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Thermal fluctuations of Chern-Simons numbers in the lattice SU(2) Higgs model
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We study the temperature dependence of the Chern-Simons number fluctuations in the SU(2) Higgs
model on Euclidean lattices with spatial sizes up to 20°. Temperatures well above the Higgs phase tran-
sition T are achieved on anisotropic lattices. Numerical results are compared to perturbative results on
finite lattices as well as in continuum perturbation theory. We find qualitative agreement with perturba-
tive estimates and see at high temperatures a tendency towards static configurations. Up to tempern-
tures T~2T} we find an indication that tunneling between vacuums with different Chern-Simons num-

bers is still exponentially suppressed.

PACS number(s): 11.15.Ha

I. INTRODUCTION

The nonconservation of the baryon and lepton num-
bers in the electroweak theory is well known [1]. It has
been argued that the baryon-number-violating processes
can be strongly enhanced at high temperature. Calcula-
tions of the corresponding rates are based on the one
hand on semiclassical estimates for transitions between
topologically distinct vacuums of the electroweak theory
(2] and, on the other hand, they have been performed
through Monte Carlo simulations within the framework
of an effective Hamiltonian model, which is derived from
the finite temperature Euclidean theory in the high tem-
perature limit [3]. Both approaches rely on dimensional
reduction, which is expected to be valid at high tempera-
ture and should allow us to treat the timelike component
of the SU(2) gauge fields as static fields. In the vicinity of
the electroweak phase transition this approach breaks
down and a nonperturbative understanding of the struc-
ture of the topologically distinct vacuums and their tem-
perature dependence will be important. We will study
here thermal fluctuations of Chern-Simons number distri-
butions within the framework of the Euclidean formula-
tion of the SU(2) Higgs model on the lattice. From an
analysis of their correlation in Euclidean time, we will be
able to test the validity of the static approximation in the
vicinity of the electroweak phase transition. The nonper-
turbative results for this correlation as well as moments
of the Chern-Simons numbers will be compared with high
temperature perturbation theory in the continuum and
on the lattice.

A baryon-number-violating process is a transition from
I

a vacuum field configuration to one in another vacuum,
which cannot be reached through small gauge transfor-
mations from the initial one. In the 4,=0 gauge it is
possible to assign a Chern-Simons number

ncs=—$fd3x e,-jktr[ A,(a]Ak"'%AJAk)] (11)

to gauge field configurations at some fixed time. Vacu-

ums always have integer ncg, and the change in baryon
number during the transition between two of them is pro- |
portional to the difference of their ChernSimons num- -
bers, the proportionality constant being the number of |

quark and lepton families. The rate of transitions be-
tween different vacuum sectors depends on the height of
the potential barrier between them. For temperatures
below the electroweak phase transition, the rate for
baryon-number-violating processes can be estimated,
making use of the existence of classical field
configurations, sphalerons, which interpolate between two
vacuums and carry half-integer Chern-Simons numbers.
This approximation breaks down close to T,. For tem-
peratures much larger than T, baryon-number-changing
processes are expected to be frequent, ~ T however, n0
accurate estimate exists. In particular, in the vicinity of
T, the transition rates in the high temperature phase ar¢
unknown. A nonperturbative study of the different topo-
logical vacuums in the electroweak theory isthus needed-
In general the barrier height between vacnums with
different Chern-Simons numbers can be determined from
the difference of the Chern-Simons effective potential
Vincs) at neg=0and ncg=1, which is defined as

_. Vineg) _ _ 1
P(ngg)=e CS——f[DA][DrMe 8 ncs+-gfd3xe,-jktr[A,-(ajAk+%AjAk)] .

