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We study the thermodynamic properties of interfaces between differently oriented ordered
domains in the three-dimensional three-state Potts model. We perform simulations on lattices
with cylindric geometry, using parallel and rotated fixed boundary conditions. Systematic control
over finite-size effects and the number of interfaces is achieved . Global and local characteriza-
tion of the interfacial structure is given and substantial evidence for complete wetting is
presented.

l. Introduction

During recent years the phase structure of QCD at finite temperature has been
studied in detail, using Monte Carlo simulation techniques for the lattice regular-
ized theory. There are strong indications that the chiral phase transition in QCD
as well as the deconfinement transition in the SUM gauge theory are first order.
In that case there exists a mixed phase at a critical temperature Tc at which
bubbles of hadronic phase and quark-gluon plasma phase can coexist . This has
applications in the discussion of the phase transition in the early universe [1-3] as
well as in the heavy-ion physics [4,51 . In this context it is of particular interest to
achieve a quantitative understanding of the dynamics of interfaces between the
hadronic and quark-gluon plasma phase .
There have recently been attempts to calculate the surface tension in QCD, i.e.

in the pure SUM gauge sector, on the lattice [6-8] . The main problem in such a
calculation is to stabilize the interface between the two phases at the critical
temperature . So far this has been achieved by introducing a temperature gradient
in the system, which forces it into different phases on opposite sides of the
interface. This approach has also been tested in simpler two-dimensional Potts
models [9-11]. The determination of the interface tension then involves an
extrapolation to zero temperature gradient. An alternative approach, which we are
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going to analyze here, is to enforce the appearance of an interface through the
choice of boundary conditions. This is a natural approach in mean field calcula-
tions [12,131. In a Monte Carlo simulation, however, one faces the problem that
the number of interfaces and their location is entirely controlled by the dynamics
of the system.
The deconfinement phase transition in SUM gauge theory is driven by the

spontaneous breaking of a global Z(3) symmetry. It is expected that the dynamics
of the transition is closely related to the corresponding Z(3) symmetry-breaking
transition in three-dimensional spin models [141 . In fact, there is numerical
evidence that the effective action describing the SUM deconfinement phase
transition is a three-dimensional spin model with ferromagnetic, short-ranged
interactions [15] . Its properties are closely related to that of the ferromagnetic
three-dimensional, three-state Potts model. Because of this relation to QCD the
Potts model has recently been studied in great detail [16-18] . In particular, the
finite-size scaling behavior of thermodynamic quantities gave additional support to
the existence of a first-order phase transition in this model.
The surface tension for the order-disorder interface in the Potts model, which

corresponds to the interface between a hadronic and a quark-gluon plasma phase
in QCD, has been studied recently [191 using the approach of refs. [6,71. Quantita-
tive results for the surface tension in the Potts model with ferromagnetic nearest
neighbour couplings are, of course, not directly applicable to QCD. It is, however,
conceivable that a semi-quantitative study of the interface dynamics could be
performed in the framework of a three-dimensional effective spin model with
global Z(3) symmetry. A mapping of the finite-temperature pure gauge QCD onto
an effective Potts action with up to 40 two-, three- and four-spin couplings has
been performed recently [151 and could be used for such an investigation .

Besides the order-disorder interfaces, corresponding to transitory regions be-
tween hadronic and quark-gluon plasma phases in QCD, there exist also inter-
faces between differently oriented, ordered domains. Unlike the disorder-order
interfaces these order-order domain walls exist for all temperatures in the
symmetry-broken phase of the Potts model, as well as the SUM gauge theory . At
the critical temperature the three ordered phases and the disordered phase can
coexist, and the stability of the interfaces between them requires the fulfillment of
the following inequality [20]:

«ord < 2«dis

Here a denotes the surface tension and the indices dis (ord) stand for the
disorder-order (order-order) interfaces. The inverse temperature is denoted as
usual by 8. If the equality holds in (1) a disordered domain appears at 8c
spontaneously in form of a "two-dimensional" layer separating two differently
magnetized ordered domains without the need of supercooling . This is the phe-
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nomenon of complete wetting, which has prospective interest in particle physics
too. If, however, the strict inequality holds at coexistence, the new phase would
form droplets (incomplete wetting) and actually it could appear only when a slight
supercooling would compensate the extra surface energy necessary for the equilib-
rium. The realization of complete wetting will also be analyzed in the present
paper together with related scaling laws, which are expected to show mean-field
behavior [211 . In the case of complete wetting the critical properties of the
interface are expected to be universal. Quantities like the magnetization on the
interface or its width thus will obey the same scaling laws in pure gauge QCD as in
the three-dimensional three-state Potts model. Of course, quantities related to the
bulk first-order transition like the surface tension itself will not be universal. The
problem of complete wetting is relatively poorly studied with Monte Carlo tech-
niques in the case of the three-dimensional three-state Potts model [221 ; therefore,
the investigation is of interest for statistical physics too.
The hamiltonian of the three-state Potts model in three dimensions will be used

in the following form:

H= - FSSt,St+e "

The spin variable sx, defined on sites x of the lattice, takes three different values :
sx = 0, 1 or 2; e stands for the lattice unit vectors. We have studied the thermody-
namics of this model on lattices of size L2, xLii with periodic boundary conditions
in the transverse (1) directions and various fixed boundary conditions in the
longitudinal (II) direction .
This paper is organized as follows. In sect. 2 we will discuss some bulk

thermodynamic properties of the Potts model on cylindrical lattices with fixed
boundary conditions . We will compare the results with those obtained from
simulations on cubic lattices of size L3 with periodic boundary conditions and
discuss the different finite-size effects. In sect. 3 we describe some global proper-
ties of order-order interfaces such as their statistical distribution at finite temper-
ature and the influence of various fixed boundary conditions on this. A general
analysis of the surface tension is given in sect . 4. The corresponding numerical
results are discussed in sect. 5 . The thermodynamics on these fluctuating two-
dimensional layers between ordered phases, which is expected to show the charac-
teristics of a second-order phase transition, is discussed in sect . 6. Finally we give
our conclusions in sect . 7 .

