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We study the quark propagator at finite temperature on euclidean lattices in the Landau

gauge, and compare the results to an 0(g
2) lattice weak coupling calculation. The screening

mass obtained from spatial correlation functions in the chiral symmetric phase is close to the

Matsubara frequency. The temporal correlation functions yield a much smaller screening mass,
which approaches the perturbative result, m~ff= g2T2/6, for T  1.75 T~.Deviations from the

perturbative behaviour are seen for T~~ T ~ 1.75 T~.For T ~ T~,the screening masses from both
spatial and temporal correlation functions are large and close to half the mass of the p-meson.
Dispersion relations do not show any significant deviations from free particle behaviour.

1. Introduction

A central issue in the discussion of the finite-temperature chiral symmetry restor-

ing phase transition in QCD is the exploration of the nature of the high-tempera-

ture quark—gluon plasma phase. To what extent can it be viewed as an asymptoti-

cally free plasma of quarks and gluons and what is the nature of the interactions

among these partons in the plasma phase? It is by no means obvious that the

fundamental degrees of freedom in the high-temperature phase are those of

massless quarks and gluons [1]. The existence of a non-vanishing string tension for

spatial Wilson loops [2] in the plasma phase as well as the non-perturbative effects

visible in the equation of state above T~[3] reflect the non-trivial structure of the

plasma phase, which has been attributed to the complicated magnetic sector of

QCD.

In particular, the Monte Carlo data on spatial hadronic correlators on euclidean

finite-temperature lattices [4—6] and the so-called spatial wave functions for

mesons [7] lead to a renewed intensive discussion on the nature of the fundamental

excitations in the plasma phase. On the lattice, mesonic and baryonic correlators

have been studied in different quantum number channels [4—6].The spatial fall-off
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of the (pseudo-) vector and baryon correlators is governed by the Matsubara

frequency, i.e. the screening masses are close to 2~rTand 3irT, respectively [6].

The same holds true for the spatial screening length of the quark propagator,

which has been analyzed with Wilson fermions in quenched QCD [81.While this

suggests that quarks propagate freely in these channels, there are large deviations

from free field behaviour visible in the (pseudo-) scalar channel as well as for

mesonic “wave functions” calculated from spatial correlation functions [7].

How far can these observations shed light on the existence of bound states in

the QCD plasma phase, with quantum numbers of ordinary hadrons? An answer

to this question requires a better understanding of the structure of the euclidean

correlators at finite temperature. In particular, we have to learn more about the

temporal correlation functions in euclidean time, which, after analytic continua-

tion, give direct information about the poles of the real time propagators [9,10]. Do

they show free field behaviour in the QCD plasma phase?

In this paper we concentrate on an analysis of the quark propagator at finite

temperature, which is the basic ingredient in the construction of all the hadronic

correlators studied so far. We study the spatial as well as temporal quark

correlation functions. From lattice simulations of QCD with four flavours of light

staggered fermions we extract the corresponding screening masses at zero and

non-vanishing quark momentum and compare the results with perturbative calcu-

lations, both on finite lattices and in the continuum [11—13].Our main results are:

(i) The exponential decay of the correlation functions is significantly different in

temporal and spatial directions.

(ii) They are both well described by lowest-order perturbation theory above the

chiral phase transition for temperatures T 1.75 T~.

(iii) Their structure changes drastically below T~.

This paper is organized as follows. In sect. 2 we discuss some basic properties of

the finite-temperature quark correlation functions in the euclidean time formalism.

Sect. 3 deals with a perturbative calculation of the fermion self-energy at finite

temperature on the lattice. Monte Carlo calculations of the quark correlation

functions on euclidean lattices for four flavour QCD are presented in sect. 4.

Finally we give our conclusions in sect. 5. An appendix is devoted to the details of

the perturbative calculation of the fermion self-energy on the lattice.

2. Temporal and spatial correlation functions

Finite-temperature lattice simulations are usually performed on asymmetric

lattices of size N~X N. The shorter direction, N~,is related to the temperature, T,

through the lattice spacing, a, by the relation T = 1/aNT ~. In QCD, one can

* In the following we will set the lattice spacing to unity, a 1.
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construct hadronic correlation functions for separations in either the spatial or

temporal directions. In lattice units we can write

G7(x
3, j5) = ~ e’~~(H(i,x3)Ht(o, 0)),

1= (x11 x1,x2)

G[’(x0, p) = ~ e’~’(H(x0,x)Ht(0, 0)). (1)
x = (x1 ,x2 ,x3)

Here j3 = (p0, p1, p2), p = (p1, p2, p3), and H denotes a hadronic operator of

fixed quantum numbers. Note that for bosons p0 = 2n~T,whereas for fermions

p0 = (2n + 1)TrT where n = 0, ±1, ±2 The expectation value of the product

HHt, above, can be expressed in terms of quark propagators.