Here P(ncg) is the probability distribution of the Chern-
Simons numbers. The shape of the effective potential has
been studied in the semiclassical approach [4]. Having a
lattice prescription for the evaluation [5,6] of P(ng) at
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hand, one can extract the barrier height nonperturbatiYe'
ly also. The temperature dependence of the barmef
height can be used to determine the temperature depen-
dence of the transition rate, up to a normalzation factor
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tions between Chern-Simons numbers on different (Eu-
clidean) time slices. The basic assumption in analytic
continuum calculations, as well as real time simulations
on the lattice [3,8], is that at high temperature the

S.}cos(qot)
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relevant field configurations become static. This should
be reflected in an increasing correlation between Chern-
Simons numbers on neighboring time slices. The pertur-
bative calculation yields

(3.8)

|
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In the following we will use these perturbative expres-
sions for comparison with our Monte Carlo data. This
will allow us to judge how far the thermal fluctuations in
the Chern-Simons numbers show perturbative behavior
in the temperature and coupling regime studied by us.

IV. NUMERICAL RESULTS

All our simulations have been performed with the set
of couplinggs p=4/g>=8, k=0.12996, and
A=0.0017235 [9], and various values of the anisotropy
£€[1,2.5]. The finite temperature simulations have gen-
erally been performed on lattices of size N, X N2 with
N_=2 and N, ranging from 4 to 20. Some simulations
have been performed on lattices with larger values of N,
in order to check that within our statistical accuracy our
finite temperature results only depend on the ratio
a,T=E/N,.. For the zero temperature subtractions we
use symmetric lattices of size N7 with the same value of
&. We note that we will calculate only the gauge invari-
ant noninteger part of ng, which is normalized such that
nes€[—4,3]. In the case of a flat distribution of
Chern-Simons numbers, which will be reached in the lim-
it of large volumes or temperatures, one will thus find the
limiting value

(n%s)¢N,,N,) =hy @.1)

12

N, E/N —w

This constrains the range of useful lattice sizes for our
simulations. However, it also indicates that the perturba-
tive calculations are only valid for small values of LT.
Taking the perturbative results as a first guidance, we
find that for g2=0.5, as we will use it in our simulations,?
the asymptotic value {(nZs)=L will be reached for
LT=N,§/N,~20. As will become clear from the fol-
lowing discussion, we indeed find that the limit given by
Eq. (4.1) is reached for LT =10, and thus for N, =2 we
can work on rather large spatial lattices up to size

N, =20.

2The small value of g? used in this study has an additional ad-
vantage over our earlier investigation [6): Because of the
smoothness of the gauge fields the evaluation of Chern-Simons
numbers by numerical integration is much simplified. This also
improves the speed of our numerical algorithm, which to a large
extent vectorizes and on a Cray-YMP or NEC-SX-3 typically
yields one Chern-Simons number in 40 sec on a 2 X 10° lattice.

[S}+¢%in*(po/2)][S5+&7sin*(q/2)]

—

Some distributions of Chern-Simons numbers on iso-
tropic lattices (§=1) are shown in the first two rows of
Fig. 2. We note that with increasing spatial lattice size
the distributions get significantly broader. However, as
expected we also find that in this regime of couplings
large values of n g, in the vicinity of ncg =1, are strongly
suppressed at zero temperature and even close to T,
(second row in Fig. 2), although the somewhat broader
distributions found in this latter case suggest an increas-
ing tunneling probability compared to that at zero tem-
perature.

In Fig. 3 we show some results for the width of the
Chern-Simons number distributions, without performing
any vacuum subtractions. The approach to the limiting
value of ; on large lattices is clearly visible. It is also ob-
vious that on smaller lattices the fluctuations grow linear-
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FIG. 2. Chern-Simons number distributions on various lat-
tices and different anisotropies £ as indicated. The top row
gives T=0 distributions at growing spatial volume. There are
only small differences at T=T, (middle row). With increasing
temperature at lattices of fixed spatial size the distributions get
significantly broader (lowest row).
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ly with volume. In fact, we find that the first two non-
vanishing moments of ncg grow proportionally to the
spatial volume and its square, respectively. For N, <20
one obtains