2 . Thermodynamics

It is well known that fixed boundary conditions lead to much stronger finite-size
effects than, for instance, periodic boundary conditions. The analysis of the
interface tension on such lattices requires a quantitative understanding of these
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effects. In particular, we have to get control over the volume dependence of the
critical coupling on lattices with cylindrical geometry and fixed boundary condi-
tions. As the finite-size effects in such a system were not studied in detail before,
we start with a discussion of these as a necessary prerequisite for the analysis of
the surface tension in sect . 3 .
Our simulations have been performed on three-dimensional lattices of size

L1 x L i, , with transverse sizes L1 = 20, 24, and 30, and L,, ranging from 3L1 to
5L1 . The transverse size was thus about 2-3 times the correlation length deter-
mined on cubic lattices in the transition region QC = 10) [161 . We have concen-
trated on the coupling region 0.548 < .8 < 0.552, which covers the infinite volume
critical coupling [161

PC = 0.55062 ± 0.00003,

	

(3)

as well as the critical region determined on finite cubic lattices . At each P-value
we performed between 300000 and 700000 iterations . We have used lattices with
identical, frozen ground-state configurations as boundaries on the first and last
planes in the longitudinal direction, i.e .

S(x1)X11=1)=0, S(x1,X11=L11)=0, (4)

and also with different, ground-state configurations, i.e .

5(x1 ,Xii- 1) =0,

	

5(x1 ,X11=Lu) = 1 .

	

(5)

In the following we will refer to these as parallel (par.b.c.) and rotated (rot.b.c.)
boundary conditions, respectively .
For the analysis of the surface tension using lattices with fixed boundary

conditions, it will be essential to have long lattices, L ii >> L1, in order to reduce
the distortion of the interface (and the thermodynamics) by the boundaries. It will
also be important to have a large transverse direction, L1 >> ~, in order to
suppress the formation of spurious interfaces. We looked at the volume depen-
dence of thermodynamic quantities in two different limits :
(i)

	

L 11 --* oo, L1 fixed;
(ii)

	

L1 ~ oo, L ii /L1 fixed.
Finite-size effects are different in these two cases . The latter limit leads to the

infinite volume values of thermodynamic quantities in the three-dimensional
three-state Potts model, while the former gives the limiting results for an infinitely
long tube and the limit L1 --+ oc has still to be taken in order to reach the
thermodynamic limit . In particular, quantities such as the energy density or
magnetization will be analytic functions of P when only the first limit is taken,
while they develop a discontinuity in the second case . These qualitative differences
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are obvious from the results obtained for the internal energy,

1
E

	

31,2 L

	

E S.. . s="

	

1

	

(6)
.l

	

II

	

x,e

shown in fig. 1 . In particular the results on lattices with par.b.c. (fig. la and b)
exemplify the different limits discussed above. We also note that the different
boundary conditions lead to consistent results for small ig, but show a strong
dependence on the boundary conditions in the ordered phase, i.e. at large P. This
is as expected; in the disordered phase, the memory of the boundary conditions
does get destroyed through a disordered phase that appears in an intermediate
effective volume,

Veff(kc) =1-i(L II -2k,),

	

(7)

with coordinates x II restricted to the region k, < x II < L II -k,. Parallel and ro-
tated boundary conditions thus become equivalent in the disordered phase. In the
ordered phase, however, rot.b.c. enforce the appearance of at least one interface
between differently oriented domains, while for par.b.c. (as well as for periodic
boundary conditions) a unique ordering of the entire lattice is possible. It is clear
that an interface will lead to a smaller internal energy E, which is obvious from fig.
lc and d. As will be discussed in detail in the next sections, a smaller value of E
corresponds to a larger free energy, which in turn reflects the presence of
interfaces.
The similarity between par.b.c . and periodic boundary conditions is also obvious

from the comparison of our data with results from simulations on cubic lattices
[161. In order to compare the thermodynamics on lattices with fixed boundaries
and cylindrical geometry with that of cubic lattices with periodic boundary condi-
tions, the energy density E must be analyzed in the smaller, effective volume
defined in eq. (7). As the ferromagnetic influence of the boundaries is not
expected to be significant at distances larger than the correlation length, we have
chosen kc to be equal to the maximal correlation length measured in the critical
region [16], i.e . kc = ~c = 10. In fig . 2 we compare results for the internal energy E
from simulations on lattices of size 242 x 96 using both sets of fixed boundary
conditions with those from simulations on 241 and 481 lattices using periodic
boundary conditions [16] . This shows that results from simulations with rot.b.c .
deviate strongly from the largevolume results (48'), even after suppressing the
strongly distorted regions close to the boundaries.
The interpolating curves shown in figs . 1 and 2 are obtained using the multiple-

histogram technique of Ferrenberg and Swendsen (FS-interpolation) [23]. They are
based on high-statistics measurements at several .8 values in the interval .8 E
(0.548, 0.552). We use this approach to extract also other observables. In particular,
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Fig. 1. The

