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ORGANIZING CENTERS FOR DISCRETE REACTION DIFFUSION MODELS

W.~J.Beyn, E.Bohl

1. INRRODUCTION

This paper supplements the two papers [1,2] in this book. Our references are
included in the list of references of [1,2]. We will refer to the j-th refex-

ence in [1}, [2] by [j]1' [j]2’ respectively.

Let us consider an assemblage of finitely many chemical cells as described in
the introduction of [2]. More generally, we allow for more than just two cells
to be connected to the outside reservoir via membranes. If hj is the width of
the j-th cell, if Ej is the diffusion constant between the j-th cell and the

outside reservoir and if Dj is the diffusion coefficient between the (j-1)-th

cell and the j-th cell, then the corresponding system reads

(1a) (E1+D2)x1—D2x2 = hlf(xl,k),

-D.x. +(E.+D.+D. ,)X.-D, ,x..,. = h.f(x.,\), j=2,...,N-
{1b) 3"3—1 (J 3 3+1) 57P541%541 3 (J ) (3 ,N-1)
(1c) -DNxN_1+(EN+DN)xN = th(xN,X).

The case E.=0 describes a cell which is not connected to the outside reservoir.
The generation term-f is qualitatively given by Fig.3 of [2]. There we have
given examples in (4), (we refer to the formula (j) in [2] as (j)z). X is
again a control parameter. We consider our assemblage to be made up of end
units {see Fig.la, lc) and middle units (see Fig.lb). For any unit, the number
of cells which are not connected to the ocutside reservoir is arbitrary but at
least one for end units and at least two for middle units. Hence the smallest

assemblage constructed in this way consists of seven cells and is given in

Fig.1.
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as control parameters and combine them in the controcl parameter vector v ER
where p is a sufficiently large natural number. Then an abbreviation for the

system {1} is
(2) F(x,v) = 0, x€ER', vERP.

Here for any vE]RP the function F maps 3RN into itself. We are trying to con-
struct an organizing center (see [7]1 for this notion) in the solution set of
(1) or (2) which determines the structure of this set in the neighborhood of
the center. An organizing center is a singularity. Its universal unfolding
structurally gives the complete picture of our solution set in the neighbor—
hood of the center. In section 2 we first obtain the type of the singularity
in a heuristic way. In section 3 we test our intuition numerically: Structures
in the solution diagram of the universal unfolding of the singularity must
have their counterpart in the solution set of (1) and vice versa. Hence we
take some characteristic structures in one of the two diagrams and try to find
a diffeomorphic picture in the other diagram by perturbation of suitable para-
meters. The results show remarkable agreement of the predictions and the an-
swers. For all structures we have picked in one diagram we could find a count-
erpart in the other. We note that we only publish some of our tests in this

paper. In fact, we tried many more situations and always found the expected

answer.

2. A SINGULARITY

In the spirit of [2] we take our assemblage of cells apart into finitely many
pieces of the form given in Fig.l. These are two end units and finitely many

middle units as described in the introduction.

Let us first take a closer lock at an end unit. In the case considered in sec-
tion 2 of [2] the solution set of an end unit is given by Fig.5 in [2]. Let us
concentrate on one of the hysteresis loops (see Fig.5 in [2]) which disappears
during the transition described in [2]. We have seen in [2] that this dymamics

can be understood by a perturbation of the solution set of the followingsimple
algebraic equation

(3) Z—x-_-o
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(see (15)2). Numerical studies on the system (1) for the middle unit show that
also a middle unit produces hysteresis phenomena which behave like perturba-

tions of the polynomial eguation (3).

We now turn to the general case of our assemblage of cells. We assume that we
can fix all control parameters except for A such that the solution curve of
any unit with respect tc the parameter A shows a hysteresis loop in the neigh-
borhood of a common value Ao of the control parameter. All these loops are
supposed to behave like a perturbation of (3) if some of the other control
parameters in (1) undergo suitable perturbations. Then it is tempting to con-
jecture that the whole system (1) describing the complete assemblage of cells
works locally like a perturbation of equations of the form (3) yielding the
system

(4) z;— A =0, i=1,...K

where X is the number of units which make up our complete assemblage. For each
unit we simply put down an equation of the form (3). Eliminating A from the
system (4) we are left with the system

3 3
(5) zj—zj+1

=0, j=1,...,K-1.

This descfibes a singularity at the point (0.....,O)€IIRK-1 which defines our

organizing center menticned in the introduction. We proceed now as described
at the end of the introduction: The unfolding of (5) at the origin gives the

solution pictures which we have to spot in the sclution set of (1).

It is very difficult to obtain a universal unfolding for (5) in general. So we
retreat in this paper to the two cases K=2 and K=3. Here we can give the uni-
versal unfolding of (5). We then know the perturbation pictures predicted by
the singularity (5) and can try to adjust the parameters Dj' Ej' hj (j=1,...,N)

in (1) to find qualitatively the same pictures in the solution set of (1).