In the past, lattice studies have concentrated on analyses of spatial correlation

functions ~. This is due to technical reasons. Since NT is usually small, and (anti)

periodicity of field configurations halves the possible number of independent

measurements of a correlation function, the long-distance behaviour of correlators

is difficult to measure in the temporal directions. This restriction is not so stringent

for spatial correlation functions. On the other hand, we will show that the

presently available spatial volumes, N~ (2—3)N~,severely restrict the analysis of

the low-momentum structure of these correlation functions. -

The screening masses calculated from the exponential decay of G~”(x3, 0) at
large x3 above the critical temperature are close to multiples of the Matsubara

frequency ITT; a result obtainable in a theory of non-interacting fermions. This

large zeroth-order value makes it difficult to extract the corrections arising at

higher orders of perturbation theory [6,151. The situation is quite different for

temporal correlation functions. Their exponential decay can, with perfect general-

ity, be related to the singularities of the spectral function. Hence they can be easily

related to the real-time correlator and are directly related to the spectrum of

physical excitations [9,10]. In this section we discuss the structure of spatial and

temporal quark correlation functions. These are the basic ingredients entering the

correlators in eq. (1).

The quark correlators, analogous to the hadronic correlation functions of eq. (1)

are related to the momentum-space propagator S(p0, p) through Fourier transfor-

mations:

G1(T, p) = TEe~~TS(po, p),

p0

dp3
G0(z, fl) = J~e~3TS(po, p). (2)

* Some result for temporal hadronic correlation functions on anisotropic lattices have, however, been

presented in ref. [14].
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The spectral representation of the finite-temperature propagator,

,. dw p(w, p)
S(po,p)=iJ— , (3)2IT ip~—O)

can be used to relate these two correlation functions to each other, and to the

real-time correlator. In particular, the temporal propagator is obtained by combin-

ing eqs. (2) and (3). The summation over the momenta p
0 can be performed by the

usual trick of contour integration, since the allowed values are obtained as the

poles of the Fenni function 1/(1 + exp(co/T)). Thus the spectral representation of

the temporal correlation function can be written as the contour integral

dw c”
T

G~(T,p) =~—p(w, ~ 1 +e~~/T’ (4)

where the contour avoids all the poles of the Fermi function. Hence G~(T,p)

contains information only on the singularities of the spectral function, and thus

directly on the quasi-particle spectrum of the theory. This is not true of the spatial

correlator as can be demonstrated by writing the spectral representation of G~

which follows from eqs. (2) and (3). An appropriately chosen contour integral

representation of eq. 3 must include only one pole of the Fermi function. For the

lowest allowed momentum .~min= (ITT, 0, 0), the Matsubara frequency shows up in

the long-distance behaviour of this correlator. Thus, genuine spectral information

is harder to extract from this correlator.

The example of a free-field theory clarifies these statements. One can write the

spectral density in the form

pff((O, p) = ~(iy
0w +iy ~p +m)(~(w—wy) + ~(w +w~)), (5)

for fermions of mass m, where p = p I and = + m
2. Using eq. (4), one

finds

G
1(T, ~ = 2 cosh(w~/2T)

iy ~p + m
x iy0 cosh(w~(T— iT)) + ( ) sinh(w~(T— iT)) . (6)

In contrast, the spatial correlator decays with an effective mass (2 = Vm2 + 1T

2T2,

and takes the form

G
0(z, ~min) ‘~‘~“~ [y0(iITT) +y~(Q/

2)+m]/[l. (7)

It is a trivial job to transcribe these results to a lattice.
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We turn now to the corresponding QCD problem. The temporal quark propaga-

tor in high-temperature perturbation theory has been extensively analysed during

the last years [11—131.The fermion self-energy has been computed to 0(g
2) [16].

In the high-temperature limit, the leading contribution is gauge invariant and is

shown to be of O(g2T2). For vanishing bare quark mass, the renormalized

propagator can be written as

S~(p
0,p)=y0D0(p0,p)+iyj3D~(p0,p), (8)

where j3 =p/IpI. The functions D00 are in general quite involved [11], but take

on the following simple form when only the leading corrections are retained:

meff ~JJ0+~
D0(p0,p)=ip0————ln

2p zp~—p

2

meff ~Po ~P0Y~

D5(p0,p)=p+— 1—-——ln . . (9)
p 2p ip0—p

The effective quark mass is given by

1 N
2-1

~ 2N )g2T2 (10)

Analysis of the real-time theory gives similar results.