	

internal energy

	

E

	

on

	

lattices of size (a) 202 x L ii

	

with

	

L 11 = 60, 80, and

	

100, (b)
L 11 /L, = 4, Ll = 20, 24, 30 with par.b .c . and the same for rot.b .c . (c) and (d), respectively . Averages are

formed with kc = 1. The solid curves are interpolations based on the method described in ref. [23) .
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Fig. 1. (continued).
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and cumulants of the hamiltonian [24]
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Fig. 2. The internal energy E on lattices of size 24 - x 96 for rot.b.c . (open squares) and par.b.c. (open
circle). Averages are formed in an effective volume V,,f (10) . Also shown are results from L; lattices

with periodic boundary conditions for L = 24 (full triangles) and 48 (full squares) .

we will use it to extract the free energy of the system . This will be discussed in
detail in sect. 5. Here we use the multiple-histogram technique to extract the
critical couplings on finite lattices from peaks in response functions such as the
specific heat

A behavior similar to that for the internal energy and related quantities is found
for the magnetization, which we define in a somewhat unconventional way, as we
are particularly interested in the spatial dependence of the magnetization . We first
define, for each plane orthogonal to the long axis of the cylinder, the magnetiza-
tion per plane,

1
m(X

	

L2 (i max(n(), n 1 , n 2 ) - ~ )

	

(10)
1
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Fig. 3. The magnetic susceptibility on the largest lattice studied (30-' x 120) for par.b.c . (upper curve)
and rot.b .c. (lower curve). The curves are Ferrenberg-Swendsen interpolations based on measurements

in the interval .6 E (0.550,0.5515) .

Here n i is the number of occurrences of the state i on sites in a given transverse
plane at x ii . Next, the average over the length of the cylinder gives the volume
average of the magnetization :

1 Lii-I
M=- E fn(x ii ) .

From this we also extract the magnetic susceptibility

XM = L2 Lu((M
2 >
- <M>2) .

571

(12)

Some results for Xlvl are shown in fig . 3 . Also here the smaller peak value,
obtained for the case of rot.b.c ., reflects the fact that these boundary conditions
lead to results that deviate strongly from the infinite-volume results. The critical
couplings, however, are close to the infinite-volume result given in eq. (3). From
the location of the peaks and their width we find 13,, = 0.5503(2) for par.b.c . and
0.5504(5) for rot.b.c . The critical couplings extracted from the peaks in Cv and VL
are in agreement with the above estimates . In fact, on all our lattices with L1 > 20
and L 11 > 80 we find critical couplings in the range 1ic = 0.5502-0.5506.
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We would like to stress at this point that the different finite-size effects seen in
the behavior of E in the case of par.b.c . for the two different limits discussed
above (figs . 1a and 1b) have important consequences for the behavior of the
surface tension. The internal energy E decreases monotonically with increasing L ii
for fixed L1 , which will lead to a decreasing estimate for the surface tension in
this limit. However, if we consider the infinite volume limit for fixed L ii /L,_ we
find that E rises (decreases) above (below) A, for increasing L 11 , i.e . E starts
developing a discontinuity at 13, As we will extract the surface tension from an
integral over the internal energy (see sect . 4), we will obtain lower bounds for it in
the ordered phase, when taking the infinite-volume limit in the latter way. For this
reason we will concentrate in the following on this limiting procedure.

3. Order-order interface statistics

In the ordered phase the dominant contribution to the free energy arises from
configurations with a unique direction of magnetization, unless different domains
are forced to appear by a conflicting choice of boundary conditions. For instance,
the rotated boundary conditions, defined in eq . (5), demand the appearance of at
least one interface between differently magnetized domains. The appearance of
several interfaces is thermodynamically suppressed, since the additional surface
energy increases the free energy of the system . For the parallel boundary condi-
tions, defined in eq. (4), the first configuration with differently oriented domains
requires already two interfaces . Note that this is also the case for a system with
periodic boundary conditions. This explains also why the finite-size effects for
systems with periodic and parallel (fixed) boundary conditions are similar .

In our simulations, with fixed boundary conditions ; interfaces can appear on any
transverse plane of the lattice, and the frequency of their occurrence reflects the
relative energies of such configurations . In order to get some idea about the
structure of the interfaces and their relative rates, we analyze in more detail
the magnetization of transverse planes . The magnitude of this magnetization per
plane is given by eq. (10) . Its orientation can again be characterized by a Potts
variable SX,, taking on integer values i = 0, 1 or 2:

Sx 11 _ {i : max(n o~, n,, n 2 ) in a transverse plane at x ii) ,

	

(13)

where n; is the number of occurrences of the state i in that plane. When Sy * SZ
on neighboring planes y and z, we will count this as a bare domain wall located
between these two planes . Of course, there is a certain ambiguity in assigning a
discrete spin variable to a transverse plane . When the number of spins in two
directions is nearly equal, this may lead to the assignment of spurious interfaces,
which we will call defects in the following . In general, each defect introduces two
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Fig . 4. The relative frequency ,!2 =_ S2�/!l, of occurrence of the configurations with is bare domain
walls on a lattice of size 242 x 96 with rot.b.c . The histograms are forP = 0.5505 (solid line), p = 0.551
(dotted line), and /3 = 0.552 (dashed line); the normalization conFttants are Sl, = 0.2543, 0.4370 and