The case K=2 has already been considered in [2], {3b,4d]2. Here our assemblage
consists of two end units or an end unit and a middle unit or two middle units.
In particular, the case of two end units has been studied [2],[3b,4d]2 with
the result that we could observe all predictions of the singqularity

3.3 _
(6) zy -2, =0



(note K=2 in (5)) for the corresponding system which is in this case the sys-
tem (1)2. In particular the three pictures of Fig.6 in [2] are part of the
universal unfolding of (6) which reads

3 3
- + =
(7 Z2)-% 2-fa1-+a2214~a3z2 0t4zlz2 o,

This unfolding is discussed in detail in [1]1.

3. THE CASE K=3

In this section we are concerned with the case K=3. We join the three parts of
Fig.l via membranes and arrive at a total of seven cells, three of which are
connected to the outside reservoir and separated from each other by two cells
with no connection to this reservoir. We assume the generation term f to be of
the form (43)2 with

(8) Al = 101'4, Az = 4, 13 = A = control parameter.

The corresponding system (1) takes the form

(o) (E1+Dz)x1-D2x2 = hlf(xl.l)
—D2x1+(D2+D3)x2—D3x3 = h2f(x2,x)
-D3x2+(D3+D4)x3-D4X4 = h3f(x3,x)

(9b) —D4x3+(E4+D4+D5)x4—D5x5 = h4f(x4,k)
—D5x4+(D5+D6)x5—D6x6 . hsf(xs,X)

o0 —D6x5+(D6+D7)x6—D7x7 = h6f(x6,A)
-D7x6+(D7+E7)x7 = h7f(x7,7\)

Here (%a) and (9¢) govern the two end units and the three equations (9b) the
middle unit. We now have to find diffusion constants E., D. and cell lenghﬁ h.

such that all three parts (%a), (%) and (9c) show hysteresis behaviour with

respect to the control parameter A.

This situation occurs if we put
(10) Ej =1 (3=1,4,7, Di = .3, hi =1 (i=1,...,7).

Then we can combine for the control parameter A=9 out of three solutions for
any of the subsystems (9a), (9b), (9c) a total of 27 solutions for the full

system (9). We start a continuation procedure at each of these points and find
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a net of branches as shown in Fig.Za. In the net four bifurcation points
occur which we have marked by Pl to P4. The remaining intersections in Fig.Z2a
do not correspond to bifurcation points of the system (9), they are caused by
the choice of functionals which we made to draw the bifurcation diagram. In
fact, the picture {s simplified considerably if we plot the same branches in
a (xl,x4,x7) coordinate system as it is done in Fig.2b. This change of view
may be compared with the elimination of the parameter A from the singular

system (4) (the vertical axis in Fig.2a is (x1+2x4+3x7)/6).
D’n
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Fig.2c Fig.2b
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A further simplification occurs if we draw a picture showing the topological
type of the net without any reference to the values of the variables yroons
x7,l. The resulting diagram is given in Fig.2c. It consists of one open curve

and five closed curves, one of which is connected to the open curve at two bi-
furcation points and two of which are tied together at two bifurcation points.

The remaining two curves form isolas which are disconnected from each other

and from the other branches.

Let us first try to retrieve this configuration from the universal unfolding

of the singularity (5) with K=3. In this case we may rewrite (5) as
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)
(11) xd_y3 = 0, 23-y3 = 0.

From the theory in [6]2 we find that a universal unfolding of (11) needs 28

parameters and a particular one is given by

3.3 2 2
=" - + +
Ul(x,y,z,a) X -y 0 +a2x+a3y+a4z+a5xy+a6y a7yz QBZ

1

2
+0,_xz+0 Oxy2+a yzz+a y22+a Xy z+0, XYz

(12) 9 1

3.3 2
U2(x,y,z,a)—z -y +a17+a18x+algy+uzoz+u21x +a22xy+a23yz

2
Xz +0, Xyz+a

11 13 14 15 16

2 2 2
+a24xz+a252x +az6xyz+u27yx +a28x vz .

0f course it is impossible to grasp all types of solution branches of the sys-
tem Ul=0, U2=0 when o varies in IR28. Therefore we are compelled to drop many
of the parameters from the unfolding (12). Here we are guided by special prop-
erties of the system (9) with the values of (10) which should be reflected by
the unfolding. In particular, we keep in mind that the variables x,y,z corI-
respond to the concentrations xl,x4,x7 in those cells which are connected to
the reserveoir.

I. Symmetry

The complete system (9) at the values of (10) is invariant under the trans-
formation X, > Xg_, (i=1,...,7). Hence we require Ul(x,y,z,a)=U2(z,y,x,a)
which leaves us with a total of 12 parameters instead of 28 in (12).

