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A high statistics study of the 3-d three-state Potts model on lattices of size L 3, with L ranging 
from 12 to 48, confirms the first-order nature of the Z(3) symmetry breaking phase transition in 
this model. We investigate the behaviour of spin spin correlations in the critical region, comment 
on various methods to extract the correlation lengths and point out the resulting ambiguities on 
finite lattices. Our results indicate a finite correlation length at tic. However, a careful analysis of 
the correlation functions is necessary to disentangle the inverse mass gap from the tunnelling 
correlation length which we found to diverge as L at fl~ although the transition is clearly first 
order. 

1. Introduction 

With the advent of lattice gauge theories as a major tool to study non-perturba- 
tive aspects of quantum field theories, spin models, usually studied in the context of 
statistical mechanics, have increasingly become important for particle physics. In 
particular, Z(N) spin models play an important role in understanding the critical 
behaviour of SU(N) gauge theories at finite temperature. It has been argued that an 
effective theory for the order parameter of a (3 + D-dimensional gauge theory has 
the same global symmetry as the three-dimensional Z(N) spin models. Svetitsky and 
Yaffe [1] exploited the existing knowledge about Z(3) spin systems to predict a 
first-order phase transition for the physically interesting case of SU(3) gauge theory 
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as no fixed point is known to exist for systems with global Z(3) symmetry. In 
addition, numerical studies of the three-dimensional three-state Potts model have 
indicated that it undergoes a first-order phase transition [2-4]. 

Early numerical studies of SU(3) gauge theory [5] on small lattices seemed to be 
in agreement with this prediction. They were later supported by studies on larger 
lattices [6, 7] which showed characteristic two-state signals and a shift of the critical 
coupling with increasing volume in accordance with the behaviour expected for a 
first-order phase transition [6]. Recently, however, a high-statistics computation of 
correlation lengths near the SU(3) phase transition has yielded a result which is 
strongly suggestive of a second-order phase transition [8]; the correlation length at 
T c increases with the size of the system. A concurrent study [9] of the order 
parameter and energy density, on the other hand, suggested a first-order phase 
transition although weaker than previously thought. As in ref. [5], clear metastabili- 
ties were found in this study of the order parameter on the largest spatial lattice 
analyzed so far. 

If further studies on larger spatial lattices confirm the conclusions of ref. [8], then 
a fresh look at the universality argument may be needed. On the other hand the 
phase transition in the 3-d three-state Potts model is also known to be rather weak; 
the numerical studies which lead to the conclusion of a first-order phase transition 
in this model were based on moderate statistics by today's standards. Moreover, 
only global observables were studied in those investigations and very little is known 
about the behaviour of the correlation lengths for the 3-d Potts model [4,10]. It 
should be noted that the different conclusions of refs. [8] and [9] stem from the 
analysis of different physical observables. It is not clear which observable is a better 
one to study the order of the phase transition if it were to be a weak first-order 
transition. It may well be that an analysis of bulk quantities, as they have been 
studied in ref. [9], are more efficient in this case than the correlation length studied 
in ref. [8]. In view of all this we studied both the correlation length and bulk 
quantities in a high-statistics investigation of the Potts model on lattices of various 
sizes ranging from 123 up to 483 . Our analysis of global observables like the order 
parameter confirms the first-order nature of the phase transition in the 3-d three-state 
Potts model. The analysis of the correlation lengths appears, however, to be more 
subtle and less conclusive since the determination of the physical mass gap on a 
finite lattice is difficult due to the presence of a large tunnelling correlation length 
in the critical region. We find that reasonable estimates of the mass gap at tic are 
almost independent of L and yield a correlation length ~ -  10. 

The plan of our paper is the following. In the next section we describe the Ports 
model and present our results on the phase structure obtained from global observ- 
ables. In sect. 3 we analyze spin-spin correlation functions and obtain correlation 
lengths using various methods. Finally we present our conclusions in sect. 4 and 
discuss the relevance of our findings to the phase transitions in the SU(3) gauge 
theory. 
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2. The phase structure of the Potts model 

The 3-d three-state Potts model is defined by the hamiltonian 

H = - 3 / 3  Y'. 8o~,ok = -/3 2 [s,'stk +s~'sk+c°nst'], 
(j,k) (j,k) 

(2.1) 

where the sum is over nearest-neighbour pairs ( j ,  k)  and oj(k)= 0, 1 or 2. The 
second equality in eq. (2.1) exploits the fact that the three-state Potts model is 
equivalent to the Z(3) spin model with spins s j=  exp(2~rioJ3). The partition 
function of the system on an L 3 cubic lattice is given by 

