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We present a new representation of the partition function for strong-coupling QCD which is
suitable also for finite baryon-number-density simulations. This enables us to study the phase
structure in the canonical formulation (with fixed baryon number B) as well as the grand
canonical one (with fixed chemical potential p). We find a clear signal for a first-order chiral
phase transition at g a = 0.63. The critical baryon-number density n_a® = 0.045 is only skightly
higher than the density of nuclear matter.

1. Introduction

The phase structure of QCD at finite temperature has been studied in detail {1}
The existence of a first-order phase transition is well established. While a similar
situation is expected to persist at finite baryon-number density. its numerical
analysis turned out to be difficult. Both formulations of finite density QCD, the
grand canonical with a non-zero chemical potential p [2], as well as the canonical
one at fixed non-zero baryon number B {3}, suffer from the fact that the Boltzmann
factors in the partition function are not strictly positive. This rules out the
application of standard Monte Carlo techniques. Moreover, it has been shown that
an analysis of finite density QCD in the quenched approximation leads to inconsis-
tencies related to singularities of the fermion determinant {4]. A correct implementa-
tion of dynamical fermions thus seems to be mandatory ™.

Some progress has been achieved in the strong-coupling limit. Here it is possible
to represent the partition function as a system of monomers, dimers and baryonic
loops {7]. However, the weights for the baryonic loops turn out to be positive only if
the number of colours N, is even [8]. For N, =4, the phase structure has been
studied in the grand canonical formulation and a first-order chiral phase transition

' On leave of absence from Physics Department, University of Wuppertal, Wuppertal, FRG.

* A first attempt of a finite density calculation for the SU(3) case with the recently developed
technique [5] of computing the partition function directly has been undertaken by Gocksch (6]
However, this approach seems to be limited to rather small lattices.
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has been found at a critical value of the chemical potential p consistent with
mean-field predictions [4, 8].

It is the purpose of this paper to investigate the phase structure for strong-cou-
pling QCD with SU(3) gauge field, staggered fermions and four flavours. In sect. 2,
we review [7] how to integrate the SU(3) gauge fields. In sect. 3 the integration of
the quark fields is performed. This leads to the representation of the partition
function in terms of monomers, dimers and baryonic loops mentioned above. In
sect. 4 we address the problem of how to handle the baryonic loops with their
oscillating weights. The solution is found in a new representation of the QCD
partition function as a statistical system of monomers, dimers and polymers
(MDP-system). This system has strictly positive weights for u=0 (or B =0) and
r=a/a,=1.

At finite density some of the Boltzmann weights will still be negative. However, as
will be shown in sect. 5, the dominant contributions to the partition function have
positive weights. This allows for the design of an algorithm that generates configura-
tions distributed according to the absolute value of the Boltzmann weights. The sign
of the weights can be absorbed in the observables.

The reader who is mainly interested in the physical results of our simulation
should proceed immediately to sect. 6. There we show the behaviour of the chiral
condensate, the baryon-number density and the energy density as a function of the
chemical potential. A sharp first-order phase transition is found. The signal for this
transition appears to be weaker in a simulation with canonical Boltzmann weights,
1.e. at fixed baryon-number densities.

2. The SU(3) link integral

Let us start with our definitions and notations. The partition function of a system
of quarks and gluons in the strong-coupling limit is given by

Z(2ma. p,r) =/d47d¢dec~*‘r (2.1)

where ¢, ¢ denote the quark fields and U the SU(3) gluon field. Sy 1is the fermion
action

Sp=v4y. (22)
which couples the quark fields ¢, ¢ bilinearly via the fermion matrix

A=2ma+ ¥ U(x,y)¢x.y). (2.3)

Xy

We will use here staggered fermions. A chemical potential u, which controls the
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quark-number density of the system is incorporated via the link factor [2]*

‘retn if (x—y),=1L.
S(x.p)=elx, p)y —re *4 il (x—p),=-1. (2.4)
+1, if (x—yp),==+1., k=1.2.3.

The €(x, y) are the usual signs associated with staggered fermions. r=a/a 1s the
ratio of the lattice spacings in space and time directions. Choosing r # 1 allows us to
vary the temperature T = 1/N a, of the system continuously.