0.7309, respectively.

bare domain walls into the configuration . We expect that for .8 >> .8,, the number
of defects will be small and the interpolation between the two boundary values will
proceed through the minimal possible number of domain walls .
Already at 13 = 0.552 we found that defects are indeed strongly suppressed . In

our simulations with rot.b.c . on a 242 X 96 lattice, for instance, 62% of the
configurations are bare one-wall configurations, while in the case of par.b.c. up to
99.4% of the configurations have no domain walls at all in the above sense. This
large fraction of ground-state configurations in the case of par.b.c . is qualitatively
understood as two additional interfaces have to be present in order to obtain a
non-trivial domain structure .

In fig . 4 we show, on a lattice of size 242 X 96 with rotated boundary conditions,
the distribution of bare domain walls, defined in terms of the variables in eq. (13),
at 8 = 0.5505, 0.551, and 0.552 . It is obvious from this figure that with increasing
coupling, 8 > 8, configurations with several bare domain walls are more and more
suppressed. " It is interesting to note that even in the critical region the one-wall
configurations dominate on lattices of this size .
We further note that the even and odd wall sectors seem to follow a different

pattern . Configurations with an even number of walls are suppressed on lattices
with rot.b.c . In fact, the appearance of the even wall sector is peculiar to a ZM
theory with N > 3. For a Z(2) symmetric theory it would be completely missing . It
also is intuitively clear that defects, which predominantly appear close to a genuine
interface, are preferably magnetized in one of the directions selected by the
boundary conditions . An even wall configuration can only occur if three neighbor-
ing planes have their net magnetization pointing to the three different Z(3) sectors
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TABLE 1
Predictions of the dilute defect model for the frequency of bare domain walls in the odd wall

sector. The probabilities p, and pd, entering eq. (14), have been fixed using the
Monte Carlo data for N = 0, i.e . P;,p

N
p2N+1 = pied

of the Potts model. The larger number of odd domain walls is thus qualitatively
understood .
We also find that their relative rates are well described by a dilute defect

approximation, i.e . the simplest ansatz is to assume that one has only one genuine
interface and a few dilute defects, which occur with probability pd in the vicinity of
this interface . Within the odd sector the probability for having 2N + 1 bare
domain walls (one genuine interface and N defects) is then given by

The probability p, for having a single interface without additional defects can be
taken from our data . The completeness relation P I + pd = 1 then gives a prediction
for the defect probability . In the range 0.5505 <,8 < 0 .552 we find that pd de-
creases from 0.75 to 0.27 . At 8 = 0.55 l, for instance, we obtain p, = 0.437 from
our data, which leads to Pd = 0.563 for the defect probability . In table 1 we
compare the measured probabilities for the occurrence of (2N + 1)-wall configura-
tions with predictions of the dilute defect model characterized by eq. (14) . The
agreement is surprisingly good and it remains still acceptable on the top of the
transition region at 8 = 0.5505 .

Similarly we can describe the even wall sector in the case of parallel boundary
conditions . It is, however, less straightforward to characterize the statistics in the
remaining cases, i.e . the even (odd) wall sector in the case of rot.b.c . (par.b.c.).
Here one has to give up the assumption of dilute defects. As described above one
has to take into account that the fundamental object is characterized by the
magnetization on three neighbouring planes . In any case the contribution of these

N

J3 = 0.551

P2N+ l
PmVdrl
2a+!

PCXP
2N+ 1

J3 = 0.552
P
2N
modelI

+

0 0.4370 0.4370 0.7309 0.7309
1 0.2480 0.2460 0.1993 0.1967
2 0.1392 0.1385 0.0519 0.0529
3 0.0800 0.0780 0.0132 0.0142
4 0.0453 0.0439 0.0034 0.0038
5 0.0244 0.0247 0.0010 0.0010
6 0.0135 0.0139 0.0003 0.0003
7 0.0072 0.0078 - -
8 0.0030 0.0044 - -
9 0.0016 0.0025 - -
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sectors is suppressed statistically and of little importance for the quantitative
analysis of the surface tension. We thus will refrain from a more detailed analysis
at this point.
The success of our dilute defect model shows that most of the multiple wall

configurations are in fact modifications of the dominant domain structure imposed
by the boundary conditions, i.e . one-wall (no-wall) configurations in the case of
rot.b.c. (par.b.c.). As a consistency check we also extended the above model by
allowing for an intrinsic probability for three genuine interfaces. As expected,
rather small probabilities were found for such configurations. We thus conclude
that in our above example (V= 242 x 96, a = 0.551) the whole odd sector repre-
sents a single interface and its weight is actually 84% in the total sample.

Since interfaces can appear in transverse planes located at arbitrary xV their
presence is not directly evident from an analysis of the average magnetization per
plane. However, we can easily see the dominance of single-wall configurations, by
dividing the whole data sample into subclasses, C(xm;n), consisting of all configura-
tions for which the plane with minimal magnetization is located at a fixed position,
X II = Xmin" The resulting magnetization profile for xmin = L +i /2 is shown in fig. 5.
A comparison between the profiles obtained from the total data sample (fig. 5a)

with that of the subset of configurations with only a single domain wall (fig . 5b)
shows that the additional defects contributing to the former case just lead to a
widening of the kink structure . The difference of the two profiles at .8 = 0.5505 is
quite instructive : the subset of one-wall configurations, which represents about
50% of all configurations having their minimum at the prescribed point, is still
building up an order-order interface . These are the multiple wall configurations
which drive the system at this coupling into the disordered phase . The dominance
of a single domain wall already for (3 > 0.551 is, however, obvious from these
figures . Note that the profiles found are very similar to those obtained in a mean
field calculation [131 .