Z =  Z e - n -  (2.2) 
(oj} 

For ferromagnetic (/3 > 0) coupling the above model is known to undergo a phase 
transition from a Z(3) symmetric phase for fl </3 c to a spontaneously broken phase 
for/3 > fie at a critical coupling tic----0.367 [4]. Renormalization group studies [2] 
and Monte Carlo simulations [3] suggest the transition to be weakly first order. No 
systematic finite size study of the model has been performed so far. In the following 
we will study the volume dependence of global observables like the average action 

1 )) 
E= 57 £ cos( -o,,) <j,k> , T ( ° j  (2.3) 

and the order parameter 

with S~ defined by 

S = (max(S o, S1, S2)), 

[ e2~rai/3 ) 

(2.4) 

a = 0 , 1 , 2 .  (2.5) 

Here ( X )  denotes the thermal expectation value of the observable X with respect to 
Z. We used the standard Metropolis algorithm to simulate the model on periodic 
cubic lattices of sizes L = 12, 20, 24, 30, 36 and 48. Typically we performed 
5 )< 105-5 3< 106 iterations at each fl value. Expectation values were computed 
every 10th iteration. To eliminate the remaining time correlations errors have been 
calculated by dividing the data sample into blocks of various lengths and taking the 
expectation values on a given block as independent measurements. Figs. 1 and 2 
show results for S and E as a function of/3. One sees from these figures that the 
cross-over in the critical region becomes sharper with increasing volume. They, 
therefore, suggest that a discontinuity will develop in both observables in the 



R.V. Gavai et al. / Three-state Potts model 

0.6 
A 
(/~ • L = 1 2  

V . 5  • L=20 

• L = 2 4  

o L = 3 0  
0.4  

o L=.36 

• L = 4 8  
0.3 

0.2 

0.1 

0 
0 .364  

I 

'I 

• o 

A ~ 

I I 

0 .366  0 .368  

m 

r 

0.37 

Fig. 1. The order parameter S versus fl on lattices of size L 3 with L = 12, 20, 24, 30, 36 and 48. 
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infinite volume limit. This is further supported by the behaviour of the inverse 
function fl(L, E), i.e. the coupling fl at which the action takes on the value E on a 
lattice of size L 3. Fig. 3 displays/~(L, E)  for three values of E as a function of L. 
The points shown have been obtained from a cubic spline fit to the data of fig. 2. 
On the 483 lattice our statistics in the critical region were insufficient and we simply 
used a straight line interpolation. The lines drawn are extrapolations of the results 

0.5 
A 
b.J o L = 1 2  

V • L = 2 0  

0 .45  • L = 2 4  

o L = 3 0  

. L = 3 6  
0.4 

,, L=48  

0 .35  

0.3 
I 

0.25  
0 .364  

I • 

, I  

m Q 

I I I 

0..366 0.,368 0 .37 

Fig. 2. Same as fig. 1 but for the average action E. 
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Fig. 3. The inverse function/~(L, E) versus 1 / V  for the values of E indicated on the figure. The volume 
V is measured in units of 203. The straight lines shown are extrapolations of the data for L = 30 and 36. 

obtained for L = 30 and 36. They strongly suggest that /~(L, E)  indeed becomes 
multi-valued at/~c, 

VEmin~E~Emax, lim /~(L, E) =/~c. (2.6) 
L ~  

In order to see what causes the rapid change in both the observables in the critical 
region we looked at the evolution of the order parameter as a function of Monte 
Carlo time and its probability distribution. Figs. 4 and 5 show the time evolution of 
S for B close to/~c on 363 and 483 lattices, respectively. On both lattices one sees 
clear flip-flops between two well-separated states. This is reflected in the clearly 
separated peaks of the probability distributions, shown in fig. 6, corresponding to a 
globally Z(3) symmetric and a spontaneously broken phase. They are no indications 
that the peaks approach each other as the lattice size increases. Furthermore the 
number of flips from one phase to another decreases rapidly with increasing volume 
and the overlap of the two peaks in the probability distribution function reduces 
simultaneously. 