In the absence of the gluonic part of the action the integrals over the SU(3) link
variables U(x, v) can be computed [7]

F(x.3) = [aUexp[9(x)U(x. )9 (1) + 4 (1)U L x)9(x)]

=1=4p(x, y)M)M(¥) + S(p(x. p)M(x)M(y))
— Lp e IMIMON + 8 (x 3)'B(x)B(y) + ¢(v. x)'B(y)B(x)
(2.5)

The quark-field dependence can be absorbed in “meson fields”

M) =y(x)d(x)= ¥ d(x)d(x)= X M(x). (2.6)

a=1.2.3 a=1.2.3

and “baryon-antibaryon fields”

B(x) =4, (x) () a(x). B(x) =9 (x)d(x) ¥ (x): (27)
p(x. v)1s the “mesonic” link factor

R o Sy P ey
p(x.v)=8(x. ¥)Hy, x) = T ks

The quark fields are described by Grassmann variables with the well-known
property

Y (), (x) =y, (x)¢,(x)=0.
This enables us to reduce the quadratic and cubic terms in the meson ficlds

* For a generalization of this prescription to introduce a chemical potential see ref. {9).
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M(x)M(y) to “dimer” operators
(M(x)M(y))" = (21)’D,(x, y)
= (2 (M (x)My(x) + M (x)My(x) + M, (x) My(x))
X(M(y)M(y) + M(y)M(») + My(y)Ms(y)), (2.9)
(M(x)M(y))’ = (31 Ds(x, »)
= (31’ My (x) My (x) My(x) My (3) My (1) My (). (2.10)
For convenience we also introduce a third dimer operator
Di(x) = (M(x) + My(x) + My(x))(M,(y) + My(y) + My(»)). (2.11)
In terms of the dimer operators the link integral acquires the form
F(x, ) =1=1p(x,y)Dy(x, ») + }p(x, y)*Dy(x, y) + — p(x, y)'Ds(x. y)
+¢(x, y)'B(x)B(y) +¢(y.x)’B(y) B(x). (2.12)

3. Monomers, dimers, baryon loops

In this section, we will compute the partition function (2.1) making use of eq.
(2.12) for the link integral

{xy)

Z=[d$dx,’: exp[2maZM(x)] ITF(x.y). (3.1)

Non-vanishing contributions to the integrals over the quark fields are obtained only
if each site x of the lattice is occupied: either by three mesons, M,(x)M,(x)M;(x):
or by a baryon-antibaryon pair, B(x)B(x).

As will be shown below, this rule generates geometrical patterns on the lattice,
which are built up from “monomers”, “dimers” and *baryonic loops”.

(a) Monomers live on sites x. They carry a weight 2ma and they are generated by
*the mass term

exp[2maM(x)] =1+ 2ma(M,(x) + My(x) + M,(x))
+ (zma)z( M, (x) My (x) + M (x) My(x) + M,(x) M;(x))

+(2ma)’M (x) M,y (x)M,(x). (3.2)
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For SU(3). the monomer occupation number ny(x) at site x takes the values
ny(x)=0,1,2.3. (3.3)

The total number of monomers is denoted by

Ny = Lny(x). (3.4)

(b) Dimers live on links {xy). There are three types of them, which we discrimi-
nate by the number np,(x, y) of dimer lines connecting the neighbouring sites x
and y

X~ ——y x===) x==
np(x,v) = 1 2 3. (3.5)
wix, )= lp(x,y) lolx,»)* p(x,»)

The weights of the type j dimers (j = 1,2,3) are given in the last line. Type j dimers
are generated by the dimer operator D, (cf. egs. (2.9)-(2.11)).

(c) Baryonic loops are self-avoiding. They are genecrated by a product of
baryon-antibaryon operators B(x)B(y) along the loop C

[T B(x)B(y).

{(xyyed,

By the subscript + at C, we denote the orientation of the loop clockwise (C ) and

counterclockwise (C_). respectively. A baryonic loop is accompanied by a weight
factor

p(C)=~ TI sx.0)'= TI &xy) (3.6)

(xrye . (vyeC

Next we put these objects on the lattice with the following rules.

(1) Baryonic loops are isolated objects. Each site x, occupied by a baryonic loop.
carries a baryon-antibaryon pair and therefore cannot carry any further object.