For non-zero momenta p, the spectral density at finite temperature has two

poles [16], w~(p)and wjp). These coincide at vanishing three-momentum,

w~(0)= wjO) = meff. In fact, for p = 0, one finds

m2ff

D
0(p0, 0) =ip0 1 +

p0

D0(p0, 0) =0. (11)

After analytic continuation, D0 correctly gives rise to a pole p0 = meff. This is

reflected in the zero-momentum temporal correlation function. For non-vanishing

three-momentum the latter is given by the expression [11]

G~(T,p) = f dw Po(°,p)y0 cosh(~(r— ~T))

+p0(w, p)yj3 sinh(w(T—~T)), (12)
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where the components, ~ of the spectral density receive contributions from the

above-mentioned poles, and a cut for 0 ~ w

po,~=A[~(a—w±)+6(w—w4] +B~9(p—a). (13)

The cut arises from the logarithms in eq. (9). The residues A and B are discussed

in ref. [11]. It is easy to see that in the limit, g
2 = 0, these reduce to the free-field

spectral density in eq. (5).

The spatial correlation function behaves in a different manner. Since fimin is

non-zero, the pole contribution now includes a part due to the Matsubara

frequency, just as in the free theory. Moreover, D~is no longer identically zero,

and the cut visible there, eq. (9), also influences the behaviour of G~.For vanishing

spatial momenta (p
1 =p2 = 0) one finds

G5(z, p0, 0,0) =y~fdw j5(w) ~

~(w) = uIm{D~(p)/[D~(p) +D~(p)}), (14)

where we have used the abbreviation p = (p0, 0, 0, iw).

In conclusion, we note that the behaviour of the spatial and temporal correla-

tion functions is quite different even in the non-interacting theory. When the effect

of interactions is taken into account, further differences between the two can be

observed. Perturbative corrections lead to small modifications of the propagators

in the high-temperature limit. These modifications remain small for the spatial

correlation function, because of the cutoff imposed by the Matsubara frequency. In

the temporal correlator, on the other hand, these can become important when the

screening mass, meff, gets large enough.

3. The fermion propagator on the lattice

Let us now consider the fermion propagator on the lattice. For simplicity, we

discuss here the case of naive fermions. The lattice propagator is given by

Sji’(p)=S(p)+~L(p), (15)

with p = (p0, p) and

3

Sj~(p) =~ L ~vk Sifl(pk) +m (16)
k=O



G. Boyd et a!. / Quark propagator at finite T 487

p
Fig. 1. Feynman diagrams contributing to the fermion self-energy at 0(g

2) on the lattice. Only the first

one exists in the continuum formulation.

denoting the free propagator for quarks with bare mass m. The lattice self-energy

correction may be written as

3

~L(P) =g2CF i ~ ~ +m.~m(p) , (17)
k=O

with CF = (N2 — 1)/2N. It receives contributions from the two diagrams shown in

fig. 1. The complete 0(g2) result in discussed in the appendix. Here we will

consider only that part of the self-energy correction, which gives rise to the leading

0((gT)2) high-temperature contribution in the continuum limit, eq. (9). This

comes from the second term in (A.10). The lattice computation yields

(nF+nB)f(x )
D~(p

0, p) = sin(p0) 1 +g2C~J 0 +

a 8w~/w~+ 1 + 1

L 2 (nF+nB)fk(x+) sin(q~)D~)(p0, p) = 5’fl(Pk) +g CFJ 2 2

a 8wFwB~/wB+1~!wF+1

(nF+nB)f (x~)
D~(p0, p) = 1 +g2C~f 2 m _____ (18)

a 8wFw~IwB+ 1 + 1

The integrals appearing in these expressions define the coefficients .~ of the

self-energy correction, eq. (17). Detailed definitions of the functions involved are

given in the appendix. We note here that the lattice analogue to the mett/po term

in the continuum expression for D0, eq. (9), is a complicated integral, which has a

rather complex dependence on p0, even for vanishing momentum p. A unique

definition of meff on the lattice is thus possible only in the continuum limit.
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Including only these “0((gT))” lattice corrections in the renormalized propaga-

tor yields the temporal and spatial quark correlation function:

—i Nr~1 e~oxo

G~(x0,~ = ~ i~=0yODO+~kykD+mD~fl~

—i N,,—1 euf.~3x2

G5(x3, ~ = ~c~i3=O y0D~j~+ ~kykD~+mD~ (19)

In the g
2 —~ 0 limit the correlation functions G

1 and G5 are just the free fermion

correlation functions. For staggered as well as naive lattice fermions their real

parts are given by

cosh(E~(x0—NT/2))[cosh(E~NT/2) cosh(E~)}-1

(x0 odd)
G5(x0, i) = -t (20)