The clear separation between the two phases in the critical region suggests 
separating the data and averaging them in the respective phases. This is shown in 
fig. 7 for the order parameter and the action. We note that the discontinuity in the 
order parameter increases with increasing volume and that the region of coexisting 
states shrinks at the same time. In fact, on the 483 lattice the metastability region 
was as small as 3 × 10 5. For the gap in S and E we extract from our data 

a S  = 0.395 + 0.005, AE = 0.080 +_ 0.004, (2.7) 
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Fig. 4. (a-c)  Time history of the order parameter S as a function of Monte Carlo time on the L = 36 
lattice close to the critical coupling for that lattice. 

with Emin( /~c)  = 0.297 4- 0.002 and Em~(/~c) = 0.377 + 0.002. We note that the gap 
in the order parameter is quite large (40% of the maximal value). The weakness of 
the transition results from the large slope of the action at tic- 

The scaling behaviour of a statistical system near a phase transition is character- 
ized by its critical exponents. Phase transitions in spin models can be classified by 
the thermal and magnetic exponents YT and Ytl that control the critical behaviour 
near the fixed point. The scaling of the critical coupling tic, L as well as the width of 
the critical region, %, is expected [10] to be governed by the thermal exponent 

Y ' r  = 1 / v  = d / ( 2  - e~) 

& ,  t -- ~c ~ L- -YT '  O L -  L-YT" (2.8) 

For  a first-order phase transition governed by a discontinuity fixed point* yv is 

* In general, the predictions about the critical behaviour near a first-order phase transition rely on the 
existence of a discontinuity fixed point. There are indications from Monte Carlo renormalization 
group studies [2] that the 3-d three-state Potts model might not have such a fixed point. For a 
discussion of the scaling behaviour independent of the existence of discontinuity fixed point, see 
ref. [11]. 
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Fig. 7. (a) The order parameter and (b) the average action in the critical region as a function of fl on 
303 , 363 and 483 lattices. 

simply given by d. In this case /~c, e and o e are thus expected to scale with the 
volume of the system, whereas a slower approach to the asymptotic values is 
expected for a second-order transition (a  < 1). It is therefore worthwhile to investi- 

gate the volume dependence of tic, e and o L and determine YT in our case. 
In order to define both/~c, L and o e we exploited the metastable behaviour of the 

system in the critical region, where one observes several flips between the symmetric 
and broken phase. For instance, on the 363 lattice we counted 65 flips at p = 0.367 
i n  10  6 iterations (the first half of this run is shown in fig. 4b). The relative 
population of the different phases thus is statistically significant. We, therefore, 
defined the critical coupling, tic, e, and the width of the metastable region, o L on a 
lattice of volume V = L 3 by determining the point where the order parameter spent 
equal time in both phases. As a criterium to define the population of the two phases, 
Pl,(2)(fl, L), we used the minimum of the probability distribution, P(fl ,  L), be- 
tween the two peaks to separate the phases and counted the number of events under 
the respective peaks which are clearly evident in fig. 6. The relative population 
density is then defined by 

Ap(/3 ,  L )  = 1 - IP~-  P21/(P~ + P2). (2.9) 

We performed a gaussian fit to the relative population density, 

1 f l -  Bo, L 
k P ( f i ,  L)  = exp - ~- o~-7~ , (2.10) 
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TABLE 1 
The critical couplings and the width of the metastability region on various lattices as obtained from 

a gaussian fit to the relative population density of the broken and symmetric phases 

L /Yc, L o L X 10  4 

20 0.36649(1) 6.69(5) 
24 0.36670(1) 3.98(8) 
30 0.36691(1) 1.93(6) 
36 0.36699(1) 1,30(8) 
48 0.367025(25) 0.25 

to obtain /9c, L and a L. The results of the fits are given in table 1, where tic and a L 

are the peak and the width of the gaussian, respectively. Since on the 483 lattice only 
a few flips occurred even in runs of 106 iterations, as shown in fig. 5, we adopted a 
different procedure for it. Flips have been observed only in the interval 0.367 ~</~ ~< 
0.36705. The length of this interval was taken to be 048 and the midpoint of the 
interval was taken as flc,48- For lattices of size 243 and larger the shifts in tic. L and 
o L are both consistent with a 1 / V  behaviour, as displayed in fig. 8. Linear fits of 
the forms 

]3c, L = B , ,  ~ - -  A ~  L 3  , (2.11a) 

and 

oL = B / L  3 (2.lib) 

yield/~c,~ = 0.36708(2), A = 4.9(2), B = 5.37(8). We also checked that assuming the 
more general form, given by eq. (2.9), yields a value of YT consistent with three. 
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Fig. 8, Finite size scaling of (a) fl~, ~. and (b) o~. The volume V is measured in units of 203. 
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Both of these findings are in accord with the expectation that the phase transition is 

first order. 
Let us summarize the main findings of this section that re-establish the first-order 

nature of the phase transition in the ferromagnetic 3-d three-state Potts model: 
(i) Physical quantities such as the order parameter exhibit distinct metastable 

behaviour in the critical region. 
(ii) The probability distribution functions show a clear two-peak structure. With 

increasing volume the peaks become sharper and move a little away from each 
other, if at all. 

(iii) The difference tic - tic. L as well as the width of the metastable region, ~L, 
scales with 1/V. 