(2) All remaining sites x have to be occupied with three mesons
M (x)M,(x)M;(x).

This means that the number n,(x) of dimer lines ending in x plus the number
ny(x) of monomers in x has to be three

ap(x) +ny(x)=3. (3.7)

Moreover, we need at each site x one meson of each type: M,. M,. M,. This rule
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TaBLE |
The weights w{x) at site x as they depend on the node types 0 to 6

nodc type 0 1 2 3 4 5 6

I T ‘| D ! T il
np{(x) 3 2 1 0 2 3 3
My X) 0 1 2 3 1 0 0
w(x) 3 6 3 1 3 6 1

defines the weights w(x)(2ma)"™) carried by each site which can be read off
table 1.

The partition function (3.1) can finally be written as a sum over monomer -dimer
loop configurations K

Z(2ma.r,p)=2\vk-, (3.8)
K

where the weight w, is determined by the site, link, and loop weights, specified
above

wK=(Mw)"‘“ﬂw(x)F/Iw(l)rlp(C). (3.9)
X C
A typical configuration 1s shown in fig. 1.

4. Eliminating the baryon loops: The monomer—dimer—polymer system

As it stands, the monomer, dimer, baryon-loop representation (3.8) of the
partition function is not suitable for a simulation, since the baryon-loop weights
p(C) (cf. eq. (3.9)) are not positive definite.

For Wilson loops C. p(C) turns out to be

p(C)=20(C)r*¥, (4.1)
o(C)=-(-D" " TT elxy). (4.2)
{aovyeC

.o r—=—1

| 1

| LX) {

Il e

L ——_J

Fig. 1. A typical monomer- dimer barvon-loop configuration. The baryon loop is indicated as a dashed
line.
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Fig. 2. Same as fig. 1 with the baryon loop replaced by a chain of type 1-type 2 dimers (polymer). There
are two possibilities for such a replacement. The first one iy shown in (a). the second in (b).

N (C)and N/(C) are the number of links on C in the negative direction and in the
(positive or negative) time direction, respectively.

For Polyakov loops C,, winding around the lattice k-times in the time direction.
we find

(€)= 0(C, )™ cosh(3kp/T). (4.3)
o(C)=— (=) TT e(x.y): (4.4)
[E DX

N, is the number of sites in time direction and pu is the chemical potential. In the
following, we will call Wilson loops € and Polyakov loops C, positive (negative),
i

e(C)=+1, o(C)==x1.

The sign of a loop only depends on its geometry. Some examples are shown in fig. 3.

We now address the crucial question of how to deal with negative baryon loops in
a simulation. The following observation will be helpful. We can associate to each
configuration with one baryon loop (like the one shown in fig. 1) two “pure
monomer -dimer” configurations, as shown in figs. 2a, b. There. we have substituted
the baryon loop of fig. 1 by a chain of type 1- type 2 dimers {ollowing C. We call
such a chain a polymer. Instead of summing over the three configurations in figs. 1.
2a, 2b, we can consider as well the sum of the pure monomer-dimer configurations

* The different overall sign for Wilson and Polyakov loops originates from the antiperiodic boundary
conditions in the time direction.
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b)

Fig. 3. Typical forms of sclfavoiding loops: (a) with positive sign ¢(C) = 1: (b) with negative sign
a(C)=~1.

of figs. 2a,b, but with a new weight for the polymer C

rZNI)l(C)w(C) = rz-"'nl(c)(l + r"d(‘)o(c‘)) ) (45)
where

n(C)=3N,(C)—2Np (C)=0,+2. (4.6)

Here, Np,,(C) is the number of dimer lines in the time direction on the polymer C.
Note, that for a negative loop (a(C) = —1) eq. (4.5) is zero, if cither r=a/a,=1or
n,(C)=0. The latter is the case for all loops with a number of links in the time
direction, which is a multiple of four.