— 2m sinh(E1(x0 — NT/2))[cosh(E~NT/2) sinh(2E~)j

(x0 even)

and

sinh( E~(x3 — N,/2)) [sinh( E5 N~,/2)cosh( E5 ) —1

- (x3odd)
G0(x3,p)= (21)

2m cosh(E0(x3 —Nff/2))[sinh(ESNU/2) sinh(2E~)]

(x3 even)

with

E1,5 = ln(wt~+ ~/w~ + 1)

3 2

~ sin
2(pj +m2, w~=~ sin2(pk) +m2. (22)

k=1 k=0

We note that the lattice correlation functions oscillate between even and odd sites,

vanishing on even sites for vanishing bare quark mass as long as NT stays finite.

Moreover, in this limit, for vanishing spatial momenta, the temporal correlation

function is constant, while the lowest-momentum spatial correlation function

decays exponentially with a screening mass determined by the lowest Matsubara

frequency. On a finite temporal lattice this becomes

Esmin = ln(~/sin2(IT/N~)+ m2 + ~/sin2(IT/N~) + m2 + 1). (23)
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In order to get some feeling for the finite-size effects to be expected in lattice

calculations, we determine the effective quark mass and spatial screening mass

from the lattice propagators for the case of vanishing bare quark mass. The

effective quark mass can be obtained from .~
0(p0,0). As in the continuum

formulation, one can deduce from eq. (18) that the self-energy for vanishing

three-momentum develops a 1/sin(p0) singularity in the infinite-volume limit. For

finite temporal extents, however, the dependence of D~L)(p0, 0) on sin(p0) is still

quite complicated and one thus cannot simply factor out a p0-independent term,

which could be uniquely identified as the lattice analogue of the effective quark

mass. We thus discuss two definitions of meff on the lattice, which are related to

the structure of the propagator and correlation functions, respectively. We may use

the 0((gT)
2) contribution to the self-energy, eq. (18), calculated for the smallest

possible p
0 (= IT/NI) to define an approximation to m~1~on finite lattices.

meffL/T =g
2C~c(N~,N

0.), c(N~,Ne,) = sin(IT/NT).~O(IT/NT,0). (24)

Alternatively one can define an effective quark mass through the exponential

decay of the temporal correlation function calculated to O((gT)
2) as given in eqs.

(18) and (19). Using a simple cosh-fit to G
1(x0, 0) we can extract a lattice size

dependent mass, which we write in the form given by eq. (24) to define the

coefficient c(N~,N0.). We note that this procedure corresponds to the approach

one usually follows in the analysis of the propagator obtained from lattice Monte

Carlo simulations.
Results for the coefficient c(NT, N0.) obtained through the above described

methods are summarized in tables 1 and 2. We note that on spatially infinite

lattices c(NT, cc) rapidly approaches the continuum result, c(oc, cc) = 1/8 (table 1).

Indeed, already for N~ 8 the deviations are small. The finite-size effects are,

however, much larger for finite N,~..This becomes clear from table 2, which shows

TABLE 1

The coefficient c(NT, N0) of the approximations for the effective quark mass on spatially infinite

lattices

N~ C(Nr,00) c(N~,ce)

[from eq. (24)] [from eq. (19)]

4 0.1844 —

8 0.1356 0.1211

16 0.1271 0.1245
32 0.1254 0.1249

0.1250 0.1250

The second column shows results obtained from the definition given in eq. (24). The third column is
based on a cosh-fit to the temporal correlation function, eq. (19), which are shown in fig. 2 for N,. = 8.

The corresponding result from O((gT)

2) perturbation theory in the continuum is c(oc, o)= 1/8.
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TABLE 2

The coefficients x(N,., N,,) for various values of N,, and N,. = 8 and 16. We note that c(N,., N,,)

approximately scales with N,, /N,

N,., c(8, N,,) c(16, N,,) c(8, N,,) c(16, N,,)

[from eq. (24)] [from eq. (24)] [from eq. (19)] [from eq. (19)]

16 0.03770 — 0.03201 —

32 0.07814 0.03276 0.06985 0.03186

64 0.10577 0.07233 0.09551 0.07071

128 0.12059 0.09872 0.10926 0.09659
0.1356 0.1271 0.1211 0.1245

1,01

N

1.1111

16

~o.99

11,90 -

(a)
11,97

1) (0) ((.25 ((.5(1 0,75 1.10

x
0T

;~o

(((((I (.25 (1 .5(1 (1.75 1.0)1

x 3T

Fig. 2. Temporal (a) and spatial (b) quark correlation functions calculated to O((gT)

2) for g2 = 1 and

m = 0 on finite lattices of size N,. x N,,3 with N,. = 8 and various values of N,,.
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that N,,/N,. must be large in order for us to obtain good estimates of meff on finite

lattices.

