-bounded and R, be || l,-bounded. Then (L, R,) Is |l I, -stable if and only
if pi is | lg-stable, i.c., there exists a constani C > 0 such that

(1) Ix,lly < Clipix,lly  ¥x, € X, and for almost every h € H.
Using the same representation of L, as above we are ‘going to prove condition

(V), where J,} is now assumed to consist of a finite number of grid points near the

boundary. LetJ1 = {a,, ..., a + n.h, b, —nyh, . , b} and J? = {aj, +
(”a + Dh, ... ~(n, + l)h} with n,, n, €N mdependent of 4. This will be the

interesting case w1th applications.
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For a given y, € X,', that vanishes in J,? we write y, = yf,‘, + yg, where

{yh(t) fort =a,, ..., a, +n.h,
2(5) =
Vi) 0 otherwise,
yo(f) fort=by, —mh, . .., by,
yo() ={
h 0 otherwise.

It is obviously sufficient to prove the condition (V) for y4 and yfl separately. We
shall construct the corresponding zj, zz € X,, as solutions of the following discrete
initial-value problems

(12) L,z5 =%, Az, - (k-1 =0 forv=0,...,k-1,
(13) Lzl =yt AZ8a,)=0 forv=0,... k-1,

Note that the matrices associated with the systems (12) and (13) are not usually of
triangular form. Thus, we cannot expect z}, or zﬁ to vanish on the right-hand or left-
hand side of J,. But the behavior of z§ and zfl may be well described by means of
the “boundary layer functions”

-1, -1 '
h " (by—1) _ R~ (t-ap)
(149 =0 ", &= W, tey, 0<a<l),

and the corresponding weighted maximum norms
Ix,ll, = Max {|x,(D|(e(r)) *:i=1,...,m, t €EK,},
lx,lly = Max {lx,(OI(e() " i=1,...,m, t €EK,},
where x,: K, CJ, — R™.
K '
THEOREM 3. Let L, = pRE 'A* + L), where pi: X, — X, and L,: X, — X,

are linear operators satisfying
(i) there exists C > 0 and N € N such that

\Lyxn (O < Clixplixoy fi—nmesnn) ng,  VEE€ Ty X, € X, hEH,

(ii) for some o € (0, 1) and with e and € as defined by (14) the operator p:'c is
I Il -stable and || | -stable, i.e. for some constant C > 0 and for almost every h €H

lxpll, < Clipkx,ll, and lix, ), < Cliphx,ll,  for all x, € X,,.

Then the equations (12) and (13) have uniquely determined solutions zy and zﬁ, for
which the estimates

(15) Nzpll < Ch*l¥ally,  llzhll, < Ch¥|p2I,
hold. In particular, condition (V) is satisfied.

Proof. We only consider the equation (13) since (12) can be treated analo-
gously. For grid functions x,: {q,, ..., b, —vh} = R" (v € {0, ..., k—1}) we de-
fine the summation operator ¥ by
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(16) (Zx,)ay) =0, (Ex YD =h 2. x,(1) fort=a, +h, ...,b, — (v~ Dh
TEJh
T<t—~h

Yn = ZX;, is the solution of the initial-value problem Ay, =x,, y,(a,) = 0.
By the given representation of L,, the equation (13) may be written in the equiva-
lent “integral form™

' k ' K
(17 (P’i + LhEkE l)vn =ny v, € X, ZZ = Z*E lvh € X,
Using (i), (ii) and (16) a straightforward calculation shows that
- k -
), <G WZFE™ Y, <cnk, L), <ChTR,

where || I, denotes the usual operator norm. Hence |IZ, kg klll < Ch, and an
apphcatlon of the Banach Lemma (cf. [11, V2.6]) shows that the operators
pk + L Z‘,kE 1 X — X have uniformly bounded inverses (with respect to || II,)
for sufﬁclently small h € H. Therefore, (17) has a unique solution v,,, and
2l = sE* 1y, satisfies

Iz2ll, < Ch¥llu, I, < CH¥[iy2N, < Ca PRF|[ Y21, .