(iv) The inverse function fl(L, E), where E is the action, appears to become 
multi-valued for 0.297 ~< E ~< 0.377 in the infinite volume limit at tic = 0.36708 
which is in agreement with the fie obtained by demanding equal population in the 
two phases. 

3. Correlation lengths on finite lattices 

3.1. P R E L I M I N A R I E S  

Having re-established that the 3-d three-state Potts model has a first order phase 
transition [2, 3], we present here the results of our investigation of the correlation 
lengths of the system close to the critical point. As mentioned earlier, such a study 
of the correlation length in SU(3) pure gauge theory at finite temperature gave rise 
to a controversy about the order of the deconfinement phase transition. Based on 
studies similar to those in sect. 2 a first-order deconfinement phase transition was 
found in SU(3), whereas a study of correlation lengths alone suggested a second-order 
transition. 

In order to study the correlation length one analyses the corresponding correla- 
tion functions. The spin-spin correlation functions that we study are defined by 

Fl(r)=(1/6V)(~i sd~ ),  (3.1) 

and the corresponding zero-momentum projection given by 

Fo(r ) = ( 1 / 6 L )  Y'~ £,g~ . (3.2) 
/=1 [ 

Here s i denotes the spin at site i. gi is the average spin on the plane i, and r = ]i - j ]  
denotes the distance between the sites (planes) i and j along one of the principal 
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axes of the lattice. The connected part of these correlation functions, 

F/,c(r ) = F / ( r )  - lim F , ( r ) ,  (3.3) 

decays exponentially at large distances. The correlation length can be obtained from 
it as 

1 
~-1 = _ lim - l n  F~,c(r ) . (3.4) 

r---* oo r 

In a finite volume (as well as in any numerical simulation) the large distance 
behaviour of the correlation function is not accessible to us. Even on rather large 
lattices the subleading powerlike behaviour of the correlation function can be 
non-negligible. Thus unlike the global quantities studied in the previous section 
extraction of the correlation length, ~, on these lattices is not totally unambiguous. 
In general, it requires an assumption on the functional form of ~ ( r ) .  A popular 
procedure is to form ratios of the Correlation functions, like 

RT(r  ) = I ' i ( r ) / ( F i ( r  + 1)). (3.5) 

Using an ansatz inspired by the behaviour of F on an infinite lattice that takes into 
account the periodicity of the L 3 lattice 

~ ( r ) = A i ( e x p ( - r / g g ) / r i + e x p ( - ( L - r ) / ~ ) / ( L - r )  i) (3.6) 

with i = 0, 1, one can then extract a correlation length (. The ratios R7 are sensitive 
to the behaviour of the correlation functions near r. From them one can define 
respective distance-dependent masses, mT(r ) = 1 / ~ ( r ) ,  as solutions of eq. (3.5) 
using the ansatz given in eq. (3.6). The large distance behaviour of these estimators 
yields ( 1, if the distance-dependent masses exhibit a plateau at large distances. 
However, a technical remark about this ansatz may be in order. 

In eq. (3.6) the periodicity in the longitudinal direction has been taken into 
account by explicitly adding the contribution of the closest image of the source in 
that direction. In principle, further away images in longitudinal as well as transverse 
directions also contribute. In fact, their contribution becomes more significant as 
increases and an increasing number of images has to be included in eq. (3.6) to get 
agreement with masses extracted from F 0 and F 1, respectively. We therefore 
replaced in our analysis the ansatz for Fl(r ) by a generalized periodic exponential 

/~l(r) =h ~ ~ ~ 1 
m= ~ j=-oo k= ~ [ ( r / L  + m)  2 +j2  + k2] 1/2 

X e x p [ ( - L / ~ ) t ( r / L  + m) 2 + j2  + k 2 ] .  (3.7) 



R. V. Gauai et aL / Three-state Potts model 749 

Note  that the contribution of the images need not be added explicitly to Fo(r), since 
the corresponding expression for it can be summed up exactly and one again 
obtains the same form as in eq. (3.6) with just a renormalization of A o. 

We find that m~(r) and m~(r) obtained by using eq. (3.7) always coincide, 
whereas the corresponding masses extracted by using eq. (3.6) differ by an increas- 
ing amount  as the mass becomes smaller. For m~ - 0.05 the discrepancy is as much 
as 100%. This is also true if one fits the correlation function data to the forms given 
by eqs. (3.6) and (3.7) in order to extract the correlation lengths instead of using the 
distance-dependent masses. As is well known, the fits exploit the information at all 
r while the distance-dependent masses are more local. 