In fig. 2 we compare the lattice correlation functions for various values of N,,.

and fixed N,. = 8 with the corresponding infinite-volume result. This too shows that

rather large spatial lattices are needed to approximate the infinite-lattice result for

temporal correlation functions. Note, however, the scale in fig. 2a. The deviations

from the free-field behaviour, G~(x
0,0) = 1, due to O((gT)

2) corrections are only

on the 1% level even for g2 1. Consequently these hardly show up in fig. 2b for

the spatial correlation functions which are entirely dominated by the large screen-

ing mass of the free propagator and only for x
3 N0./2 do deviations due to the

lattice periodicity show up.

4. Monte Carlo data

We have studied quark correlation functions at finite temperature on the lattice

for four-flavour QCD. The Monte Carlo data have been obtained from an analysis

of gauge field configurations generated by the MT~-collaboration in order to

determine the critical temperature in four-flavour QCD with light quarks of bare

mass m = 0.01 on an 8 x 16~lattice [17]. Details of these and the analysis of

hadronic correlation functions can be found in refs. [6,17]. We have added a

simulation at /3 = 6.5 to this data sample. For orientation we note that the chiral

phase transition on lattices of this size was found to occur at I3~= 5.15 ±0.05. This

was signalled by two Monte Carlo runs with long-lived metastable states at this

coupling. Earlier calculations for four-flavour QCD on lattices with N,. = 4 [18] as

well as spectrum calculations at /3 = 5.35 [19] indicate that a change of the

coupling by ~1f3 0.2 corresponds roughly to a change in the temperature by a

factor of two.

The quark propagator is a gauge-variant quantity although its pole is not. We

thus have to fix the gauge in order to analyze the quark correlation functions. We

have used a Landau gauge fixing. This was implemented by first fixing a complete

axial gauge on the configurations {b~}and then minimizing the functional

HL = ~ (i — ~Re Tr G~~G~±~) (25)

under variation of the V gauge group elements {G,} living on sites of the lattice.

Although the general minimisation problem does not have a unique solution, when

the distribution of link variables is strongly peaked, there are very few minima. In

this case a unique solution may be obtained by first fixing to the axial gauge.

Nonetheless, the existence of Gribov copies which can contribute to the quark

propagator [201may show up in future high-statistics simulations.
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After gauge fixing we have studied the temporal and spatial correlation func-

tions,

G
1(x0, p) = ~

x=(x1,x2,x3)

G5( x3, ji) = ~ e1xh1(XoX(~,X3)), (26)
I = (x0 ,x1 ,x2)

where Kx~x~,)denotes the quark propagator for staggered fermions between

lattice sites x and y. For each value of /3 we have typically analyzed 50 configura-

tions, using 4 source points on each (at /3 = 6.5 we had only 15 configurations).

Errors have been estimated by dividing the total data sample into four blocks

(three blocks at 13 = 6.5) and taking the variance of the results obtained on these

blocks.

As discussed in the previous sections, we expect that the zero-momentum

correlation functions in the high-temperature phase drop exponentially with a

mass given by the lowest Matsubara frequency or the effective quark mass in the

spatial and temporal directions, respectively. In fig. 3 we show both correlation

functions at /3 = 5.3, i.e. in the plasma phase at a temperature which is approxi-

mately 1.75 T~.The different behaviour of the temporal and spatial correlators is

clearly seen. We also note the strong oscillatory behaviour between even and odd

sites, which is characteristic for the free fermion propagator on lattices with small

spatial and temporal extent (eqs. (21) and (20)). The different functional form of

the propagator on even and odd sites (cosh/sinh), reflecting the (anti-)periodicity

of the lattice, influences the structure of the correlation functions even at short

distances (when N,, is not much larger than N,.). The free propagators on finite

lattices are also shown in fig. 3. We note that the free correlation functions on

even sites are proportional to the bare quark mass. For this reason they are more

sensitive to changes in the effective quark mass as is obvious from fig. 3.

Clearly the quark propagators at temperatures as low as 1.75 T~(j3 = 5.3) are

already quite close to the free propagators. This changes drastically below 1~as

can be seen in fig. 4, where we show the correlation functions at /3 = 5.1, i.e. in the

chiral symmetry broken phase. The oscillations between even and odd sites

decrease, which is due to a larger effective screening mass. In particular the

temporal propagator now shows a strong curvature. Although it is not apparent

from the figure (due to the different lattice size in spatial and temporal direction),

the screening masses extracted from the slopes of the spatial and temporal

propagators agree, within errors (see table 3) below T0. Moreover, we note already

here that these screening masses are compatible with half the p-mass calculated at

zero temperature [19,21].