Finally, (V) is an easy consequence of (15) and the inequalities

Ix,llp < Cllxpll,,  Nx,lly < Clixyll,  Vx, €X,, h € H. QED.

Remark. The local condition (i) is slightly stronger than the || ||, _,-bounded-
ness of L;T, but it will still be satisfied for any reasonable difference approximation te

- k-1 f
L' ZiopD. .
It is interesting to note that the weighted stability inequality (10) can be made
more precise under the assumptions of Theorem 3 if the || IIu-boundedness of R, is

replaced by the more detailed condition

< N + llx, H ~ )
(18) “thh“O C(“xh”y.a,[ah,dh +Nn] ﬁjh h #b’[ bh —Nh,bh ] m"h

for all x, € X,,, h € H and for some g, u, €{0, ... k- 1} and N € N independent

of x, and A. .
Normally (18) will be satisfied if R describes two-point boundary conditions with

orders u, in ¢ and u,, in b.
COROLLARY. Suppose that (L,, R,) is || ||, -stable and that the assumptions of

Theorem 3 hold. If R,, satisfies (18) then the stability inequality

k—Max(pg,7)
”xh”] < C(iithhHO JO +h ”thh”

I 0.7
(19)

+ TNy IRy Xl) (= 0B
h

' b _
is valid for all x, € X,,, almost every h € Hand J; = {a, ..., a,', +nht, Jy

{6y = nph, ..., By}, TR = T\ U ).

The proof makes use of the inequalities (15) but, apart from this, is quite similar
to that of Theorem 1 and will, therefore, be omitted.
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The “local effect” of inequality (19) in comparison to (10) will be illustrated in
Section 5 for our example (5), (6).

4. The Root Conditions. In Section 3 we have reduced the two main assump-
tions of Theorem 1—|| ||, -stability of (L, R,) and condition (V)—to the question of
whether p? is stable with respect to the norms || llg, 1l ll, and Il ll, .

In what follows we shall prove that the answer is affirmative in any case under
the same general conditions, which will be called the root conditions.

For that purpose we assume a special structure for the operator pz. Let pi(0) =

[, b] and suppose that the difference approximation of D¥inJ ,, results from
the application of the same difference formula (usually of higher order) at all inner
grid points, and a finite number of formulas (usually of lower order or asymmetric)
near the boundary (cf. [1], [2], [8]). Taking into account the fact that we can fac-
tor A¥ out of these formulas (see [17], [1]), we arrive at the following representa-
tion:

@{E)x,Nay) fort=a, +jh,j=0,...,a-1,
(20) phx, () = { (P(E)x,)(1) fort=a, + ah, ..., b, —Gh,
(G(ED)x,)by) fort=b, —jhj=0,...,a-1,

where P(E) = 27 _ £ (@, GEN)and q;, j=0,...,a—1,and 7;,j=0,...,a— 1,
are real polynomials independent of A. Equation (20) was introduced and investigated
by Grigorieff [8] in his analysis of stability with respect to Sobolev norms. Forour
example (5), (6) it is clear that p;‘ is of the form (20) (see [1] for further examples).
Let g, €Ci=1,...,d, and G EC,j=1, ., d, denote the distinct roots of
z%P(z) and ZﬁP(z h, respectlvely Wthh lie inside the unit circle, and let v, andu be
the corresponding multiplicities. Then we have

THEOREM 4 . Ler pi: X, — X, be of the form (20). Then p" is || ||,stble if
and only if the following root conditions hold:
(R1) P(z) # Ofor al z € C, |z| = 1.

(R2) a= 324 f—1Vp @ Zlf_l . and the quadratic matrices

Q ((v 1)(0) ‘:-1,.--

0 :(ai"‘.l')(a.): =18 _)
& Iy = U=, ,d

3

are nonsingular.