(5.910.5)X107°N3, N.=N_,
(8.5+0.2)X1078N}, N,=2,
(9.6+0.6) X107 ''NS, N =N,
(17.0+0.6)x 107 ''N8, N _=2.
4.2)

<nés )§=1(N0’N‘r)= [

(fl‘(‘;s )5:1(N0;N7.)=

Details on the statistics and the results for all the mo-
ments measured by us on various lattices are given in
Table I. The small change of the distribution as a func-
tion of temperature below T, is also confirmed by our
simulations on symmetric lattices of size 8* with aniso-
tropic couplings £=2 and 4, which corresponds to tem-
peratures T /T,=0.5 and 1.0.

In order to obtain information at even higher tempera-
ture in the symmetric phase, we used anisotropic lattices
with temporal extent N_=2. Some results for anisotropy
£=1.5, 2, and 2.5, corresponding to T/T,=1.5, 2, and
2.5, are shown in the last row of Fig. 2. The rapid
broadening of the distributions with increasing £ is clear-
ly visible. The resulting width of the distribution for an-
isotropy £=2, corresponding to T=2T,, is also given in
Fig. 3 together with results for T=~0 and T,. For £=2
we reach the limit of a flat distribution, resulting in
(ngs)e=+, for N,=~12, ie, LT=12. Our numerical
simulations thus have to stay in the regime with LT <10.
As discussed in the previous section, we should compare
our numerical data in this parameter regime with pertur-
bation theory in a finite volume,

A systematic analysis of the temperature dependence
of the width of the distributions has been performed on
2X 8’ lattices with anisotropies varying between £=1.0
and £=2.5. With increasing temperature the distribu-
tions become rapidly broader. Results for the thermal
part of the width, calculated according to the prescrip-

TABLE I. The first two nonvanishing moments of Chern-
Simons number distributions on lattices of size N,X N2 and an-
isotropy £. Also given is the number of configurations analyzed
for each set of parameters. All gauge field configurations are
separated by ten sweeps of overrelaxed heat bath updates.

Ncr NT g No. <n%s) (nés>
2 2 1.0 8000  0.000003(2) 0.000000004 6(04)
2 2 2.0 8000 0.000 104(5) 0.000000042 1(30)
4 4 10 8400 0.000334(10) 0.00000035(2)
4 2 1.0 9840 0.000443(15) 0.00000062(3)
4 2 12 8000 0.000622(20) 0.00000122(6)
4 2 1.5 1200  0.000966(50) 0.0000029(4)
4 2 16 8000 0.001016(30) 0.0000034(2)
4 2 1.7 8000 0.001132(30) 0.0000041(2)
4 2 1.8 8000 0.001294(30) 0.0000056(3)
4 2 20 1000  0.00173(20)  0.000008 75(150)
4 2 22 6628 0.002021(50) 0.0000136(10)
4 2 24 6848  0.002399(60) 0.000019 1(15)
4 2 30 1000 0.00480(14)  0.0000867(80)
6 6 10 1560  0.00123(7) 0.000004 9(005)
6 2 10 7680 0.00175(6) 0.000009 4(005)
6 2 12 4036 0.002427) 0.0000189(12)
6 2 15 2058 0.0038(2) 0.00044 7(35)
6 2 1.8 4160 0.0054(2) 0.000094 6(90)
6 2 20 7760 0.0070(3) 0.000155(10)
6 2 22 6914 0.0101(4) 0.00370(40)
6 2 25 5472 0.0128(4) 0.00504(30)
8 8 1.0 2400 0.00284(13)  0.000024(2)
8 8 20 7840  0.004 68(15) 0.000065(4)
8 8 40 2952 0.00320(17) 0.000032(4)
8 2 10 9120 0.00426(13)  0.000054(4)
8 2 13 2004  0.00731(60)  0.000169(20)
8 2 15 9924 0.00976(40)  0.000293(20)
8 2 1.8 3444 0.01539(110)  0.000729(70)
8 2 20 7732 0.02241(100) 0.00162(20)
8 2 25 18564 0.04621(200) 0.00545(30)