We have determined screening masses from the exponential decay of the spatial

and temporal correlation functions using an ansatz for the fit which is motivated by
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the form of the free propagators, i.e. we use three-parameter fits to the complete

correlation functions *

G
1(x0, p) = — (_1)xho) cosh(m~(x0—N,./2))

b~

+ -~-(1+ (_1)x0) sinh(m~(xo—N,./2)),

G5(x3, ~) = ~(1 — (_ 1)~)sinh(m5(x3 — N,,/2))

b

+ (_1)x3) cosh(m5(x3—N,,./2)). (27)

The screening masses and amplitudes obtained from fits to the zero-momentum

correlation functions are summarized in table 3. The screening masses m~,m5 are

shown in fig. 5. We note that, below T,, the two are identical within statistical

errors. At T, we find in the chiral symmetry broken phase m1 = m5 0.44. This

should be compared with the p-mass, which has been calculated at the same

coupling (/3 = 5.15) and for the same value of the bare quark mass (m = 0.01) on a

large zero-temperature lattice [21]. This gave m~= 0.93(5). The effective quark

mass calculated in the chiral symmetry broken phase may thus be interpreted as a

constituent quark mass, ~ = m~/2.

Above 1’, the screening masses are quite different. While m0/T is close to I7~

and changes little across T~,m1 drops by a factor of nearly two at T, and rapidly

approaches small values. These are compatible with expectations from the 0(g
2)

perturbative calculations: rn~/T i/g2/6, with g2 ‘~ 0(1). We note, however, that

the small variation of ,n
5/T at T~seems to be accidental. It is due to the fact that

for four-flavour QCD m~/2turns out to be roughly equal to ITT,. This is different,

for instance, in quenched QCD, as the transition temperature is larger by factor 2

in that case. Similar effects have been noticed in the analysis of quenched and

unquenched spatial meson correlation functions [6].

The values obtained for m1/T in the chiral symmetric phase close to T~

(/3 = 5.15 (S) and 5.2) are still considerably larger than the perturbative results, i.e.

g(T) = 4 would be needed to describe the Monte Carlo data in terms of the

perturbative formula for temperatures 1~~ T ‘~ 1.5 1~.This is also confirmed by an

analysis of the ratio of even/odd amplitudes of the quark propagators, b~1/a51,

which are shown in fig. 6 for various values of /3. Both ratios drop at 1’, and start

approaching the corresponding free field values, b5/a~ 0.026, for N,. = 8 and

m = 0.01, and b~/a1= 1, for /3 ~‘ 5.3.

* At ~ 6.5 we could only perform a two-parameter fit for the temporal correlation function. In that

case we demanded the amplitudes to be equal, a, = b,.
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~IX~T~X

2 5 4 5 6 7 6 ‘4 0 II 12 IS 14 15

x
3

Fig. 3. The quark correlation function at /3 = 5.3 in temporal (a) and spatial (b) direction of the 8< 16~

lattice. Here Pmjfl = (ir /8, 0, 0) denotes the smallest possible momentum in the spatial correlation

function. The two solid lines correspond to the even and odd site contributions to the fit function given
in eq. (27). Also shown are the free quark correlation functions (crosses) calculated on a lattice of same

size. These are on top of the measured data points on odd lattice sites. Filled circles correspond to

negative values.

We have also studied the correlation functions at non-vanishing momentum, i.e.

ft = (IT/N,., p1, 0) and p = (p1, 0, 0). Results for the dispersion relations E~~(p1)

defined in eq. (22) are shown in fig. 7. Due to the periodicity of the lattice in

spatial direction, and the doubling of fermion species, these dispersion relations

are symmetric around p1 = ir/2. On a lattice of spatial extent N,, there are thus

only N,,/4 independent momenta. In fig. 7 we show results for the momenta

p1 = 2irn/N,, with n = 0, 1,..., N,,/4. A comparison with the free fermion

dispersion relation on this size lattice,

E5~(p1) = arcsinh( ‘/m~5+ sin
2( p

1) ), (28)
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Fig. 4. Same as fig. 3 but for the quark correlation function at /3 = 5.1.

with m5 = \/sin2(7r/N,.) + m
2 and m~ m = 0.01 shows that the spatial correlation

functions agree quite well with this expression for all couplings. This is also true

for the temporal dispersion relation at large momentum, where the influence of

TABLE 3

Screening masses extracted from temporal (m,) and spatial (m,) quark correlation functions as well as
the amplitudes of the odd (a,,) and even (b,