For a proof of Theorem 4 and a detailed discussion of the literature ([7], {8],
[12]) we refer to [1]. It should be noted that (R1) and (R2) are satisfied for a wide
class of finite difference schemes applied to boundary value problems of even order

(.
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THEOREM 5. Let pg be of the form (20) and let the root conditions (R1) and
(R2) hold. Then p% is || |l ,~stable and || \l-stable if e and € are given by (14) and o
satisfies

@2n lo,-l,lEjI<o<l fori=1,...,aandj=1, ..., qa.

Proof. Without loss of generality we may assume m = 1 since pﬁ is a “diagonal”
operator, i.e., (p',f,xh)i only depends on (x;,); for i =1, ..., m. Furthermore, we con-
fine ourselves to || || ¢-Stability (the modifications necessary in the case of || Il.e_-stability
will be obvious from the proof). It will be convenient to introduce complex valued
grid functions and to identify J; and {0, ..., n}, X, and R”*1, p% and the real part
of the complex operator

q](E)X(O),]= Os I l:
(P X)) = { PE)X()f=a,...,n -4, x€C"T, nEN.

TpfE"Dx(n),f=n—-a+1,....n,

Now e(/) = ¢" 7/ (j =0, ..., n) and the norms || llg, |l ll, can be extended directly to
C**1. Our proof is divided into two steps:
S1: For every r € C" 1 there exists x € C" *! such that Py nx(i) = r(j) for
J=a ...,n—aand ixll, < Clirll,.

S2: For every r € C* 71 satisfying (j) = 0 forj = a, ..., n — @, the equation
Py ,,* = r has a unique solution x € C**'! and x satisfies [|xll, < Clirll,.

If an arbitrary r € C" *! is given, we determine x as in SI and solve p; v =

¥ = Py nx according to S2. Then pk,n(x + y}=r and
llx + pll, < lxll, + ILpll, < CUPl, + 1lr = g 2 ¥le) < Clirll, + ) < Cllrll,.

Proof of S1. By (R1) and (R2) we have for some constant w € C

a—a T v P - 1397
PE)=wE**[] E~-0oD)" H1 (G I-E~H"
i=1 =
Hence, it will be sufficient to prove that for any grid function s: {n, ..., 11—7_7}
— C, where n, TEN, n <a, 7<a&, and any \E {0, i=1,...,d,0;, 1= 1,...,d},
the initial value problems (£ — ANy(j) =s(j) forj=mn,...,n = 7, y(n) =0 ancl
(M = E™Y35(j) = s(j) for j =7, ..., n — %, ¥(n — ) = 0 have solutions y and y
satisfying || yl,, |1 7ll, < Clisll,. But this follows easily from (21) and the well-known

formulas

= n-g
y(f)=:§n?\f“""8(l2) md 5) =5 N

Proof of S2. Suppose r € C**! satisfies r(j) =0 forj = ..., n~ @. Then
any solution x € C* *! of PrpX=Trisa fundamental solution of the difference oper-
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ator P(E) and, therefore, can be represented as
v,/ v.j

where

i '3 .
gpl'}].(i):( I1 u)o;_"+l, V=1,...,U]-,j=1,...,d(l=0,...,ﬂ),

u=i-v+2

n—i A —
@3]_(1-):( 11 M)EI."““”“, v=1,...,0,j=1,...,d(i=0,...,n),

u=n—i-v+2

form a basis of the null space of P(F) (cf. [10]).
Substituting (22) into the equation p; ,x = r we arrive at the following
(a + @) x (a + @) linear system (cf. [1])

& 30)-()

Where ro = (r(0)> "'>r(a))> rl = (r(n —&)> --'>r(n))> Y= ('Yp] V= 1) R ] Uj)
i=1,..,d)eC, =7, v=1,...,0,j=1,...,d)€C® Qand Q are the qua-
dratic matrices defined in (R2) and @, and Q, are o x o and & x o matrices satisfy-

ing 10, llg» 10,1l < Co™.
An ‘Bn Q Qn !
¢, p,) \g, @

By (R2) the matrices
exist for sufficiently large n and are uniformly bounded with respect to || i, (cf. [1]).
Hence, (23) has a unique solution (;) and the corresponding x € C" *!, as defined by
(22), satisfies PrnX=Tr and

lxll, < C(Hvlk, > e, + 117l > na:,}ne) :
v.J

v,j

Our proof is finished by the application of the following estimates:

loglle <C forv=1,...,0,j=1,....4d,
|190:]-||9<Co_" fOTV—“-—l,...,u}.,j:l,“_,d,
_ 0 ro
o <L) <C = Cllrl, < Clirll, and
Y 0 rl 0

