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We present a new representation of the partition function for strong-coupling QCI) which is 
suitable also for finite baryon-number-density simulations. This enables us to study the phase 
structure in the canonical formulation (with fixed baryon number B) as well as the grand 
canonical one (with fixed chemical potenti',d ~). Wc find a clear signal for a first-order chiral 
phase transition at p.¢a = 0.63. The critical baryon-number dcnsit,,' n,.a 3 = ().()45 is only slightly 
higher than the density of nuclear matter. 

1. Introduction 

The  phase  s t ructure  of  Q C D  at finite tempera ture  has been s tudied in detail  [1]. 

The  exis tence  of a f i rs t-order  phase  t ransi t ion is well established.  While  a s imilar  

s i tua t ion  is expected to persist  at finite b a r y o n - n u m b e r  density,  its numerical  

ana lys is  tu rned  out  to be difficult.  Both formula t ions  of finite densi ty  QCD,  the 

g rand  canonica l  with a non-zero chemical  potent ia l  ~t [2], as well as the canonical  

one  at f ixed non-zero  baryon  number  B [3], suffer from the fact that the Bohzmann  

factors  in the par t i t ion  function are not strictly positive. This rules out  the 

app l i ca t i on  of  s tandard  Monte  Car lo  techniques. Moreover ,  it has been shown that  

an analys is  of  finite densi ty  Q C D  in the quenched approx ima t ion  leads to inconsis-  

tencies  re la ted  to singulari t ies  of the fermion de te rminan t  [4]. A correct  implementa-  

t ion of dynamica l  fermions thus seems to be manda to ry* .  

Some progress  has been achieved in the s t rong-coupl ing  limit. Here it is poss ible  

to represent  the par t i t ion  function as a system of monomers ,  dinaers and baryonic  

loops  [7]. However ,  the weights for the baryonic  loops turn out to be posit ive only if 

the n u m b e r  of  colours  N c is even [8]. For  N,. = 4, the phase s t ructure  has been 

s tud ied  in the grand canonical  formulat ion and a f i rs t -order  chiral phase t ransi t ion 

i On leave of absence from Physics Department, University of Wuppcrtal. Wuppertal. FR(;. 
*A first attempt of a finite density calculation for the SU(31 case with the recently developed 

technique [5] of computing the partition function directly has been undertaken by Gocksch [6]. 
However, this approach seems to be limited to rather small lattices. 
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has been found at a critical value of the chemical potential p. consistent with 
mean-field predictions [4, 8]. 

It is the purpose of this paper to investigate the phase structure for strong-cou- 
pling QCD with SU(3) gauge field, staggered fermions and four flavours. In sect. 2, 
we review [7] how to integrate the SU(3) gauge fields. In sect. 3 the integration of 
the quark fields is performed. This leads to the representation of the partition 
function in terms of monomers, dimers and baryonic loops mentioned above. In 
sect. 4 we address the problem of how to handle the baryonic loops with their 
oscillating weights. The solution is found in a new representation of the QCD 
partition function as a statistical system of monomers, dimers and polymers 
(MDP-system). This system has strictly positive weights for ~t = 0 (or B = 0) and 
r = a / a ,  = 1. 

At finite density some of the Boltzmann weights will still be negative. However, as 
will be shown in sect. 5, the dominant contributions to the partition function have 
positive weights, This allows for the design of an algorithm that generates configura- 
tions distributed according to the absolute value of the Boltzmann weights. The sign 
of the weights can be absorbed in the observables. 

The reader who is mainly interested in the physical results of our simulation 
should proceed immediately to sect. 6. There wc show the behaviour of the chiral 
condensate, the baryon-number density and the energy density as a function of the 
chemical potential. A sharp first-order phase transition is found. The signal for this 
transition appears to be weaker in a simulation with canonical Boltzmann weights, 
i.e. at fixed bawon-number densities. 