In a quite analogous fashion we can associate to each configuration with a
baryonic Polyakov loop C,, two pure monomer-dimer configurations with a poly-
mer along C, carrying a weight

PINCOW(C, ) = r2MEO(T1 + 0(C, )cosh(Bkp/T)). (4.7)

For negative Polyakov loops C, o(C,) = —1, this weight is zero if p=0.
It is now straightforward to map the monomer—dimer baryon-loop system onto a
monomer-dimer-polymer (MDP) system with partition function

Z(2ma,p,r) = Zwk,
K
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and a weight for the MDP configuration K

wy = (2ma ) ™2V (1 /3) 0 Y TTw(x) T w(C). (4.8)

¢

where Ny, Ny, and Ny, j = 1.2 are the numbers of monomers and dimer lines in
the time direction and type ; dimers, respectively. The equivalence of the
monomer—dimer baryon system and the MDP system is obvious for r=1. Each
polymer carries a weight 1 in the monomer- dimer baryon-loop system and a weight
(1 + 0(C)] in the MDP system. The additional contribution o(C) is just half of the
baryon-loop contribution. Therefore, by construction the partition functions with
weights given by eq. (3.9) and eq. (4.8) are cqual™*.

In the transition region to a quark- gluon plasma the quantities of physical
interest are the chiral condensate <$\,’/> the baryon-number density n and the
internal energy density e. In the strong-coupling limit - considered in this
paper - these quantities can be easily measured, making use of the equivalence of
the quark-gluon system to the monomer- dimer -polymer (MDP) system

(a) The chiral condensate (/¢ is obtained from the monomer density ¥~ '( V)

Py =v"" logZ(Zma,yat,r)=(2maV)_1(NM>. (4.9)

d2ma

(b) The baryon-number density n can be extracted from the density V™ Y N(C,))
of polymers C, (winding around the lattice & times in the time direction)

n=(3VN,)"" log Z(2ma. pa,.r)
dpa,
o d .
SN2 - log w(C,){N(C,)). (4.10)
¢, K a,

(c) The internal energy density ¢, is determined by the average number of dimer
lines in the time direction (Np,) and the average numbers (N(n (C)= +2,

* In principle one can map the baryon loop C also onto other dimer configurations which have the
same geometry and are “isolated™ as the baryon loop €. e.g. chains of tvpe-three dimers. However,
with this prescription, the resulting new weights, including the barvon-loop contributions, become
very complicated. if the type-three dimers cluster in such a way. that different occupations with
sclf-avoiding loops are possible. This problem does not occur with the mapping of baryon loops onto
polymers.
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o(C) = +1)) of polymers C with fixed n,(C)= +2 and o =

d
= —(VN()_I:?—a~logZ(2ma,;La,. r=a/a,)

= 2(VNa) [Ny + (1472 N1 = (1+772) N(N(-2,1))

~(1 =) YN@ D))+ (1=, (N2, - 1)) (4.1)

The derivative in eq. (4.11) has to be taken at fixed fugacity, i.e. fixed pa . We note
that on an isotropic lattice. » =1, only the first term in eq. (4.11) contributes. All
other contributions add up to zero.

Egs. (4.9) and (4.11) yield the chiral condensate and the internal energy for fixed
chemical potential y, i.e. in the grand canonical ensemble. The above quantities can
also be studied in a canonical ensemble, ie. at fixed baryon number 8. As was
shown in ref. (3], the canonical partition function Z(T, B) with fixed baryon
number B, can be computed from the grand canonical partition function with
imaginary chemical potential i = 1iT¢

Z(T. B) = (27) f doexp(—iBo)Z(T. ). (4.12)

Therefore, we have to substitute in eq. (4.8) the weights for the N,, (N, ) positive
(negative) Polyakov loops C, (cf. eq. (4.7)

Dw(q) = 1}(1 + cosh(3kp/T)) ™ (1 — cosh(3kp/TH™ . (4.13)
. :
by its Fourier projection on states with definite baryon number B
wel N N, _,...]= (2w)_lL2wd¢ exp( —iB¢)
xrkI(l +coske)™ (1 —cosko)™ . (4.14)

These weights have a simple form for configurations which contain only Polyakov
loops C; with winding number 1. In this case the weight turns out to be

(- 2 2NN 2N
wal M M 1= AZ(,( ( k )(N,,+Nl_—k—B (4.15)
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In fact only these type of configurations showed up in our simulation of the MDP
system at fixed baryon number.

S. The simulation of the MDP system

The Boltzmann weights in the MDP system, as they are given by egs. (4.7) and
(4.8) are non-negative for p=0 and r =1. For p > 0. configurations with negative
weights can occur, if the type-1-type-2 dimers create an odd number of polymers
along negative Polyakov loops C,. A typical example of such a loop is shown in
fig. 3b.