Hivllg = 14,,7° + B, rtily <I14,li1r%, + 14,0,0 " liolirtt,

< Co" " Hirl, + CNQ, Nolirl, < Co™lirll,. Q.ED.



APPROXIMATIONS TO BOUNDARY VALUE PROBLEMS 1223

Summarizing Theorems 1—5, we obtain the following result:

Consider a system (1) of linear boundary value problems of order k¥ with the
associated pair (L = D¥ + 1 R), and let a sequence of approximating linear operators
L, = sz hklAk + L}, R,) be given such that the following conditions hold:

(i) O is not an eigenvalue of (L, R),

(ii) p’,z is of the form (20) and satisfies the root conditions (R1), (R2) and the
consistency relations qf(l) =1(=0,...,a~-1),P1)=1, 17].(1) =1(j=0,...,a-1),

(iii) L;z is consistent with L' and “locally || || x—1-bounded”, i.e., statisfies condi-
tion (i) of Theorem 3,

(iv) R,, is consistent with R and || II“-bounded for some u € {0, ..., k}.

Then the weighted stability inequality (10) holds forj = 0, ..., k with J,} =
{ag, ...,ay +nh by —nyh, ..., by}, I = {a, + (n, + Db, ..., b, — (n, + 1)k}
where n, n, are arbitrary fixed integers. If, in addition, R, satisfies (18) then the

sharper inequality (19) is valid.

5. Numerical Results. Based on the inequality (19) we can now generalize the

rule of Bramble and Hubbard as follows:
Let L be of order k and let R describe two-point boundary conditions with

orders M, and u, in 2 and b, respectively. Further, let D% X, — X,’T be || iﬁj-bounded
linear operators (0 <j < k). Assume for the true solution ¥ of (1) that

L, is consistent with L of order 7, in J&, 7in J{ and 7, in J7,

R, is consistent with R of order p and

D/ is consistent with I/ of order 8.
Let X, denote the solution of (2) with r, = [r],, then the global discretization error
efh) = ||, - D, x,ll, satisfies

e(n) = 0(™),

(24)
M = Min(r, p, §, 7, + k —Max(j, M) Ty + K- Max(7, 1))

This is an easy consequence of (19) and the inequality

[ZD], - D%,y <UEDP], — D [x]4llo + CIIx], = Xyl

We note that (24) already follows from the stability inequality (10) if 7, = 7.

In order to obtain O(h™)-convergence with respect to Il it is, therefore, suffi-

cient to choose p = § = 7,7, = 7 — k + pg, 7, =T = k + 1. This choice leads to

oh™) for0<j<uy ™= Min(4,, 4p);
e(h) == e '
/ O(hT G “0)) for uy <j sk

For our example (5), (6) we took [4, b] = [0, 1], po(f) = —4¢, r(t? =4 sm(2t)-—
4(1 - %) cos(2¢), @(t) = (1 — 1) cos(2r). The results are displayed in the following

table:
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h €qo(h) Ord,(h) €, (h) Ord, () €,(h) Ord, (k)

— 595E4 3.001 9.37 E4 2.707 229 E-2 2.064

10

21—0 7.43 E-5 2998 1.43 E4 29504 549 E-3 2.034
% 9.30 E-6 2.997 191 E-5 2962 1.34 E-3 2013
é—la 1.16 E-6 2.998 2.46 E-6 2983 330 E4 2.009

The quotient Ord(h) = log(ej(h)/ej(h/2))/log 2 has been used to estimate the order of
convergence (cf. [13]). (24) is applicable with k =2, u, = 1, u, = 0,7, =2,7= 4,
7, = 2, p = 3,6 = 4 and yields the orders 3, 3 and 2 forj = 0, 1 and 2. These were
reproduced very accurately by the numerical computation.

