ON THE CONVERGENCE OF THE FINITE DIFFERENCE METHOD
FOR NONLINEAR ORDINARY BOUNDARY VALUE PROBLEMS

Wolf-Jurgen Beyn

There are well known conditions which finite difference
equations approximating a linear ordinary boundary value
problem have to satisfy in order to guarantee consistency
and stability of the method and hence convergence of the
finite difference solutions. Furthermore, under analogous
assumptions a local convergence theorem holds in the non-
linear case. In this paper we give two global versions of
this local result, one which yields a global stability
inequality for the finite difference equations and another
one which shows that the number of solutions is the same for
the difference equations as for the boundary value problem.
Qur results are illustrated by two examples.

1. Introduction

Let us consider a nonlinear boundary value problem of

order k

Q) DFu+ FCouyens 05N = 0 in [0,1], Ru = d € R

k
where f and its partial derivatives Dj+lf(j=l,...,k)'are
continuous in [0,1] X Rk, u € Ck[O,l] and RFu is of the form

k . .
ru= |2 @ 0 + b D@y i1, k| e B
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We will treat a general class of finte difference equations
for (1) which can be written as follows
-k, ”

(2) T,u,: = hE ANMu, + M 0y

1
W4t = Py p PG Dy,

Dé_ Yy =0, Ru, =4,

o
where Uy, € Uh is the unknown grid function and Uh is the space
of real valued functions on the grid Jh = {0,h,2h,...,1-},1}
(h = nal,n € y. Thuh is an element of Ué, the space of grid
functions on Jé = {k,h,(ky+1)h, ..., 1-k,h} where ky,k, €U

and kl + k2 = k. Furthermore, we have used in (2) the
translation operators hodd (defined by Emuh(x) = uh(x+mh),

@ + mh € domain(u,),m € Z) and the divided differences A"

(defined by Amuh(x) = (E-I)muh(x), x + Jgh € domain(uh) for
F=0,...,m, m € W), ]

The operators pZ:Ué > Ué’D%:Uh - Uh (J=0,...,k-1), Mh:Uh > Ué

and Rh:Uh +—Ek in (2) are assumed to be linear. By their
use we are able to consider difference formulas of higher
order as well as Hermitian expressions ([ 5] III, §2).

For linear boundary value problems (1) a theory of conver-
gence of the finite difference solutions with respect to
different norms has been developed in [ 7, 9] (see also
[2, 16]). Following the simplified approach of [2 ] we
will call (2) a linear scheme for (1) if some conditions of
consistency and stability are satisfied for pZ, Di, Mh gpd
Rh' In the linear case these conditions imply convergence
of the finite difference solutions. In the nonlinear case
a local theorem of convergence follows for isolated solu-
tions of (1). This local result appears in various abstract
versions in the literature [1, 8, 13, 14, 15]. The main
drawback of this theorem is that it yields existence and

uniqueness of a solution of (2) in a small neighbourhood of
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the exact solution of (1) which is just to be computed.
By using some global information on the equation (1) we
give two theorems in section 3 which determine the number
of solutions and show the stability behaviour of the dif-
ference equations (2) in the whole space Uh'

These results will be applied to two examples. In
particular, we will show that some "parasitic" solutions,
which have been found in [ 3] for a certain finite
difference equation at a fixed mesh parameter %4, have to

disappear as h tends to zero.

2. Linear Schemes

We introduce some further notation. Let [u]h € Uh and
[u]é € Ué denote the restrictions of a function u € C[0,1]

to the meshes J; and Jé resp.. Furthermore, we will use

the norms

T : .
OMax{lA uh(x)l. x=0,h,...,1-1h}, Uy € Uh'

1™,

Huh”j = ;

I ”O will also denote the maximum norm in Ué and R .

DEFINITION

The difference equations (2) are called a linear scheme for

(1) if the following assumptions hold:

(1) D%_ig uniformly I ”j-bounded, i.e. for some constant
< .
c > O’HD%uhHO __CHuhHJ for all u, € U, and for all h

(=0, ...,k-1), and D% is consistent with [ﬂ, i.e.

IIDZl[u]h - [Djulhli0 > 0 as h + 0, for all

u € 10,11 (G=0,...,k1).
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(ii) Mh is uniformly i “O_bounded (cf. (i)) and copsistent

with 7, i.e.

o, (], - [wlflly > 0 as k> 0,for all u € C[0,1].
(iii) Bh‘ig uniformly || ”k l..bounded and consistent with A,
i.e.
“Rh[u]h - Rull, > 0 as 7~ 0,for all u ¢ Cknl[O,l].