4 . Surface tension and action asymmetry

575

The discussion in sect . 3 has shown that in the symmetry-broken phase an
overwhelming number of configurations has the domain wall structure of the
ground state imposed through the choice of boundary conditions, i.e . in the case of
rot.b.c . we find dominantly a single interface whereas in the case of par.b.c . there
appears no interface at all . We should thus be able to determine the surface
tension at a given coupling in the symmetry broken phase by taking the difference
between the free energies of the two systems with different fixed boundary
conditions . The free energy is related to the internal energy ( H > by the well-known
relation

A70) - Po'700 = f'(H(P'))dp',

	

(15)
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Fig . 5 . The magnetization per plane, < m(x ii )>, on a 242 x 96 lattice with rot.b .c . at various values of (3
averaged over configurations with the minimum of < m(x ii )> fixed at x ij = 48 . Shown are spin profiles
for /3 = 0.552 (dash-dotted), 13 = 0.5515 (dotted), P = 0.551 (dashed) and = 0.5505 (solid). The curves
are drawn by piecewise linear interpolation between the central values of <nt(x I,)> on neighbouring
planes . Typical errors are of the order of 10% of the central values in the region of the tip of the kink
and 1% away from it . Shown are averages over a subset selected from the full sample (a), and from the

configurations having only a single bare domain wall (b).
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PJ` (P) = -in E exp(-PH) .
{s.,)

In the symmetric phase the free energy is independent of the kind of fixed
boundary -conditions chosen; at a certain distance from the boundary planes an
inner disordered phase will build up and in this way the information about the type
of fixed boundary conditions chosen on one side of the lattice is lost . This is also
obvious from fig . 2, which shows that <H> is independent of the boundary
conditions for .8 < 1ic . One can thus choose a coupling .80 in the disordered phase
where none of the boundary conditions is able to maintain an interface [Jir«(Po)
- 'JFpar(P0)I' One then finds for the interface tension in the symmetry broken
phase

cord- Li2 ("7rot(~) - .tpar(F')) .

The surface tension appears also in the second law of thermodynamics as a
response to infinitesimal variations in the cross section, A, of the interface

d .7= -pdV+adA +SdT .

	

(18)

The scalar product a dA reflects the effect of cross-section variations for all three
independent orientations.
The boundary conditions in our case trigger an interface orthogonal to the

11-direction . The axial symmetry of the system makes it natural to consider scale
changes of the form

(16)

(17)

x_LJ ___1'x1J(1 +SA 1 ), x 1i -)- x 1i (1 +Sa il ), (19)

which lead to

SA = 2SA1A, SV= (23A1 +SA II )V. (20)

Let us fix the temperature and the ratio

SA ii
=z . (21)

SAl

Then one finds from eq. (18)

d .
= -PV(z + 2) - 2aA . (22)

dA l
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With the application of two independent scale transformations the volume depen-
dence can be eliminated . For definiteness we consider the cases z = 0 and 1,
respectively :

3 d-F	d .F
=

2 dA1

	

=o

	

dA1

	

«A .

	

(23)
=1

Using the definition of the free energy, eq. (16), one can express the left-hand side
of eq. (23) as

2( aA )I

	

- ~a ,

Near the transition point 13,, one can use ideas related to the renormalization
group (RG) for finding the derivatives on the left-hand side . A first-order transi-
tion with coexistence of phases has the feature that in each distinct phase the
linearized RG transformation has a distinct eigenvector with the eigenvalue Ad
(where A is the scale change and d the dimensionality of the system) . Discontinu-
ities arise by the passage of the state of the system from one of the eigenvectors to
the other degenerate with it [25] . In a transition with latent heat, the hamiltonian
has non-zero projection on these eigenvectors. At least for isotropic resealing of
the system one therefore expects near the transition point

Ad

	

T= T,

For the anisotropic case with z = 0 a natural assumption is that only those pieces
of the hamiltonian will transform, which contain couplings parallel to the resealed
directions:

dHL
dA1

	

) T:= TI:

_ - const .x <H1 >,
dH ii \
dA1

/ T=T,

0 . (26)

Using eqs. (25) and (26) one arrives at a relationship conjectured by Kajantie et al.
[6,19]

a = const . x .cl, (27)

where the action asymmetry V is defined by

1

1

1

= - -21LZ ~
(5sX+ sx+e,

+ S,x,
,x+e,

Ssx+
sx+e ; Ssr+ Sx-e.3 > ~

(28)
1 x
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Rummukainen [19] proposed for the proportionality constant appearing in eq. (27)
a value of about 1.4. The scaling argument given above, on the other hand, would
suggest unity.
Away from the transition region we have no guidance to relate ,,/- to cf. RG

transformations are not universal far away from the fixed point, and different
transformations would thus lead to different trajectories in the coupling space.
Therefore it is better to consider P/ and a as two independent global characteris-
tics of the interface . In case of the existence of an underlying continuum theory,
the scaling towards the continuum will relate the two quantities as discussed in
refs. [6,10].
The independence of s/ and a is also clear from their low-temperature (s >> 1)

series expansions which to lowest order look like

2
ao,d = 1 -

	

exp( -4P) + O(exp( - 6p)) ,

°V- .,d = 1 - 4 exp( - 4P) + O(exp( -6p)) .