2. The SU(3) link integral 

Let us start with our definitions and notations. The partition function of a system 
of quarks and gluons in the strong-coupling limit is given by 

fd d fdVe' ', (2.1) 

where ~, t} denote the quark fields and U the SU(3) gluon field. S v is the fermion 
action 

S v = ~,A~, (2.2) 

which couples the quark fields aT, tp bilinearly via the fermion matrix 

a = 2 r n a +  ~ U ( x , y ) ~ ( x , y ) .  (2.3) 
(.~y) 

We will use here staggered fermions. A chemical potential p., which controls the 
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quark-number  density of the system is incorporated via the link factor [2]* 

i re ~', , 

~ { x , y )  = { ( x , ) ' ) ~  - r e  ""' 
/ ~+_l, 

if ( x - y ) 4 =  l .  

if ( x  - Y ) 4  = - I .  

if ( x - ) ' ) k =  --t-1, k = 1 ,2 .3 .  
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{2.4) 

= 1 - ! , p ( x , y ) M ( x ) M ( y ) +  ~ ( p ( x , y ) M ( x ) M ( y ) }  2 

- 3t~:( p( x. y ) M ( x ) M ( y ) )  ~ + [ (x ,  y ) ~ B ( x ) B ( y )  + .~(.v, x ) 3 B ( y ) B ( x )  

The quark-field dependence can be absorbed in "meson fields" 

M ( x )  = ~ ( x ) ~ l , ( x )  = ~T,,(x) ~p,,( x ) = Y2. M~(x) .  (2.6) 
a =  1 .2 .3  a = 1 .2 .3  

This enables us to 

* F o r  a g e n e r a l i z a t i o n  o f  th is  p r e s c r i p t i o n  to i n t r o d u c e  a c h e m i c a l  p o t e n t l a l  see  ref.  19]. 

(2.5) 

k { x )  = ~ 3 { . ~ ) ~ , ( x ) ~ { x )  ; {2.7) 

if ( y - - x ) 4  = -]-1, 
(2.8) 

if ( y - - x ) k =  + 1 ,  k = 1 , 2 , 3 .  

and "ba ryon-an t iba ryon  fields" 

B ( x )  = ~ , ( x )  ~ , ( x )  ~ , , (x ) .  

p(x ,  y )  is the "mesonic" link factor 

( r  2 , 
o(x,  3') = ~'(x, y )~ ' (y ,  x)  = - . :  

( 1 ,  

The quark fields are described by Grassmann variables with the well-known 
property 

q,o(x) , / ,u(x)  = ~To{x)~,,(x) = 0. 

reduce the quadratic and cubic terms in the meson fields 

F(x,  ).) = f d U e x p [ ~ ( x ) U f ( x ,  y)q , (y)  + ~(y) t / "  ~( ,', x ) 4 ( x ) ]  

The {(x, y )  are the usual signs associated with staggered fermions, r = a/a~ is the 
ratio of the lattice spacings in space and time directions. Choosing r ~ I allows us to 
vary the temperature T = 1 /N  t a t of the system continuously. 

in the absence of the gluonic part of the action the integrals over the SU(3) link 

variables U(x, y )  can be computed [7] 
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M(x)M(y)  to "dimer" operators 

( M ( x ) M ( y ) )  2 = (2!)2D2(x, y)  

= (2!)2( g , ( x )Mz (x  ) + M,(x )g3(x  ) + g2 (x )g3 (x ) )  

×(Mt(y)Mz(y  )+ Mt(y)M3(y )+ M2(y)M3(y)),  (2.9) 

( M ( x ) M ( y ) )  3 = (3!)2D3(x, y)  

= (3!)2Mx(x)M2(x)M3(x)gl(y)M2(y)M3(y).  (2.10) 

For convenience we also introduce a third dimer operator 

D,(x)= (M,(x)+ M2(x)+ M3(x))(M,(y )+ M2(y )+ M3(y)). (2.11) 

In terms of the dimer operators the link integral acquires the form 

F(x, y) = 1 - dR(X, Y)DI(x, Y) + ~p(x, y)2D2(x, y) + - p(x, y)JD3(x, y) 

+ ~'(x, y)3B(x)B(y)  + ~(y, x ) 3 B ( y ) B ( x ) .  (2.12) 

3. Monomers, dimers, baryon loops 

In this section, we will compute the partition function (2.1) making use of eq. 
(2.12) for the link integral 

Non-vanishing contributions to the integrals over the quark fields are obtained only 
if each site x of the lattice is occupied: either by three mesons, M:(x)M2(x)M~(x): 
or by a baryon-antibaryon pair, B(x)B(x). 