We can associate to cach configuration K a sign o,. In our simulation, we will
perform the update with positive Boltzmann weight |wy|. Let us denote averages of
observables O with positive weight by (O),. The quantity in which we are
interested is {(O). the average weighted with wy. The latter can be computed from

(0,0) .

(0= (ox) -

(5.1)

if the average sign (o, ), of the configurations turns out to be non-zcro.

Previous attempts to simulate the full QCD partition function for p # 0 failed just
for this reason [10]; the rapid oscillations of the sign of the Boltzmann weights could
not be controlled with sufficient accuracy. Moreover. cancellations between positive
and negative contributions were extremely important as zeros of the fermion
determinant had to cancel poles in the fermion propagators [11]. In the present case
we expect to be in a much better situation for two reasons. Firstly. of all the gauge
fields have been integrated out exactly in the strong coupling limit — and with them
a large part of the oscillations are already gone. The remaining oscillations do not
seem to play an important role and are mainly of geometrical origin. Secondly. by
handling the baryonic loops in the way discussed in sect. 4 we create a system that
still allows for configurations with negative weights. However, at least in important
limiting cases it is easy to see that the dominant contributions arise from configura-
tions with only positive weights. The important point here is that the lcading
contribution at p # 0 comes from loops of minimal length, i.e. Polyakov loops of
length N,. These loops have positive weights. In addition the weights are strictly
non-negative for the important limiting cases u — 0 an p — oc.

Thus. there is some hope that an algorithm based on the MDP representation of
the strong-coupling partition function can handle the remaining fluctuating signs of
the Boltzmann factors. Of course, as this is a global factor, we expect the perfor-
mance of any algorithm to become worse with increasing lattice size. Results from
simulations on 4% and 874 lattices for ma = 0.1, r=a/a, =1 and various values of
pa are shown in fig. 4a. Indeed we observe a drop in (o, ) with increasing lattice
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Fig. 4. The average sign of the Boltzmann weights on lattices of size 4* (@) and 8%4 (O) in the grand
canonical (a) and canonical (b) ensemble.

size. As expected (o) approaches one in the limiting cases p — 0 and p — 0. It
has a minimum at the critical value p_.

The algorithm thus seems to work quite well on lattices of this size. A detailed
presentation of results will be given in sect. 6. Let us here briefly discuss the actual
algorithm used to simulate the MDP partition function. Starting from a given
configuration of monomers and dimers we try to update a given link in the lattice
either by replacing two monomers by a dimer or a dimer by two monomers. Of
course this is not always possible; a given link has to be occupied either by a dimer
or the two sites connected by the link have to be occupied by monomers. A
conflicting situation occurs, if both of the above cases are true. In order to handle
these cases and ensure detailed balance we define a transition matrix, which for
every given (site, link) occupation suggests a unique new configuration. This config-
uration is then accepted or rejected according to the standard Metropolis algorithm.
The possible, allowed transitions are given in table 2.

We found that in a typical configuration the fraction of links that could be
updated was always between 30% and 50%, depending on the value of the quark
mass and to a smaller extent also on the chemical potential. Although it is difficult
to prove ergodicity for our algorithm, we think it is flexible enough to create all
possible configurations.

The acceptance rate in the Metropolis part of the update, of course, depends
strongly on ma and pa. It varies between 20% and 60% for 0.1 < ma < 0.7 and
g <., but drops to less than 1% for p> u.. This is related to the exponentially
large weights in this case. We note, however. that updates of the lattice involve only
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TaBLE 2
Transition matrix between new and old configurations. All other occupations of sites and links
do not lead to allowed transitions. The numbers denote the node type on the site (¢f. table 1)
and the dimer lines on the link connecting site 1 and 2.

old configuration e new configuration
site 1 site 2 link I site 1 site 2 link
0 0 I = 4 4 0
0 0 2 = 1 1 1
1 0 1 = 2 4 0
2 0 1 = 3 4 0
4 0 2 = 2 1 1
5 0 1 = 1 4 0
1 1 0 A 5 5 ]
2 1 0 = I 5 1
3 1 0 - 2 S 1
2 2 1 - 3 3 0
4 4 2 = 6 6 3
4 4 0 - 0 0 1
1 1 1 = 0 0 2
4 2 0 = 0 1 1
4 3 0 = 0 2 1
4 1 0 « 0 5 1
5 5 1 = 1 1 0
5 1 1 = 1 2 0
5 2 1 = 1 3 0
3 3 0 = 2 2 1
6 6 3 - 4 4 2
3 2 0 = 2 1 1
2 1 1 ad 3 2 0

simple integer operations and are thus very fast. In typical simulations on a 84
lattice we thus could easily perform several million updates per parameter set.