1) site fitting functions as defined in eq. (27). For /3 = 6.5

we only have performed a two-parameter fit for the temporal correlation function, demanding a, = b,

/3 m1 m, a, b, a, Ic,

5.1 0.49(5) 0.50(7) 0.93(1) 0.74(2) 0.11(4) 0.069(4)

5.15 (B) 0.35(6) 0.44(4) 1.41(22) 1.12(33) 0.17(4) 0.089(3)
5.15 (5) 0.21(3) 0.44(2) 2.41(22) 1.48(45) 0.19(3) 0.0530)

5.2 0.19(2) 0.44(4) 2.56(8) 1.25(21) 0.20(6) 0.054(2)

5.3 0.094(46) 0.41(4) 2.94(20) 1.84(20) 0.23(7) 0.033(3)
6.5 0.022(4) 0.37(1) 3.27(5) 3.27(5) 0.33(2) 0.016(7)
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1.00 - “““‘~ -(1.1)1) / i’’~
5.1 5.2 5.3 6.5

Fig. 5. The temporal (circles) and spatial (squares) effective quark masses in units of the temperature

versus /3. The solid line gives the O(gT)
2) result for the spatial screening mass, m,, calculated on a

finite lattice with g2 = 1, the dashed line below it indicates the corresponding free value (g2 = 0),

E,mi,,, defined in eq. (23), and the horizontal dotted line is the O((gT)2) effective quark mass, m,, in
lattice units on an 8x 16~lattice taken from the fourth column of table 2.

the strongly /3-dependent effective quark mass is no longer important. Also the

low-momentum part of the dispersion relation is consistent with the free fermion

form, if m~in eq. (28) is replaced by the measured zero-momentum values.

Modifications of the low-momentum part of the dispersion relation are ex-

pected to occur at finite temperature, due to interactions of quarks with the heat

bath [12,13]. These are not visible in our simulation. However, this is not too

surprising. In fact, deviations from the free particle dispersion relation are ex-

pected to be significant only for momenta much smaller than the temperature of

/ /I/I

....,~

0.0

1,11I ~
5.1 5.2 5.3 6.5

Fig. 6. Ratio of the amplitudes of the correlation function on even and odd sites of the lattice versus the
gauge coupling /3. Shown are results for temporal (circles) and spatial (squares) correlation functions.

The horizontal lines correspond to the free field behaviour discussed in the text. Note that at /3 = 6.5

the ratio b,/a, has been set to unity in the fits to the correlation function (see table 3).
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0 it/4 3it/8 it/2
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1)211 - (b) _~_~:~

o Free
__________________

o c/S ,t/4 3it/8

p

Fig. 7. Dispersion relations for temporal (a) and spatial (b) effective quark masses versus momentum

p = 2irn /16, n = 0, 1, 2, 3 and 4, for various values of /3 as given in the figure. For p = 0 and p
we show typical error bars. Data points have been displaced a bit for this purpose. Also shown are the

free field dispersion relations (solid lines) using the corresponding free-field screening masses m, = m

(a) and m, = arcsinh(sin(ir/8)
2 + m2) (b).

the system. An analysis of such effects will thus require much larger spatial lattices

as our smallest non-zero momentum, p
1 = IT/N,, = IT/i

6, is already of the order of

the temperature of the system, T = 1/N,. = 1/8.

5. Conclusions

We have studied the temperature dependence of the quark propagator on the

lattice for four-flavour QCD with staggered fermions. The structure of the tempo-

ral as well as the spatial correlations functions does not show any strong deviations
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from free field behaviour in the chirally symmetric phase. In fact, for temperatures

T 1.75 T,, the screening masses, dispersion relations and amplitudes of the

correlation functions, which we have calculated all start showing perturbative

behaviour. In particular, the sensitivity of the temporal correlation functions to the

chiral phase transition and their rapid approach to perturbative predictions is

remarkable. This suggests that a similar analysis of temporal meson and baryon

correlation functions could yield important new information on the existence of

bound states in these channels. In this case, however, the gluon exchange between

quarks will be particularly important for the formation of bound states. It will be

interesting, therefore, to analyze the modification of the hadronic correlation

functions due to the corresponding 0(g
2) gluon exchange diagrams. Work in this

direction is in progress.

At present the simulations with dynamical fermions are restricted to rather

small lattices. The 8 x 16~lattice, used in this analysis, is about the smallest lattice,

which can be used to measure temporal correlation functions and dispersion

relations. In order to check details of the continuum perturbation theory, such as

the existence of particle/hole excitations, and in particular the low-momentum

structure of the quark dispersion relation, much larger lattices will have to be used

in the future.