We also considered a modification of the difference equations (5), (6) where a
third order formula was used for the differential equation at ¢ = a4 and a fourth-order
formula was used to discretize the boundary condition x'(g) = v .- This corresponds
to 7, = 3 and p = 4, and by (24) we then have e,(h) = O(h*), €,(h) = O(h?), ¢, (1)
= O(h*). Note that in this case the application of the stability inequality (10) (with
u = 1) only yields e,(h) = O(h*) because of the O(h?)-formula used at 7 = b —h.
The numerical results are

h Ordg(h)  Ord,(h)  Ord,(h)

— 4.047 2.834 2.066

10

516 4033 2967  2.036
4—10— 4019 2994 2019
816 4010 3000 2009

Finally, we treated the fourth-order problem

MVt @-nx=r n[0,n], x0)=xm)=x"(1)=0, x'(©)=-4,
where r was determined in such a way that x(¢) = (r — ¢)*sin(¢) is the true solution.

For our finite difference method we took & = aN~!, N > 10, a, = —h, b, =n+h,

ky = k, = 2 and used appropriate difference formulas with the orders of consistency
T, 7, =2, 7T=4,p=4,8§ =4,
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h Ordy(h)  Ord,(n)  Ordy(h)  Ord,(h) Ord,(h)

6 3.20 3.41 3.42 3.50 161
% 3.72 3.72 3.67 2.16 1.89
% 3.89 387 3.84 2.72 195
é% 3.91 392 3.92 2.88 197
by (24) 4 4 4 3 2

For the same differential equation with the boundary conditions x(0) = x(n) = x'(n)
= 0, x'(¢) = 7 we used a discretization leading to the orders of consistency T, =Ty
=2,7=6,p=6,6=6if0<j<2and § =4 ifj= 3,4 (see [1] for a proof of
the root conditions). Now u, = u, = 1, k¥ — u, = 3 and by (24) the expected orders
are Ordy(h) = Ord,(h) = 5, Ord,(h) = 4, Ordy(#) = 3, Ord,4(#) = 2. The numerical
results are contained in the following table.

h Ordy(#)  Ord,(h) Ordy(h)  Ordz(h)  Ord,(h)

{’5 3.92 3.76 404 3.06 161
Z 4.67 433 4.60 2.53 1.89
20

s 486 471 4.76 2.83 1.95
20

i

i 84 497 2.93 1.97
26 476 4

We note that the orders of convergence predicted by (24) are already attained approxi-

mately for larger values of A (with the exception of Ord, (h}, which seems to be under-

estimated by (24)). This is important since for smaller values of 4 the exact order of
convergence cannot be observed due to the rounding errors occurring in the direct
solution of the system (2). For fourth-order problems numerical experiments show
that these rounding errors become crucial at least if /# < 1/100 provided the calcula-

tion is done in a precision of 16 decimal digits.

6. Optimal Weighted Stability Inequalities. Our numerical results suggest that
the weighted stability inequality (10) in connection with the given orders of consis-
tency determines the exact order of convergence (at least if 7, = 7 and j < y). In-

deed, we shall prove that inequality (10) is sharp in a certain sense. More precisely,
the exponent & — u in (10) (for j = Q) cannot be increased by 1 if R, is | Il“-bounded
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but not || Ii“_l-bounded. As in Section 2 we consider a boundary value problem (1)
and linear operators L,: X, — Xy, R,: X,, — R™* (n € H).

THEOREM 6. Let (L,, R,) be consistent with (L, R) and let L, and R, be
I} ll-bounded. Let a series of subsets J,? - J,; and N, N, €N, ue{0,... . k- 1}
be given such that N,, N, = u and

(25) R,x, =0 ifx,=0in{a,...,a, + Nh b, —Nyh, ..., b,},
(26) Lx, =0 inJ}ifx,=0in{a, + N, ..., b, —N,h}.
If the weighted stability inequality

27 Ixallg < CULyx,l 0 + HEEIL 1 IRl

where J;. = J;\J, holds for all x, € X,, and almost every h € H, then R, is |||
bounded.