	

(29)

The action asymmetry for the order-disorder transition has been studied in ref.
[191. Using our conventions for the normalization of V, the result of this analysis
was

.Vdis = (4 ± 2) x 10 - ; .

	

(30)

An advantage of V/ is that it can, in principle, be measured using exclusively the
rotated boundary conditions, while a determination of a from the free energies
requires the use of two samples. However, it turns out to be very useful to extract
-w also from differences of simulations between rot.b.c . and par.b.c ., as this allows
finite-size effects to be drastically reduced .

5. Numerical results for surface tension and action asymmetry

We start the presentation of our numerical results with the surface tension
calculated from eq. (17) . The free energies on lattices with different fixed bound-
ary conditions are calculated from eq. (15), using for the starting point of the
integration a value 8o in the symmetric phase; in other words we normalize the
free energy to be zero at 8o = 0.549. In fig. 6 we show the results of an integration
of our data for the energy density E (fig. 1), using a Simpson formula. The data
points correspond to an integration of the energies measured at 13-values sepa-
rated by 4/3 = 0.0005 . Also shown in this figure are the results of a numerical
integration of the FS-interpolations for E, using a Simpson formula with 4.8 =
0.0001 . For each lattice we show on the last data point the cumulative error
coming from a summation of the individual errors on E. These errors are of the
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Fig . 6. Surface tension from the difference of free energies on various lattices versus 13 . Results for
302 x 120 (dash-dotted line), 24-' x 96 (dashed line), 20 2 x 80 (solid line), and 202 x 100 (dotted line)
are presented . The data points and the curves have been obtained from a Simpson integration of the

internal energy . Details of the integration procedure as well as the error bars are given in the text .

order of 10%. However, they clearly overestimate the true error, since they assume
a strong correlation between individual measurements of E. The very good
agreement of the estimates obtained in both ways reflects the mutual consistency
of our data.
We note that the curves corresponding to the set of lattice sizes with L 11 = 4L1

cross in the vicinity of the infinite volume critical coupling, leading to a larger
surface tension on larger lattices in the ordered phase . The crossing point ap-
proaches .8c from above with increasing lattice size . This behavior is similar to that
of the correlation length close to 8 c [16] and supports the expectation that in the
limit L1 -* oo a discontinuity will build up at 13c . It further suggests that our results
for aord(13c ), obtained on our smallest lattice (202 x 80), give a lower bound for the
surface tension at 1iC . We find

aord(13c) > 0 .0048 ± 0.0003 .

	

(31)

The relatively large errors on cord for 13 >,8c , however, do not allow a detailed
finite-size analysis for cord above PC . We thus cannot extrapolate to the infinite-
volume limit above ac, which would allow us to give also an upper bound on aord-
It also seems that finite-volume effects depend strongly on the ratio L11 /L1 . This
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is obvious from the values of the surface tension obtained from our simulation on a
202 X 100 lattice, i.e. for L

	

5L, The significantly smaller values found for c
in this case are, in fact, a direct consequence of the finite-size dependence of E
discussed in sect . 3 in connection with fig. 1 . We expect that larger values of L.-
are needed in this case to come close to the infinite volume limit.
An other interesting feature of the data shown in fig. 6 is the nearly linear rise of

the surface tension in the ordered phase for .8 > 0.551. This agrees with the
behavior found from the mean-field solution [13] . As the data from all our lattices
with L ii = 4L1 agree within statistical errors for .8 > 0.551 we may use this data
sample to get a straight line fit for aord in this regime. From a least squares fit we
obtain

aord(P) =0.0040(7) +8 .2(1 .0)(P -Pc),

	

.8 >0.551 .

	

(32)

with X2/d.o.f. = 0.9 . It is reassuring that the value obtained for aord(pc) from this
fit to the whole data sample is in good agreement with the lower bound given in
eq. (31) . Deviations from this linear behavior occur only on our largest lattice in
the critical region, indicating that a discontinuity is building up at .8, Of course,
we also expect deviations for larger 8, as aord has to approach unity asymptoti-
cally . It is interesting to note, that the slope found from our data agrees quite well
with a mean-field calculation, yielding a value of 8.8 [13] .

Let us now turn to the discussion of the action asymmetry defined in eq. (28).
The fixed ferromagnetic boundary conditions used by us lead, of course, to a
strong distortion of V. These boundary effects can be eliminated (in the large-
volume limit) by taking differences of .~Irot and .~Ipar measured on lattices with
rot.b.c . and par.b.c., respectively . We thus obtain the dominant contribution arising
from the formation of an interface as

word - rot(kc = 1 ) - ~Cvpar(kc = 1) . (33)

The results are shown in fig. 7 for our lattices with L 11 = 4L1 both in form of
directly subtracted data points and smooth interpolating FS curves . Statistical

errors are clearly much larger for `/ord than for aord . In fact, on the 302 x 120
lattice, measurements were done only in the interval P E (0.550, 0.5515) and we

observed that the FS-interpolation became unstable outside this interval; it is

therefore given only in this region . The data tend to decrease with the volume .