The numerical work described was performed on the CRAY-YMP at HLRZ,

Jülich. Financial suppport from DFG under contract Pe 340/1-3 and the Minis-

terium für Wissenschaft und Forschung NRW under contract IVA5-10600990 is

gratefully acknowledged.

Appendix A

Here we discuss the fermionic self-energy on a euclidean lattice of size N,. x N,,~.

We consider fermion fields with periodic boundary conditions imposed in the

spatial directions and antiperiodic in the temporal. Then the fermion momenta

take on the discrete values

q
0= ~(2i0+ 1), i0=0, 1,..., N,.— 1.

2IT

qk—-~k, ~k°’ 1,..., N
0.—1, (k=1,2,3). (A.1)

0.

The contribution from the first Feynman diagram in fig. 1 is given by

3~a(p0p) =g
2C~ ~ iyk~(pO, p) +m~m(po,p) , (A.2)

k=O
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with CF = (N
2 — 1)/2N. The various terms are

1 sin(q~)

k - 4(w~+sin2((p
0-q0)/2))(w~+sin

2(q
0))

N,.N0. qo ak

2IPk +q~\~— ~ 2(P~+q1 \1
cosx[cos ~ 2 1 j k 2 )j’ (A.3)

1 1

N,.NQ~ 4(w~+ sin
2((p

0 — q0)/2))(w~+ sin
2(q

0))a,, q6

~ (A.4)X~cos~ 2

The second diagram in fig. 1 gives

3
~b(p0 p) =g

2C~~ i~~(J3~, ~

k=O

1 1
(A.5)I~=_sin(Pk)NN3 E 8(w~+sin2((p

0-q0)/2))
a,, a,,

Here WB and ~

0F are given by

/3

WB=1/ ~sin2((pk—qk)/2),

V k=I

/3

WF= 1/ ~ sin2(qk) +m2 . (A.6)
V k=l

We further define

EB = 2 ln(wB + ~WB + 1),

EF = ln(WF + + 1).

In the infinite-volume limit, N,, —s cc, the sum over spatial momenta can be

replaced by an integral

1 1

~E-~
0. q,,q

2,q3 (2IT)

3 fd3q. (A.8)
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In the following we will use the notation fq for either the finite lattice sums or the

three-dimensional integral over spatial momenta. The sum over q
0 can be per-

formed explicitly using the mixed propagator representation for the free fermion

and boson propagators [11] appearing in (A.3) to (A.5). In the case of fermions

these are given by the free fermion correlation functions (20) and (21) and similar

expressions for bosons are easily obtained. With this we find

A02~(p0, p) = sin( ~0)J 2 2 ‘ (A.9)
a 8wB~/wB+ 1 ~ + 1

where the amplitude, A0, is obtained after some lengthy but straightforward

calculation as

Ak=(l nF+nB)fk(x_) +(nF+nB)fk(x±). (A.l0)

For k = 0 the function f0(x) is defined as

—1
f0(x) = 2 2 3x cosh(EF)

(1—x) +4x sin (p0)

—~(x
2exp(EF) +exp(—EF))—4x sin2(p

0) cosh(EF)

+2~(1+x)(~_~ cos2((pk+qk)/2))~, (A.11)

x= exp(—2(EF+EB)),

x~=exp(—2(EF—EB)),

1
= eEFA~,+ 1

1
n11 = eE~,— i (A.12)

We note that the structure of the amplitude, A0, is very similar to the continuum

result. In particular only the second term in (A.10) gives rise to the singular

behaviour of the self-energy at small momentum p0 in the continuum limit x~—~1

and f0 thus becomes proportional to 1/sin
2(p

0).

Similarly we obtain for .~ and .~,:

- Ak sin(q~)

~~o’ ~)= f I 2 (k = 1, 2, 3), (A.13)
a 8w~w~/w~+ 1 YWF + 1

A,,,
I 2 2 (A.14)

a

8WFWB~WB + 1 + 1
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where the amplitudes, Ak and Am, are given by (A.10) with

fk(x) = 2 2 x ((exp(EF) —x exp( —EF))
(1—x) +4x sin (p

0)

x(1—2sin
2(p

0))—x exp(EF)+exp(—EF)),

~ cos2((pj+qj)/2)_cos2((Pk+qk)/2))], (A.15)
0<i+k

2__1 2 ~v~x((exp(EF)_xexP(_EF))

(1 —x) + 4x sin (p0)

x(i—2sin
2(p

0))—x exp(EF)+exp(—EF)),

3

+(1—x
2) ~+ ~cos2((p

1+q~)/2) . (A.16)

1=1
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