The situation is similar for the MDP system at finite baryon number. In fig. 4b
we show the average sign of the configurations for ma = 0.1 as a function of the
baryon number density n=B/V.

6. Numerical results

It has been shown that QCD at finite temperature undergoes a first-order chiral
phase transition [1]. The same is expected to happen at finite baryon-number
density. So far this could only be studied in the strong-coupling limit by mean-field
techniques [8] or numerical simulations for SU(N,), with N_ even. In fact, simula-
tions for SU(4) [8] have shown that the numerical results agree quite well with
mean-field predictions.



554 F. Karsch, K.-H. Miitter / Strong coupling QCD

Il X
0.6 — .\l
|
0S — | . =10
° <GW> j 09
0L I ]
y
03 | 1
I —0.05
02 v 1
4 ]
01 [~ -
¥ | —0.01
i | l._— el "';i
0.4 05 0.6 0.7 08 0.9

Ha

Fig. 5. The chiral condensate (¢¢) and baryon number density na’ versus pa obtained from simula-
tions on a 874 lattice. Lines are drawn to guide the eve. Note the change of scale for #a? below and above
the critical point.

Using the MDP algorithm, described in sect. 5. we have studied the chiral phase
transition for strong-coupling QCD, i.e. with SU(3)-gauge fields and 4 light quark
flavours. We find a signal for a strong first-order chiral transition. Results for the
chiral condensate and the baryon-number density are shown in fig. 5 for our
smallest quark mass ma = 0.1. Data points on this figure are based on (2 4) X 10°
iterations on a 8% lattice. Observables have been calculated according to eq. (5.1)
on blocks of 200000 iterations. Errors have then been determined as statistical from
these blocked measurements. Simulations with the same parameters have been
performed on a 4* lattice. No significant size effects have been found. From this we
can deduce the critical baryon-number density at the transition point. We find for
ma = 0.1

p.a=0.69+0.015, n.a’=0.045 1+ 0.005. (6.1)

The quark-mass dependence of the critical parameters has been studied by us in
detail on the 4* lattice. Fig. 6 shows the phase diagram in the ma—-pa plane. As can
be seen, it agrees quite well with mean-field predictions [4.12]. In fig. 7 we show the
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Fig. 6. Quark-mass dependence of the critical chemical potential obtained from simulations on a 4*
lattice. The mean-ficld prediction of ref. [4] is also shown.

0.10 (
® N 33
= 10 n/m,

0.05 |— ¢ ]

I
0 05 1.0
ma

Fig. 7. Quark-mass dependence of the critical baryon-number density n.a’ obtained from simulations
on a 4* lattice. The critical density in units of the nucleon mass is also shown,
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dependence of the critical density as a function of ma. The critical density decreases
in units of the lattice spacing when the quark mass is lowered. However, it stays
roughly constant if we eliminate the lattice spacing in favour of the strong-coupling
nucleon mass [13]

mNa=ln[§C3+\,"’1—+-};7], (6.2)
c=m+ V8 +mt. (6.3)

In the chiral limit we find from fig. 6 the critical chemical potential, p a = 0.63 +
0.02. Using eqs. (6.2) and (6.3) we can express this and the critical density in units
of the strong coupling nucleon mass

p.=02lmy,  n.=(0.0017 + 0.0002)m3. (6.4)

Though we are here in the strong-coupling limit (8 = 0) and therefore far away from
the continuum limit, a comparison with the yet unknown critical values in the
continuum theory might nevertheless be instructive. For this purpose we replace the
strong-coupling nucleon mass by the physical one*. This gives for the critical
parameters in physical units

p. =200 MeV, n,=(022+0.02)fm >.