3.2. N U M E R I C A L  ANALYSIS OF R, ~ 

We begin the discussion of our numerical results by first demonstrating that the 
estimates for m'i(r ) indeed coincide for i = 0 and 1. Fig. 9 displays these quantities 
on the 363 lattice for a large range of/3 that includes the critical region. From the 
analysis of the previous section we know that on the 363 lattice the phase transition 
occurs a t  /~c,36 = 0.36699 with a metastable region of characteristic size O(o = 
0.000l). Although the asymptotic value of the distance-dependent masses changes 
very rapidly in this region we note that no significant change occurs in the 
functional behaviour, i.e. they all are essentially flat over a large range of r. This 
seems to indicate that eq. (3.7) provides already a good description of the data; any 
contributions from higher excited states have either a large mass a n d / o r  a small 
amplitude. Furthermore, we also note that any addition of a constant to eq. (3.7) 
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does not  appear  to be necessary. In view of the good agreement between m 0 and 
ml, obta ined  by using eq. (3.7), we will display the results for any one of  them only 
in the following. 

In  fig. 10 we show m~ for all fi values studied by us on lattices of size L = 20 up 

to L = 48. The estimates of m~ are based on distance-dependent  masses taken at 

r = 7 for L = 20, 24 and r = 10 for L = 30, 36 and 48. We have checked that m~(r) 
develops a plateau at this distance (see fig. 9 for L = 36) and also verified that a fit 

to the correlat ion functions gave masses in agreement with those shown in fig. 10. 

Results  obta ined from m~(r) and the fits for all lattices we studied are summarized 

in tables 2 and 3. They show that mg decreases with increasing lattice size for large 

fi, whereas it shows the opposite trend for small /?. We note that at fi = 0.367, m~ 

decreases for 20 ~< L ~< 36 and is consistent with a 1/L behaviour. In fact we find 

rn;--O.8/L for L~<36,  B = 0 - 3 6 7 .  (3.8) 

As shown in table 4, this trend only stops on the 483 lattice where we find 
m 0 = 0.0744. This is as expected: For  all lattices L = 20 up to L = 36 we observe a 

large number  of  tunnellings between the symmetric and broken phase at fl = 0.367. 
The  potent ial  barrier between these two phases increases with increasing lattice size 

(see fig. 6) and the tunnelling probabil i ty thus decreases. This leads to an increase in 

the tunnell ing correlation length with increasing lattice size. On  the 483 lattice, 

however,  the critical coupling shifts to a slightly higher value (Bc,4s = 0.367025) and 
the coupl ing /~  = 0.367 moves to the edge of the metastabili ty region, i.e. we see no 

significant contr ibut ion from tunnellings to the broken phase. This leads to the 
smaller correlat ion length on the 483 lattice at /~ = 0.367. In fact, when we move 
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TABLE 2 
m~ for all values of ,8 and lattices of sizes L = 20, 24, 30, 36 and 48 obtained from 

distance-dependent masses m~(7) for L = 20 and 24 and m~(lO) for L = 30, 36, and 48 
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20 24 30 36 48 

0.365 0.141(2) 0.164(3) 0.180(3) 0.180(5) 0.198(3) 
0.3655 0.117(4) 0.136(3) 0.166(6) 0.169(5) 0.184(9) 
O. 366 0.086( 1 ) 0.098(4) O. 122(5) O. 141 (4) O. 160( 11 ) 
0.3665 0.061(2) 0.058(2) 0.068(5) 0.096(7) 0.130(11) 
0.36675 0.055(2) 0.047(1) 0.040(2) 0.056(8) 0.112(7) 
0.36689 - -  - -  0.039(7) 0.048(11) 
0.367 0.041(2) 0.034(1) 0.026(1) 0.022(2) 0.051(18) 
0.367025 - -  - -  - -  0.010(2) 
0.36705 - -  - -  - -  0.008(1) 
0.3671 . . . .  0.007(1) 
0.36715 - -  - -  0.015(2) 0.005(1) 
0.36725 0.037(1) 0.026(1) 0.016(1) 0.011(1) 0.008(1) 
0.3675 0.030(1) 0.021(1) 0.013(1) 0.007(1) 0.004(1) 
0.368 0.023(2) - -  0.009(1) 0.006(1) 0.004(1) 

TABLE 3 
m~ for all values of/3 and lattices of sizes L = 20, 24, 30, 36 and 48 obtained from fits to the 

correlation functions Fo(r ). Fits for L/> 24 have been performed for r >/6, 
while those for L = 20 are based on all r >/4. 