(iv) pz is consistent with 7, i.e.

I )] = (]|, > 0 as k> 0, for all u € C[0,1],

and pZ satisfies the root conditions (see [2]).

Conditions (i)-(iv) are satisfied for nearly every reasonable
difference approximation to (1), the only nontrivial assump-
tions being the root conditions in (iv). These have been
verified in [ 2] for a large class of difference methods
including those which can be composed of formulas from

[ 5, Appendix]. Now the following local result is well
known, it can easily be derived from the abstract theorem
[15, §83(14)] (see [1, 8, 13, 14, 161 for related results)
and from the linear theory [ 2 ].

THEOREM 1

Let u € Ck[O,l} be an isolated solution of (1), which means

that the linearization at u

% k-1

o* + _zODj+2f(-,ﬁ,-..,ﬁ(k'l’wf,ﬂ 10,11 » €[0,1] x &
J:

is invertible.
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Then for each linear scheme (2) there exists an 2, > 0 and

a ¢ > 0 such that (2) has a unique solution ﬁh in the ball

Kp = {uh € Uh:H[u]h -~ uhﬂk < p} for all A 5_h0.

Moreover, for all Uy vy € Kp and % i_ho the stability

inequality

(3) My, = vyl < CliTpy, = Tyolly + 118, ey = v) )
holds and [[u], - u,li; ~ 0 as & > 0.

We note that the assumption on the linearization at % can
be weakened by a condition on the Leray Schauder index at u
{15, 83(43)]. Since the center [ﬁ]h and the radius p of Kp
are unknown a priori, theorem 1 doesn't give much informa-
tion on the numerical solution of (2). This, of course, is

natural under the weak assumption of an isolated solution.

3. Two Global Results

In our first global theorem the assumption on the
linearization at the solution u is extended to the whole

space Ck[O,l].

THEOREM 2
Assume that for some Kﬁ,KJ € C[0,1} (j=0,...,k-1) we have

(4) K (@) <D, fGe,y) < & (@) for all @ € [0,1] and y €

Let there exist an € > 0 such that the linear pairs

k-1
Dk + Ip
J=0

jIﬂ,R are invertible on C[0,1] X Rk for all

coefficients pj € C[0,1] satisfying Kﬁ(x) - € i.Pj(x) <

Ka(x) + e (x€[0,1}, 4=0,...,k-1). Then the boundary value

13

k
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problem (1) has a unique solution u € Ck[O,l]. Moreover,

for each linear scheme, for which Mh‘;g represented by a

nonnegative band matrix of a band width independent of #,

there exists an hD > 0 such that (2) has a unique solution

Uy for all h i_ho. Finally, H[ﬁ]h - ah”k ~ 0as #+ 0, and

the stability inequality (3) is valid for all uh’vh € Uh and

n< hy.

Instead of going into the rather lengthy proof, which will

be given elsewhere, we consider two examples.

Example 1

(5) u" + re" = 0 in [0,1], % (0) = u(1) = O.

This problem has a unique solution if A < 0, two solutions
if 0 < A < A% (K* a certain critical parameter), a unique
solution if A = A* and no solutions if A > A% (see [ 6, 10]
and the references given therein). In case A < 0 the problen
(5) has only nonpositive solutions and it is a standard pro-
cedure (cf. [12])to replace e” in this case by

eu, if u <0

@) =

1+ u, if u > 0,
Assumption (4) is then satisfied for f with X0(x) = Kl(x) =
Kl(x) = 0, Kb(x) = A and it is easily seen by monotonicity.
arguments {(cf. [11]) that for some € > 0 the equation
u'l + plu’ +pu= 0 in (0,11, u(0) = u(1) = 0, has only the
trivial solution provided Ipl(x)| < e and A - € S Pylx) <€
(x € [0,1]). Hence any linear scheme (2) applied to (5)
with the modified nonlinearity has a unique solution for

sufficiently small % which converges to the unique solution
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of (5). We refer to [ 4] for a totality of linear schemes.
Note that the monotonicity methods of [ 41 also provide

results on the difference equations at definite values of A.

Example 2 (cf. [ 3] and the references therein)
(6) u" + X sinu = 0 in [0,1], u(0) = u(1) = 0 (A > 0).