Remarks. 1. The conditions (25) and (26) require that the boundary conditions
and the difference equations in J ,? (which usually consists of interior grid points) form
an uncoupled system. This is a natural assumption for difference approximations to
two-point boundary value problems.

2. It is interesting to note that we assume inequality (10) only for j = 0.
Hence, Theorem 6 also applies to difference schemes (L,, R, ) for which weighted
stability inequalities have been derived by means of inverse monotonicity (cf. [2],
[14]).

Proof. Let us assume to the contrary that there exists a subsequence H' C H
and a sequence x,, € X, (h € H') such that IR, x,ll, = 1, llx,ll, — 0 (h € H). Let
M = Max(k, 2(u + 1)) and consider the difference equations

AMy (1)=0 fort=a,, ..., b, —Mh,
Afyh(t) = ijh(t) fort=a, + (N, —wh, b, —N,hand j =0, ...,
Ny (@, + (N, —wh)=0 forj=p+1,...,.M-p-2.

These form a consistent approximation to the boundary value problem y* =0 in
[a, b], yP @) =0forj=0,.... M—pu—2,yD3B)=0forj=0,...,u, which has
only the trivial solution. Applying Theorem 2 with k = M, k, = 0, pﬁ,_, = I, we ob-
tain || ||,-stability and [|y,ll, < |yl < Clixyll, — 0. Now v, :=x, -y, satisfies
IR, vplle — 1, llyll, = 0 (hE H") and

(28) v, =0 in{a, + N, —wh, ..., a, + N, b, ~Nyh, ..., b, - (N, —w)h}.

Let wy, result from v, by setting v, to Oin {a, + (N, + DA, ..., b, = (N, +1)h};
then by (25), (26) and (28) we have R, w, = R,u,, L,w, = 0inJp, [lw,ll, — 0
(h € H"). According to (27), the system

(29) L,z, =0 inJ,, Rz, =R,w,,
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has a unique solution z, € X ,, for which it holds that

Iz, = wylly < cvz"“*‘luL,,w,,nM1 < G THIwyll, < Cliwyll, — 0

and, hence, ||z, ll, — 0 (h € H'). Since IR, wyll, — 1 (h € H'), there exists a
£ € R™* g+ 0, and a subsequence H" C H' such that R,w, — g (h€H"). Now it
follows easily from the || ll-stability of (L, R,) and its consistency with (L, R) that
0 is not an eigenvalue of (L, R). Therefore, the boundary value problem Lz = 0 in
{4, B], Rz = g has a unique solution z € (C¥[4, B])™ and || zl, —z,ll, — O
(h € H"), since (29) is a consistent and || ||,-stable approximation to this problem.
Finally, liz,ll, — O yields z = 0 in [a, 5] and Rz = 0, which contradicts g # 0. Q.E.D.
It is obvious from the proof that the condition (26) can be weakened to
Lyx, =0inJp2 if x, = 0in {a, + VN, = wh, ..., b, — (N, — wh}.
Furthermore, we remark that we can establish a full equivalence between the
I} Ilu—boundedness of R, and the condition that the weighted stability inequality (27)
is valid for J| = {ay, ..., @, + n,h, b, ~nyh, ..., b,} and any fixed n, n, €N
(with C depending on n, n,). For that purpose we have to assume that the condi-
tions (i), (ii) and (iii) at the end of Section 4 hold and that R,, is consistent with R

and satisfies a local estimate
iR, X, llo < C(Ix,lI

+ (Ix, Il )
h

klagap +Nr]nJy, k. by ~Nn,by |NJ,

for some NV € N independent of / and Xy -
The conditions (25) and (26) will then be satisfied for appropriate N, N, € N.
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