10 2 10 2720 0.00864(50)  0.00023(2)

12 2 10 1860  0.0151(11) 0.00065(7)

12 2 20 1830  0.072 1(55) 0.010%(7)

20 2 1.0 1352 0.061 8(40) 0.008%5)

20 2 20 1156  0.0830(50) 0.01245)
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tion given in Eq. (3.7), are shown in Fig. 4 together with
the perturbative result. The width clearly rises rapidly
with £. The double logarithmic plot nicely shows a
power law behavior (ngg)~£® The best fit gives a
power of a=3.7(1), which should be compared to the
temperature dependence (nZg)~ T expected from con-
tinuum perturbation theory. Here one has to take into
account that we have ignored quantum corrections in the
lattice anisotropy couplings v, ;,, which modify the tree
level relation y,, =&~ T between these couplings and
the temperature. For instance, assuming for the O(g?)
correction to the anisotropic couplings the form
Yer=E[1F+cg*(£—1)], which is valid for £ close to I,
will reduce the power to 3.2(1) for cg>=0.1 and 2.9(1) for
¢g?=0.2. We thus consider our result for the £ depen-
dence of the width as rather satisfactory.

In addition to this agreement in the functional form of
the temperature dependence we find, however, that the
thermal width of the Chern-Simons number distributions
generally is about a factor 3.0 larger than the perturba-
tive value. For £>1.8 we also find a statistically
significant probability for half-integer Chern-Simons
numbers. This allows us to attempt an estimate of the
temperature dependence of the tunneling rate between
different Chern-Simons vacuums. Assuming that the
number of tunneling events is proportional to the number
of configurations with Chern-Simons numbers close to
half-integer values, ie., ncs€E[{n+4—e,n+i+el, n€Z,
we can compare the ratios of tunneling rates at different
temperatures (Table II).

We define F(g,£) as the fraction of configurations on
lattices with anisotropy & {temperature a, T=§/N ) for
which the absolute value of ng differs by less than € from
1. At zero temperature we do not find any configurations
with Chern-Simons numbers close to 5. We thus can
directly use the results obtained on the N_=2 lattices to
determine F(g,£). The data are given in Table II. From
this we can eliminate the unknown proportionality con-
stant, which relates F to the tunneling rate I'.

As long as the temperature is much smaller than the
W-boson mass the latter determines the scale for finite en-
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FIG. 4. The temperature dependence of the width on 8*X2
lattices with anisotropies £ ranging from 1.0 up to 2.5 (0 ). Sub-
traction of the appropriate zero temperature contribution gives
the values ( X). Errors are plotted only if they are bigger than
the symbol. The dashed and dotted curves give the perturbative
results in the continuum and on the lattice, respectively.
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TABLEII. The first table gives the fraction of Chern-Simons
numbers, F (g, £), calculated on 2 X 8° lattices with anisotropy £
which differ from half-integer values by less than ¢. In the
second table we compare some ratios F(g,£)/F(¢,£,) with the
semiclassical estimate, Eq. (4.3), for the tunneling rate in the
two limiting cases my =my (T =0) (a) and my ~ T (b), respec-
tively.

£ F(0.1,€) F(0.05,£)
1.8 0.0035(13) 0.0013(07)
20 0.0109(23) 0.0044(11)
25 0.0710(45) 0.0327(28)

§1/§2 £=0.1 £=0.05) (a) (b)
2.0/1.8 3.1+1.3 3.412.0 39 1.5
2.5/2.0 6.5t1.4 7.41+2.0 10.0 2.4

ergy sphaleron solutions which enter the semiclassical es-
timates of the tunneling rate [2]. One finds exponentially
small tunneling rates per unit time and volume:

,
My | -3M,/Tay,

[ /tV=0.007(ayT)*

4.3)
Ay

At high temperatures the relevant energy scales are ~ T,
which should lead to a replacement of my, by a term ~T
in the above estimate. One thus would expect that in the
high temperature limit the tunneling rates become pro-
portional to T* [2,8]. In order to compare the tempera-
ture dependence of the tunneling rates found in our nu-
merical simulation with the above semiclassical relation,
we determine the temperature and the coupling a, from
our simulation parameters as 7T=§¢/N_a, and
ay =1/pm, respectively. For the mass scale, my we
consider the two extreme cases my~T and
my=my(T=0), where a, My, (T=0)=0.2 is taken in
accordance with the Monte Carlo simulation of Ref. [9].
As can be seen from Table II, in the temperature regime
studied by us the data seem to favor a mass scale which is
still only weakly temperature dependent. This is, in fact,
consistent with the findings of Ref. [9], where little tem-
perature dependence has been observed for the W-boson
mass across the phase transition, while the Higgs boson
mass dropped significantly close to Tj. Because of the
low statistics the errors on our numerical results for the
tunneling rates are still quite large. However, it is
reassuring that the results do not seem to depend much
on the value chosen for «.

Finally, we want to test to what extent the static ap-
proximation used in analytical approaches is supported
by our four-dimensional simulations. Static
configurations should display strong correlations between
the Chern-Simons numbers calculated on neighboring
time slices. This is easily visualized if the Chern-Simons
numbers calculated on the two time slices of our N, =2
lattices are plotted against each other (Fig. 5). At low
temperatures the two numbers are uncorrelated, resulting
in a spherical distribution in the scatter plot. With in-
creasing temperature, however, the two measurements
get more and more correlated.
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FIG. 5. The scattering of Chern-Simons numbers for the two
time slices is given for fixed lattice and increasing temperature
(top). Below, the numbers are displayed for simulations with
similar width but different temperature.

The same behavior appears when comparing the re-
sults from simulations on different lattices which yield a
similar width but correspond to different temperatures,
e.g., 6X2,6=2 and 8*X2,£=1 (Fig. 5). The strength of
these correlations can be measured by the covariance ma-
trix

cov=({xp)—(x Yy N/V (2 =) =)D,

with x,y denoting the two Chern-Simons numbers. Be-
cause of the periodic structure of the Chern-Simons term
some care has to be taken when projecting two Chern-
Simons numbers simultaneously to the restricted interval

—1,1], as artificial correlations can build up. On the
other hand, existing correlations may also be destroyed
because pairs of the form (0.5+¢,0.5—¢) become
separated after projection. Therefore the numbers were
shifted in pairs, minimizing the distance from (0,0). Tak-
ing this definition, there is a clear indication for a grow-
ing correlation with increasing temperature (Fig. 6).

V. CONCLUSIONS

We have studied the temperature dependence of
Chern-Simons number distributions on Euclidean lat-
tices. In our parameter range we were able to produce
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FIG. 6. The correlation between the two Chern-Simons num-
bers on the 2 X 8° lattices versus anisotropy £. As a measure for
it we used the covariance. The dashed curves give the perturba-
tive values on the lattices with N, =2 (top) and N,=N, (bot-
tom), respectively. Error bars are only drawn if theyare bigger
than the symbol.

statistically significant distributions of Chem-Simons
numbers, which clearly showed the expected broadening
of the distributions with increasing temperature,

A comparison with perturbative calculations on the
lattice as well as in the continuum shows that the width
of these distributions typically is about a factor of 3
larger than expected from perturbation theory. For tem-
peratures T > 1.8Ty, we find statistically significant frac-
tions of configurations with Chern-Simons numbers close
to 3. These configurations have been related to the
number of tunnelings between topologically distinct vac-
uums. We find that the corresponding tunnelingrates are
still controlled by an energy scale consistent with that of
the zero temperature W-boson mass. The ratesdo, how-
ever, start growing rapidly between T=Tj, and
T=2.5Ty, while they show little temperature depen-
dence below Ty, as can be deduced from the small
changes in the first two nonvanishing moments of the
Chern-Simons number distributions.