In case A < nz, theorem 2 can be applied with Kl(x) =
Ky (x) = 0, K (@) = -2, K9%x) = » (x € [0,1]), so that every
linear scheme (2) applied to (6) has only the trivial

solution if % is small enough.

But again, as in example 1, we cannot deal with thé case of

several solutions which in example 2 occurs as A exceeds me,

This problem is covered by the following theorem.

THEOREM 3

Suppose that (1) has exactly N solutions ﬁi(i=l,...,N) in
K

¢ "[0,1] which are isolated in the sense of theorem 1.

Assume further that for some pj € C[0,1] (J=0,...,k~1) we

k-1
k
have f(x,y) = L p.(®)y, , +g@@,y) (@ € [0,1],y € &),
=0 J J+1
k A . . . .
where |D + L pj ,//| is invertible and g is sublinear, i.e.
J

=1
k

as I |y.| >
g=1 7

Then each linear scheme (2) has exactly ¥ solutions aih

k
(7) Ig(x,y)l( 2 !yjl}_l ~> 0 uniformly in x € [0,1]

(Z=1,...,N) in Uh for h sufficiently small and these
satisfy
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(8) ”aih - [a’l:]h”k > 0 as h+0 (i=l,...,N).

The existence of the solutions aih is guaranteed by theoreml
whereas the nonexistence of further solutions follows from
a compactness argument. It shows that any sequence of
possible solutions Uy of (2) has a subsequence which
converges to a solution of (1) in the sense of (8) so that
the local uniqueness result of theorem 1 applies.

In case ¥ = 1 this underlying idea is already contained in
an abstract theorem of Vainikko [15, §3(27)]. Note, however,
that this argument is valid for arbitrary N € IV and even in
the case # = 0, if "N solutions" are interpreted as ''no
solutions".

Let us reconsider example 2. 1If ném? < A < (n+l)2ﬂ2 for
some 7 € IV, then (6) has 2n + 1 distinct solutions which we
assume to be isolated (we still have no complete proof of
this). Since sin u is sublinear theorem 3 shows that any
linear scheme (2) applied to (6) alsc has 2n + 1 solutions
for sufficiently small #. 1In [ 3] some additional solutions
to these have been discovered for a certain linear scheme
applied to (6) at a fixed value of A. Our theorem then
shows that these solutions have to disappear as /4 tends to
zero.

Due to the strong nonlinearity eu, theorem 3 does obviously
not apply to our example 1 in case A > 0. However, in some
cases it is possible to derive a priori estimates for all
solutions of a superlinear boundary value problem (cf. [6]
section 4).

For example, in the case of (5) we can proceed as follows.
For any solution u of (5) we have u(x) > 0, u"(x) < 0

(0 < x <1). Hence u has a unique maximum M = u(xo). Since
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wlx) = u(ZxO—m) satisfies w(xo) = M,w'(xo) = 0 and the same
differential equation as u we obtain Ty = 1/2. Consequently,

r(x)

-u(x) > Ae (0 < x < 1) where

x, 0 <x<1/2
r{x) = 2M
1 - x, 1/2 < x < 1.

Now we define v by -v” = ol in [0,1], v(0) = v(1) = 0, and

by the maximum principle, we have

(9) M= u(1/2) > v(1/2) = r2)y Tew-1e + 1)

Hence an upper bound for # is given by the largest positive
root MO of the equation 43 = R((M—l)eM + 1). If A is large
enough the inequality (9) is false for all ¥ > 0 and (5) has
no solution. A rough estimate shows Mb 5_24A—1 + 1. Now the
problem (5) has no solutions (in case A > A*) or two solu-
tions (in case 0 < A < A*) which we assume to be isolated.
All solutions belong to {u ¢ Ck[O,l}:u(x) < MO for x € [0,1]}

and g(x,y) = re?

is sublinear on [0,1] X (-w,MO). By a
slight modification of theorem 3 we then obtain that every
linear scheme (2) applied to (5) also has no solution Uy
satisfying Dguh(x) < Mo(x € Jh) in case A > A* and two
solutions satisfying Dguh(x) < MO(x € Jh) in case 0 < A < A%,
Both statements are true if % f-ho where ho, in general,
depends on A. Nothing can be said about the case X = A%

since the unique solution of (5) in this case is not

isolated in the sense of theorem 1.
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