20 24 30 36 48 

0.365 0.142(5) 0.164(5) 0.181(2) 0.182(2) 0.201(1) 
0.3655 0.118(14) 0.136(5) 0.162(5) 0.168(3) 0.182(5) 
0.366 0.087(9) 0.098(10) 0.121(7) 0.141(3) 0.156(4) 
0.3665 0.062(17) 0.058(12) 0.066(19) 0.089(12) 0.122(6) 
0.36675 0.055(23) 0.047(9) 0.040(15) 0.046(23) 0.109(4) 
0.36689 - -  - -  0.032(25) 0.036(23) 
0.367 0.042(14) 0.034(15) 0.026(14) 0.021(21) 0.027(27) 
0.367025 . . . .  0.009(18) 
0.36705 - -  - -  - -  0.008(15) 
0.3671 - -  - -  - -  0.007(3) 
0.36715 - -  - -  0.014(21) 0.007(2) 
0.36725 0.038(14) 0.026(13) 0.016(15) 0.011(9) 0.006(3) 
0.3675 0.032(12) 0.022(7) 0.013(5) 0.008(3) 0.004(1) 
0.368 0.025(3) 0.010(2) 0.006(2) 0.003(2) 
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TABLE 4 
Scaling of m~ with L at fl = 0.367 

L m~ m~L 

20 0.0414(9) 0.828(30) 
24 0.0340(10) 0.814(24) 
30 0.0259(8) 0.777(24) 
36 0.0221(21) 0.796(76) 
48 0.0514(181) 2.47(87) 

close to the critical point of the 483 lattice, /3 = 0.367025, we find an increasing 
correlation length for all our lattices up to L = 48. The increase of ~ is again 
consistent with ~ - L. 

The behaviour of ~ discussed above is consistent with that expected for a 
second-order phase transition. However, it need not contradict our conclusions of 

sect. 2. Also for a first-order phase transition the correlation length diverges at tic 
[12,13] if the infinite volume limit is taken at fixed fi =/3~: 

lim lim ~(/3, L) = lim ~(/3~, L) --4 oo. (3.9) 

For  a strong first-order transition this divergence is in general expected to be faster 
than L [12]. However, a slow rise consistent with ~ -  L is possible for a weak 
first-order transition. Note that the conventional wisdom of a finite correlation 
length for a first-order transition corresponds to the interchange of the two limits in 

eq. (3.9), i.e., the thermodynamic limit is taken first. A similar behaviour is known 
to occur for other related quantities such as the specific heat and the magnetic 
susceptibility of systems with first-order phase transitions [10,12]; they all develop 
6-function like singularities at /3 c if the limits are taken as in eq. (3.9) and stay finite 
otherwise. Unfortunately, the nonmonotonic nature of our data close to tic, shown 
in fig. 10, does not allow us to distinguish between the two limits clearly. 

It  may be worth emphasizing here that our analysis of R ~ to extract the mass m s 
is very similar to the one performed for the SU(3) gauge theory in ref. [8]. The same 
observables were used in both the cases and the behaviour found at tic seems to be 
identical for the SU(3) gauge theory and the 3-d three-state Potts model. However, 
contrary to what has been claimed in ref. [8] we do not see any indication for a 
qualitative change in the distance-dependent masses at /3c that would justify the 
subtraction of a constant from the correlation functions in the broken phase. 

3.3. T U N N E L L I N G  CORRELATION LENGTH AND THE PHYSICAL MASS GAP 

The large correlation length found above/3 c is clearly not of physical relevance. In 
fact, it is a genuine finite size effect related to the tunnelling between degenerate 
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vacua [13-16]. From an analysis of the transfer matrix one expects in general the 
correlation function to be a coherent sum of its eigenvalues. For instance, consider- 
ing only the contribution of the two smallest eigenvalues above the ground state the 
correlation functions F 0 is expected to be described by 

Fo(r  ) ~ A e -r/~{; + B e  -r/~T . (3.10) 

The correlation lengths entering the two leading terms can in general be related to 
the inverse mass gap, fG = 1 / m G ,  and the tunnelling correlation length, iT- In the 
spectrum of the transfer matrix the latter arises from the level splitting associated 
with the tunnelling between different degenerate vacua. In the infinite volume limit 

the barrier between these vacua becomes infinitely large, causing iT ~ ~ in the 
broken phase. This gives rise to the usual constant disconnected part in the 
correlation function. In the symmetric phase one expects iv  - fG for L --9 oe. The 
above scenario for the tunnelling correlation length can be explicitly verified in 
exactly solvable two-dimensional Ising model [17] as well as in numerical simula- 
tions of higher dimensional models [18]. 