Our present analysis is limited to a temperature and
volume range given by the conmstraint LT <10, which
essentially is dictated by the occurrence of large contribu-
tions from vacuum fluctuations. If we want to reach even
higher temperatures on larger lattices, we haw to per-
form simulations at smaller values of the gauge coupling.
With our present algorithms this should be feasible and it
should then be possible to perform a systematic study of
the temperature dependence of the tunneling rates over a
wide temperature regime. It would certainly be interest-
ing to check at which temperatures one reachesa regime
where the asymptotically expected scaling of the transi-
tion rate with the fourth power of the temperature is val-
id.

ACKNOWLEDGMENTS

The computations have been performed on the NEC
SX-3 of the University of K6ln. We thank in particular
J. Boll for his support. We also thank Sourendu Gupta
for helpful discussions.



50 THERMAL FLUCTUATIONS OF CHERN-SIMONS NUMBERSIN . . . 5919

[1] G.’t Hooft, Phys. Rev. Lett. 37, 8 (1976); Phys. Rev. D 30,
2212 (1984).

[2] P. Arnold and L. McLerran, Phys. Rev. D 36, 581 (1987).

[3]]. Ambjgérn, M. L. Laursen, and M. E. Shaposhnikov,
Phys. Lett. B 179, 757 (1987); 197, 49 (1987); Nucl. Phys.
B316, 483 (1989).

[4) T. Akiba, H. Kikuchi, and T. Yanagida, Phys. Rev. D 38,
1937 (1988).

[5]F. Karsch, M. L. Laursen, T. Neuhaus, B. Plache, and
U.-I. Wiese, Int. J. Mod. Phys. C 3, 39 (1992); F. Karsch,
M. L. Laursen, T. Neuhaus, and B. Plache, in Lattice *92,
Proceedings of the International Symposium, Amsterdam,
The Netherlands, edited by J. Smit and P. van Baal [Nucl.
Phys. B (Proc. Suppl.) 30, 715 (1993)].

[6] F. Karsch, M. L. Laursen, T. Neuhaus, and B. Plache,
Nucl. Phys. B406, 825 (1993).

[7]17. Kripfganz and C. Michael, in Lattice *92 (5], p. 509.

[8] J. Ambjgrn, T. Asgaard, H. Porter, and M. E. Shaposhni-
kov, Phys. Lett. B 244, 479 (1990); Nucl. Phys. B353, 346
(1991).

[9] B. Bunk, E. M. Iigenfritz, J. Kripfganz, and A. Schiller,
Phys. Lett. B 284, 371 (1992); Nucl. Phys. B403, 453
(1993); H. G. Evertz, Ph.D. thesis, University of Aachen,
Germany, 1987.

[10] F. Karsch, Nucl. Phys. B205 [FS5], 285 (1982).

[11] G. Burgers, F. Karsch, A. Nakamura, and 1. O. Stamates-
cu, Nucl. Phys. B304, 587 (1988).

(12]1. Bender, T. Hashimoto, F. Karsch, V. Linke, A.
Nakamura, M. Schiestl, and I. O. Stamatescu, in Lattice
90, Proceedings of the International Symposium, Tal-
lahassee, Florida, edited by U. M. Heller, A. D. Kennedy,
and 8. Sarielevici [Nucl. Phys. B (Proc. Suppl.) 20, 329
(1991)}; M. Schiestl, Ph.D. thesis, University of Heidel-
berg, 1991.

[13] M. Lischer, Commun. Math. Phys. 85, 39 (1982).

[14] N. Seiberg, Phys. Lett. 148B, 456 (1984).

[15] J. Ambjdrn (private communication).

[16] U. Heller and F. Karsch, Nucl. Phys. B251 [FS13], 254
(1985).