II. Decoupling

Ul=0 models the coupling of the left end unit and the middle unit whereas

U2=O dces the same for the middle unit and the right end unit. It seems there-
fore reasonable to let U1 be independent of z and 02 be independent of x. This

condition reduces the number of parameters in (12) to 10.

If we impose both conditions I and II on the universal unfolding (12) thenwe

end up with the following 4-parameter unfolding

0

3
(13a) Fl(x,y,B) X -y3+81+82x+83y+84xy

(13b) F2(XIYIB)

0.

Z3'Y3+81+822+B3y+84zy
We recognize that this system contains the unfolding (7) two times with a

coupling through the variable y. Projecting the solution sets of (13) onto the
(x,y)-plane and the (y,z)-plane will therefore yield the known solution curves

of (7) (c£.[1]1). oOn the other hand we can combine the solution set of (13)
from the single curves (13a) and (13b). This combination follows some simple



rules which we have illustrated in an obvious way in Tab.l1. These rules apply

to any system of the type
(14) F(x,y) = 0, F(z,y) =0

and could in fact be put into rigorous theorems.

(x,y)-branch of {z,y)~branch of {x,vy,2)-branch

and i
F(x,y) = O F(z,y) =0 combines to of (14)

y //-\\ y //’\\

LA, | LA,
N N/
J
@, &
X X

Ko x

Tab.1

For example, if we consider the parameter set Bl=e, B2=—1, B3=1, B4=O (>0

small), then the cubic curves (13a), (13b) are of the following form

AY y

Q
C><

J1 T /

Fig.3
Combining the two pictures according to the rules of Tab.l we get a structure
which is diffeomorphic to the one given in Fig.2c. Hence we have found the

counterpart of the structure of Fig.2a in an unfolding of the organizing

center (11).



An even more interesting sclution net of the system (9) occurs for the follow-

ing set of parameters

(15) E,=E_=1, E4=2, Di='3 (i=1,...,7), hi=1 (i=1,...,7,i#4), h4=2 .

This situation differs from (10) only in E4 and h4. In the (xl,x4,x7)—spmm
we obtain a solution picture for (9) as shown in Fig.4.
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Fig.4
Let us postpone for the moment the explanation of this picture from the uni-

versal unfolding (12).

Instead we lcok at some typical solution curves of (13a) which occur for para-
meter sets (81.82.83,34) close to (0,-1,1,0). Combining these curves by the
rules of Tab.l yields the solution nets in the small pictures below. We com—
pare these pictures with three perturbations of the situation (15) which are

obtained by varying E, and h4.

4
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(13)

Fig.5 (h,=2.055, E,=2.051)

4

(13a)

{13)

Fig.6 (h,=2, E4=2.O2)

The case of Fig.6 is of course topologically equivalent to that of Fig.2. As
a result, the small pictures in the figures 5, 6, 7 are the forecasts of the

singularity (11) to the corresponding figures given by our system (9).
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Let us return to the case (15). The special feature of it is that the system
(9) has in addition to our symmetry I the following subsymmetry:

I1I. Subsymmetry.

In the subspace of symmetric vectors x (i.e. xi=x8—i' i=1,...,7) the system
(9) is invariant under the transformation X, —rX (i=1,...,4). Therefore

5-1
we require Ul(x,y.x,a)= ~U1(y,x,y,a) in (12).

Imposing this condition on (13) yields the one parameter unfolding

x3-y3-Y(x-y} 0

(16)

z3—y3-Y(z-y) 0.

The solution net of this system for Y >O consists of one straight line, three

ellipses and one circle. These are coupled by 6 simple and 2 multiple bifur-

cation points as indicated in Fig. 8a.

Fig.8a Fig.8b
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This seems to explain Fig.4. However, a close inspection of the branching
structure of the system (9) with values (15) showed that in fact the topolog-
ical type of Fig.8b obtains numerically. The deviations cannot be visualized

in the scale of Fig.4, but we have indicated them in Fig.4 of [1].

The problem now is that Fig.8b is not possible in the partial unfolding (13).
Hence we are forced to skip at least one of the simplifying assumptions I, II
or III. The obvious candidate is the decoupling condition II which was only

expected to hold approximately. If we impose the two symmetry conditions in the

universal unfolding (12) we find the five parameter unfolding

XB-Y3+51(X—y)+62(Z*y)+(53y+64z+65yz)(x—z) 0

i

3.3
z -y +61(z-y)+62(x—y)+(§3y+64x+65yx)(z-x) 0.
After some calculations it turns out that this system exhibits the net struc-

ture of Fig.8b for the parameter set
51=-Y+E: §,=-e (0<e<<y), 63=64=65=o.

Moreover, this situation is a perturbation of the system (16).

This ends the explanation of the situation (15) via the unfolding of the or-

ganizing center (11).
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