Notice that the critical density is only slightly larger than that to ordinary nuclear
matter, n, = 0.17/fm’. We have also calculated the energy per baryon, which in the
broken phase turns out to be close to the nucleon mass

E/B=n '(¢,—¢)=3 for p<p.. (6.5)

While the parameter of that broken phase up to the critical point looks quite
reasonable, the nature of the symmetric phase is quite obscure in the strong-
coupling limit. Immediately after the transition the number density saturates the
maximal value possible on a lattice, i.e. one baryon per site. In addition the energy
density drops across the transition, £/B=2.25 for p> p_.

In order to understand the chiral transition in the strong-coupling limit better, it
would be helpfu! to study the properties of the system in a mixed phase. This can be
achieved by fixing the baryon number rather than the chemical potential [3]. In the
framework of the MDP representation this requires only a minor modification of
the Boltzmann weights, as discussed in sect. 4. The signal for the phase transition,
however, becomes weaker in this case. The strong first-order signal shown in fig. 5

* In other words, we fix the lattice cut-off ¢ using the physical nuclcon mass as input. Using this scale.
the effective temperature for our lattices with N, =4 is T = 83 McV.
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Fig. 8 Schematic behaviour of the chiral condensate (\Z\;-) in the grand canonical (a) and canonical (b)

ensemble. A first-order phase transition leads to discontinuity of (¢ ) at g in the grand canonical

picture, whereas it only yields discontinuities in the slope of () at the onset (nyy) and end (ng) of the
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Fig. 9. ($¢) versus na®. Results from simulations at fixed barvon number on a 4* lattice. Each data
point is based on 2 X 10 iterations. Errors are of the size of the svmbols.
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at finite p transforms into two cusps at non-zero baryon number B. The expected
dependence of (¢ as a function of n is shown schematically in fig. 8. Onset and
end of the mixed phase leads to cusps rather than to discontinuities as in the grand
canonical ensemble. Restoration of chiral symmetry is completed only at the end of
the mixed phase.

In fig. 9 we show results for (Jx,’/) from a simulation on a 4* lattice in the entire
density regime. Like in the p#0 simulations. we find that the mixed phase
essentially covers the whole region from na®=0up to na’ = 1. A detailed study of
the low-density region on a 64 lattice is shown in fig. 10. For comparison, we also
present some data from our g # 0 simulation. This demonstrates the equivalence of
simulations in the canonical and grand canonical ensemble. Moreover, the canonical
simulation gives indications for a cusp in (YY) versus na’ at na’=0.046 (i..
B =10 on a 64 lattice). This is in good agreement with the results quoted in eq.
(6.2) for the grand canonical ensemble.
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Fig. 10. Asfig. 9butona 6%4 lattice (®). Some data from simulations with fixed chemical potential ( X)
on 84 lattices are also shown. Data points are based on 10¢ iterations.
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7. Conclusions

We have studied the phase structure of strong coupling QCD at finite baryon-
number density. Monte Carlo algorithms based on the MDP representation of the
strong-coupling partition function turn out to be able to handle the remaining
oscillations in the Boltzmann weights quite well. This enabled us to perform
simulations both for the grand canonical (g # 0) and canonical (B # 0) ensembles.

We find evidence for a first-order phase transition at u.a =0.63. The critical
baryon-number density turned out to be ouly slightly higher than ordinary nuclear-
matter density. The analysis of the chiral condensate showed that chiral symmetry
gets restored during this transition. It would be interesting to sce whether this
transition 1s also deconfining. For this purpose one needs the Polyakov loop
expectation value (L) or the heavy-quark potential at finite density.

Quite contrary to standard simulations of QCD the measurement of observables
depending on the quark fields (like (J\,’z> or hadron -hadron correlation functions)
can be rather casily done in the MDP representation. On the other hand. the
mecasurement of observables depending on the gauge fields (like Wilson and
Polyakov loops) seems to be quite complicated in the MDP system. as these degrees
of freedom have to be integrated out explicitly.

A preliminary and incomplete analysis of (L) indicates that it is large in the
chiral-symmetric phase. which would mean that this phase is also deconfining. A
more detailed analysis of this, as well as the temperature dependence of the
transition, is planned for the future.
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