The correlation length obtained from the ratios R" behaves in a manner consis- 
tent with what one expects for the tunnelling correlation length for/3 >/fie" One thus 
has to be careful in interpreting the results for ~ close to/3 = 0.367025. It appears 
reasonable to expect that the correlation lengths fG and iT get intertwined in the 
critical region and the estimate from R 7 corresponds to neither of them alone. One 
way to eliminate iT, if it is large enough, is to define [19] the ratios 

~/diff(F, F 4- 1) 

RBi ( r )  = ~di f f ( r  4- 1, r +  2) ' (3.11) 

and obtain the distance-dependent masses from them. Here /~idiff(rl, /2) is defined 
through 

/2cliff(r1, r2) = F i ( r l )  - / ~ i ( r 2 ) .  (3.12) 

For r 2 --* ~¢ this coincides with the usual definition of connected correlation 
functions on infinite lattices. Note that the ratios R 7 and R~ yield the same mass at 
any distance, if the correlation functions are indeed given by a single exponential. If, 
on the other hand, they are given by a superposition of two or more exponentials as 
in eq. (3.9), then Fdiff(r, r + 1) yields a superposition of the same exponentials but 
with a new ordering of their relative weights. In fact, for the form given by eq. (3.9) 
one has 

Fodiff(r, r +  1) - A e  r/~,;+ ~ e - , - / ~ T ,  (3.13) 
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/~ (1 - e 1/~T)B 
7 = (1 - e-1/~, ' )A " (3.14) 

The relative weight of the contribution coming from a tunnelling correlation length 
thus goes to zero for ~T ~ oo. F diff thus is expected to be dominated again by a 

single exponential, which, however, now decays according to the next leading 
correlation length. 

A comparison of distance-dependent masses based on R~ and R0 ~ is shown in fig. 
11 for/~ = 0.365 and /~ = 0.367. It may be noted that the masses m~o(r), obtained 
f rom the ratios R~o(r) by using eq. (3.6), show a stronger r dependence. They reach 
a plateau for r >/5 whereas m;(r) is essentially r independent for r >/2, suggesting 

the presence of more than one relevant mass scale. This is much more pronounced 
in the critical region. Despite the large errors on m0 ~, which are due to the difference 
of the correlation functions in F0 di", one sees that both procedures agree in the 
symmetric phase, while they lead to very different results in the critical region. 
Results of fits to F(i~f(r, r + 1) using the periodic exponential defined in eq. (3.7) for 
F 1 are given in table 5. We have also analysed the distance-dependent masses 

obtained f rom R~. In general, they are in agreement with the results in table 5. 
A comparison of the results in tables 2 and 3 with those in table 5 shows that 

m ~ - m ~ for/3 ~< 0.36675 for our largest lattice. However, we find that m/~ reaches a 

min imum at /3 = tic. L, unlike the masses m ~, and increases again in the broken 
phase. Indeed, as m ~ <  0.05 in this region, one sees from eq. (3.14), that the 
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Fig. 11. Distance-dependent masses obtained from Rg (full symbols) and R~ (open symbols) for L = 36 
and fl = 0.365 (dots) and/~ = 0.367 (squares). 
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TABLE 5 
m~ for all values of fl and lattices of sizes L = 20, 24, 30, 36 and 48 obtained from fits to the 

correlation functions Fdiff(r). Fits for L/> 24 have been performed for r >/6, 
while those for L = 20 are based on all r/> 4 

20 24 30 36 48 
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0.365 0.224(1) 0.202(5) 0.194(2) 0.196(2) 0.193(2) 
0.3655 0.210(3) 0.181(3) 0.180(2) 0.180(9) 0.179(3) 
0.366 0.190(2) 0.159(4) 0.161(2) 0.164(9) 0.158(4) 
0.3665 0.186(6) 0.134(7) 0.128(2) 0.136(1) 0.142(5) 
0.36675 0.175(10) 0.144(9) 0.124(4) 0.118(3) 0.124(3) 
0.36689 - -  - -  - -  0.114(6) 0.107(7) 
0.367 0.196(7) 0.153(15) 0.126(5) 0.115(7) 0.099(12) 
0.367025 . . . .  0.112(24) 
0.36705 . . . .  0.112(19) 
0.3671 . . . .  0.134(8) 
0.36715 - -  - -  0.131(13) 0.142(7) 
0.36725 0.207(11) 0.171(13) 0.171(11) 0.152(5) 0.165(9) 
0.3675 0.231(7) 0.193(10) 0.201(5) 0.193(3) 0.194(6) 
0.368 0.280(3) - -  0.249(2) 0.253(4) 0.241(6) 

correlation function F diff will be dominated by the next higher mass scale. We 
further note that finite size effects in these estimates seem to be considerably smaller 
close to/3~ than those based on unsubtracted correlation functions. In particular, 
1 / m  ~ does not scale as L at /3 - 0.367. 