However, in view of the larger errors, the significance of this tendency for the

larger two volumes is not clear . We thus again use the whole data sample to

estimate S'4rd(8c)- Using also here a straight-line fit to the data for 19 > 0.5505, we

obtain

Ord(Pc) = 0.0080(33) + 4.4(3 .6)(P -Pc) ,

	

P>Pc .

	

(34)
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Fig. 7. Action asymmetry

	

as defined in eq . (33). The types of lines are the same as in fig. 6.

A different approach to extract 'Vord makes only use of the measurements
performed on lattices with rot.b.c . The action asymmetry is calculated in the
effective volume, eq. (7), with kc = 10. As discussed above this should eliminate
distortions due to the ferromagnetic boundaries. In table 2 the asymmetries
obtained with both methods are given, together with the values of the surface
tension for all large volumes we have studied .
The agreement between the "subtraction" and the "cut" methods is satisfactory

for volumes with fixed L ii /L 1 ( = 4) ratio. The 202 X 100 data obtained in these
two ways, however, are substantially different in the low-P region .
A direct comparison of .~/ord and aord at jG = 0.552 (table 2) shows that they

agree well within statistical errors . With decreasing 13 the agreement gets worse .
This is also reflected by our straight-line fits given in eqs . (32) and (34) . However,
given the finite-size dependence seen in our data and the large errors in the
determination of `~/oral we cannot rule out that on larger lattices also in this regime
aord/word approaches unity .

Let us finally comment about the evidence for complete wetting . If this occurs
we would expect that the action asymmetry for order-order interfaces, word, is
twice as large as the one for disorder-order interfaces measured in ref. [19] .
Comparing our result for .c/ord(Pd given in eq. (34) with eq. (30) one concludes
that the situation is compatible with complete wetting . However, in view of the



TABLE 2
The surface tension card extracted from differences of the free energy, and the action
asymmetry .Void extracted from differences of

	

and _".gyp,, (kc = 1) as well as directly
from

	

(kc= 10). The stars denote the P-values at which the free energies have been
normalized to zero. The errors on :/. ,,,d are typically 0.002 for the kc = 10 data and

twice as large for kc = 1, as the latter arise from a difference . Theerror
propagation for ao~d is discussed in the text

F. Karsch,A. Patkos / Potts niodel

	

583

considerable statistical errors more evidence is ought to be presented, which will
be done in sect. 6.

6. Thermodynamics on the interface

The method of investigating the order-disorder kink proposed in refs. [6,81 has
the great advantage that the interface under investigation is localized in a prese-
lected plane of the lattice. The centre of the kink is pinned to the location of the
sign change of 418, the shift in the coupling forcing the two halves of the system

L u aord

"ford

kc =1 kc = 10

0.549 80 0.0006 0.0056
96 0.0002 0.0031
100 -0.0004 0.0071

0.5495 80 0.0003 0.0015 0.0054
96 0.0 0.0003 0.0050
100 0.0001 0.0018 0.0067

0.550 80 0.0014 0.0040 0.0065
96 0.0006 0.0035 0.0067
120 - 0.0046
100 0.0003 -0.0002 0.0088

0.5505 80 0.0035 0.0080 0.0088
96 0.0028 0.0060 0.0080
120 0.0025 0.0049 0.0035
100 0.0016 0.0022 0.0084

0.551 80 0.0068 0.0128 0.0111
96 0.0068 0.0095 0.0079
120 0.0084 0.0083 0.068
100 0.0043 0.0133 0.0128

0.5515 80 0.0107 0.0142 0.0119
96 0.0114 0.0104 0.0098
120 0.0133 0.0087 0.0082
100 0.0081 0.0125 0.0119

0.552 80 0.0156 0.0150 0.0126
96 0.0147 0.0146 0.0119
100 0.0118 0.0179 0.0143
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into different phases. The distributions of the energy density and of the order
parameter then show the expected qualitative behavior on the two sides of this
plane.
As we have shown in constructing fig . 5, it is possible also in our approach to

achieve a localization of the kink in a preselected position by demanding that the
plane with minimal magnetization be localized appropriately . The actual value of
the minimal magnetization becomes a variable, naturally associated with the tip of
the kink;

tnmin = min(m(xii )) .

	

(35)
i, !

With this intuitive interpretation the requirement on the localization can be
relaxed. We average mmin over the conventional thermodynamic ensemble and still
preserve its correspondence to the (fluctuating) location of the interface . It is an
advantage of the present approach that the application of fixed boundary condi-
tions in a large enough volume will not distort the interface (allow for example
capillary waves too). Also there is no need for extrapolation in any variable similar
to AP.

Similarly one can define a width variable for the kink making use of the classes
min) defined at the end of sect . 3 . For each class profile (see fig . 5) one

measures the distance

1(P) =x + (jn = <MAP)) -x-(m = <MA18)) (36)

where x+ (x-) denotes the location of those planes to the right (left) of the plane
with m min on which the expectation value for the plane magnetization m(x i , )
becomes larger than the bulk average <M> . [For definiteness we use <M>
calculated in Veff (10)]. An average over all classes in the internal part of the
cylinder then yields the mean width for a given 18 .

In the mean field description these quantities have a clear geometrical meaning .
The complete wetting is realized by <mmin > approaching zero and the width of the
order-order interface increasing without any limit . Actually in ref. [13] scaling laws
typical for a continuous phase transition were found for them:

<mmin> - (h - PC ) b ,

	

bm.F.= 0 .40 ± 0.03,

	

(37)

-~ ,

	

41M.F.= 0 .25 ± 0.03 .

	

(38)

By the above intuitive relationship based on the proposed class decomposition of
the samples, the average of m min , defined in eq. (35), and that of l, defined in eq.
(36), were confronted with the scaling laws . In addition, the average magnetic
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Fig. 8. The average minimal magnetization, (mm�,), for par.b.c . (upper branch) and for rot.b.c. (lower
branch). Data points are shown only for rot.b .c. ; statistical errors are smaller than the size of the

symbols.

X(mmin) = L2
1 (<m

2
min> - <mmin>2) (39)

In fig. 8 the average of the minimal magnetization measured configuration by
configuration is displayed for V= 202 x 80, 242 x 96, and 302 x 120 both for
rot.b.c. and par.b.c. One promptly recognizes that the curves obtained from lattices
with par.b.c. break away from zero rather abruptly as 8 approaches the first-order
transition point of the three-dimensional Potts model. In case of rot.b.c., however,
the sequence of magnetization curves seems to converge smoothly with increasing
volume to a limiting function, rising from zero to finite values starting at Pc. This is
characteristic of continuous transitions taking place in the two-dimensional inter-
face .

For incomplete wetting one would expect that in the infinite volume limit the
minimal magnetization stays non-zero and the width of the interface stays finite at
PC. A quantitative analysis of the P-dependence of the width of the interface
shown in fig. 5 and of the minimal magnetization (fig. 8), however, strongly
supports the occurrence of complete wetting in the three-dimensional three-state
Potts model. The scaling law proposed in eq. (37) has been examined by varying PC
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Fig. 9. < I)1min> versus 13 - P,, on the log-log scale for testing the scaling law in eq . (37).

in the range indicated by the bulk characteristics (see sect . 2) : 8 E (0.5504-0.5506) .
It is obvious from fig. 9 that for smaller volumes, considerable deviations are
observed from the straight-line behavior on the logarithmic scale. The largest
volume, however, allows a convincing estimate of the magnetic exponent, which
appears to be compatible with the mean-field value [13]

b=0.35±0 .05 .

	

(40)

The error expresses the variation of the slope due to the uncertainty in the
determination of 8c.
From the magnetization profile shown in fig . 5 for a single class of configura-

tions (those with m min being located at x ii = L ii /2) a tendency for widening of the
interface as 8 approaches 8, is obvious . This is true also for all other profile
classes with mmin not too close to the boundaries . We used an average over the 10
innermost classes in order to extract the width of the interface at 13 = 0.551, 0.5515
and 0.552. The exponent was then found from a fit with eq. (38) :

=0.21 ±0.03 .

	

(41)

This again turns out to be compatible with the mean-field behavior .
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These observations give support to a continuous two-dimensional critical phe-
nomenon occurring simultaneously with the bulk discontinuous one. Indeed, we
have also observed a maximum in the interface susceptibility, eq. (39), at P = 0.5514
(V= 80 x 202 ) which moves to .6 = 0.5509 (V= 302 x 120). However, the rather
modest transverse size prevents a fully trustable statement on the behavior of the
susceptibility.

7. Conclusions

In this paper we have presented a detailed study of the order-order interface in
the three-dimensional three-state Potts model in cylindrical geometries with fixed
boundary variables at h. ends. The main results are the following:

(i) The finite-size effects on bulk quantities are similar in periodic systems and in
the inner volume of the cylinder when the boundary spins are parallel on the
opposite ends. With rotated boundary conditions the crossover between the high-
and low-18 regimes is much smoother on the moderate size lattices studied by us.

(ii) An effective one-dimensional three-state model is associated rather naturally
to the description of the interface . With the help of this mapping, we presented
evidence that a single interface predominates already for .8 = .8c when rotated
boundary conditions are applied .

(iii) The selection of the plane where the plane-averaged magnetization reaches
its minimum is a rather successful way to localize the interface . The magnetization
and the magnetic susceptibility in this plane seem to indicate a continuous phase
transition, whose magnetic and width exponents,

b=0.35±0 .05 and *=0.21±0.03

were found compatible with mean-field estimations. This verifies the result of
Lipowsky that the upper critical dimension for wetting phenomena is three [21] .

(iv) The surface tension and the action asymmetry appear to be two independent
quantitative signals for the presence of the interface . Exploiting the physically

enlightening FS-interpolation algorithm, reliable estimates of the surface tension

can be obtained by comparing samples with rot.b.c. and par.b.c . :

a,,d > 0.0048 .

Two independent methods were applied to the action asymmetry, leading to

results that are consistent with each other:

'Vord = 0.0078 ± 0 .0015 .

(v) A comparison between the magnitude of the action asymmetry induced by

order-order interfaces and previous results [eq . (30)] for order-disorder inter-
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faces, as well as the surface criticality indicated by the behavior of the minimal
magnetization, provides strong evidence for complete wetting taking place at .8c in
the three-dimensional three-state Potts model.
Mapping the system on an effective one-dimensional three-state model for the

description of the interface and looking into the thermodynamics of the fluctuating
plane of minimal magnetization in systems of larger cross section merit further
investigation .

The authors are indebted to J. Engels providing them with an optimized
Ferrenberg-Swendsen program for the data analysis and to B. Pendleton for his
comments on the manuscript . The numerical investigations have been performed
on the Cray X-MP at CERN.
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