Summarizing the results of this section in brief, we find that a study of correlation 
lengths alone is inadequate to determine the order of the phase transition in the 3-d 
three-state Potts model. The primary reason behind this is that various methods to 
extract correlation lengths from data on finite lattices do not agree in the critical 
region, although they do so sufficiently far away from tic- While the estimates of 
correlation lengths obtained from the ratios R, ~ suggest 4 - L  at /3 c, a finite 
correlation length (4 -- 10) is indicated by the ratios R~. The former is related to the 
tunnelling correlation length whereas the latter yields the inverse mass gap in the 
infinite volume limit. 

4. Conclusions 

Motivated by the recent controversy about the order of the phase transition in 
finite temperature SU(3) gauge theory and its consequent impact on the universality 
picture, we have investigated the 3-d three-state Potts model on lattices of size L 3 
for L = 12, 20, 24, 30, 36 and 48 in a high statistics Monte Carlo simulation. The 
analysis of global quantities like energy density and order parameter re-establishes 
clearly the first-order nature of the phase transition in the Potts model. The finite 
size corrections to the critical coupling and the width of the metastable region are 
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consistent with the 1/V behaviour expected for a first-order phase transition. The 
probability distribution for the order parameter shows a distinct two-peak structure. 
The location of the peaks is rather insensitive to the lattice size and the overlap of 
their tails decreases with increasing L. This gives rise to a finite gap in the order 
parameter as well as in the action. The characteristics of the transition in the infinite 
volume limit, obtained by two different extrapolation methods, are 

tic = 0.36708 +_ 0.00002, 

AS = 0.395 + 0.005, 

A E = 0.080 _+ 0.004. (4.1) 

We also calculated spin-spin correlation functions (F1) and the corresponding 
zero-momentum plane-plane correlations (F0). Various known methods were used 
to extract the correlation lengths from these observables. In general, the results 
obtained from F 0 and F 1 agreed with each other, although for ~ >/10 we needed a 
generalized periodic exponential that incorporated the periodicity in transverse 
directions. The different methods used to extract ~ yielded the same results only 
away from the critical region. Approaching the critical region one found that the 
masses estimated from the ratios of plain correlation functions, R e, decreased 
monotonically across Bc whereas those obtained from the ratios of differences of 
correlation functions, R ~, had a minimum at tic. On a finite lattice it is expected 
that one more correlation length besides the inverse mass gap, the tunnelling 
correlation length, becomes relevant especially for /3 >/tic. Since the tunnelling 
correlation length is infinite in the entire range of/3 >/fl~ for an infinite lattice it is 
natural to expect that on finite lattices it is the largest one in that domain. 
Consequently the latter set of ratios is better suited to obtain the inverse mass 
gap in the critical region. Based on this, we find that the inverse mass gap stays 

finite at tic, 

~(/3~) - 10. (4.2) 

Our final results on the mass gap in the 3-d three-state Potts model obtained on the 
largest lattice analysed are given in fig. 12. 

Let us finally discuss the relevance of our results for the SU(3) deconfinement 
phase transition. Our observation of a clear signal for a first-order phase transition 
in global observables is in qualitative agreement with the corresponding findings for 
the SU(3) order parameter and internal energy [9]. Also as in the case of SU(3) [8], 
the ratios R~ yield in our case a correlation length that diverges with the length 
of the system at/3c. However, we do not expect this to reflect the true behaviour of 
the physical mass gap in the infinite volume limit due to the inevitable mixing 
between the tunnelling correlation length and the inverse mass gap on finite lattices. 
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Fig. 12. m~ and m (  as a function of fl for the 483 lattice. 
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In the case of the 3-d three-state Potts model the estimate of the correlation length 
based on differences of the correlation functions seems to be a better indicator of 
the infinite volume correlation length on finite lattices, despite the fact that it is 
more  difficult to obtain it with high accuracy. This correlation length stays finite at 
/3 c and shows only little size dependence when we change the lattice size from 
L = 30 up to L = 48. Also in the case of SU(3) gauge theory it may therefore be 
useful to extract the correlation length from the ratios R ]  in the critical region. If it 

turns out that the correlation length obtained even from this ratio increases with the 
size of the system, then it would indeed be a remarkable difference compared to the 
behaviour of the Potts model and would cast doubts on the standard universality 

arguments in the case of a global Z(3) symmetry. 
To  be sure, the results of ref. [8] are not comparable directly with ours because of 

the different geometry and boundary conditions of the lattice employed by us. 
Whereas we use a cubic lattice with periodic boundary conditions, ref. [8] used a 
cylindrical geometry with a cold wall at the ends of the cylinder. We are presently 
investigating the relevance of these differences for the conclusions reached above. 
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