As will be shown below, this rule generates geometrical patterns on the lattice, 
which are built up from "monomers", "dimers" and "baryonic loops". 

(a) Monomers live on sites x. They carry a weight 2ma and they are generated by 
'the mass term 

exp[2maM(x)] = 1 + 2ma( Ml(x ) + M2(x ) + M3(x) ) 

+(2ma)2( M,(x)M2(x) + M,(x)M3(x ) + M2(x)M3(x)) 

+ (2ma)3Mt(x) Mz(x ) M3(x ) . (3.2) 
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For SU(3), the monomer occupation number nM(x)  at site x takes the values 

nM(X ) = 0 ,1 ,2 ,3 .  (3.3) 

The total number of monomers is denoted by 

N M = Y~'~nM(x). (3.4) 

(b) Dimers live on links (xv). There are three types of them, which we discrimi- 
nate by the number n~(x ,  y) of dimer lines connecting the neighbouring sites x 
and y 

x -  - - y  x = = = y  x = - - = - y  

,,~,(x, y)  = l 2 3 (3.5) 

w(:~,~,)= ~ o ( ~ , y )  ~ptx,  y)2 o(x ,  v)  ~ 

The weights of the type j dimers ( j  = 1,2, 3) are given in the last line. Type j dimers 
are generated by the dimer operator Dj (cf. eqs. (2.9)-(2.11)). 

(c) Baryonic loops are self-avoiding. They are generatcd by a product of 
baryon-antibaryon operators B(x) B(y)  along the loop C 

H k(x)8(y). 
(.w) c C .  

By the subscript + at C, we denote the orientation of the loop clockwise (C_) and 
counterclockwise (C_), respectively, A baryonic loop is accompanied by a weight 
factor 

p ( C ) = -  l-I ~'(x,Y) s -  1-I f ( x , y )  3 (3.6) 
<.~v> E C'. <.w> ~ ¢ 

Next we put these objects on the lattice with the following rules. 
(l)  Baryonic loops are isolated objects. Each site x, occupied by a baryonic loop, 

carries a baryon-antibaryon pair and therefore cannot carry any further object. 
(2) All remaining sites x have to be occupied with three mesons 

M l ( x ) M 2 ( x ) M 3 ( x ) .  

This means that the number nD(x ) of dimer lines ending in x plus the number 
nM(X ) of monomers in x has to be three 

+ , l M ( x )  = 3.  (3 .7)  

Moreover, we need at each site x one meson of each type: M l, M 2. M 3. This rule 
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T^I~LE 1 
The weights  w( x ) at site x as the 3' depend on the node  typer, 0 to 6 

node  type 0 1 2 3 4 5 6 

V t-  "q" "." ~ -1- ill 
nr~(x)  3 2 1 0 2 3 3 
n M l x )  0 1 ~ 3 1 0 0 
w( x ) 3 6 3 l 3 6 l 

defines the weights w(x)(2ma) "Me') carried by each site which can be read off 
table 1. 

The partition function (3.1) can finally be written as a sum over monomer-dimer 
loop configurations K 

Z(2ma, r,/~) = Y'~w K , (3.8) 
K 

where the weight w,~ is determined by the site, link, and loop weights, specified 
above 

w~ = (2ma l " ~ F I w (  x ) I-I w( z) [ I o (  c ) . (3.9) 
/ C 

A typical configuration is shown in fig. 1. 

4. Eliminating the baryon loops: The monomer-dimer-polymer system 

As it stands, the monomer, dimer, baryon-loop representation (3.8) of lhe 
partition function is not suitable for a simulation, since the baryon-loop weights 
p(C) (cf. eq. (3.9)) are not positive definite. 

For Wilson loops C, p(C) turns out to be 

p ( c )  = 2 o ( C ) r  ~N'''' . (4.1) 

o ( c ) = - ( - 1 )  ¥ '~'  [ I  , ( x . ~ ) .  (4.2) 

I 

v I 
c I 

. . . . .  . . . J  

Fig. 1. A typical  monomer -  d imer  baryon- loop  configurat ion.  The baD'on loop is indicated as a dashed  
line. 
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. ~ oe  eee 

a) 

I 11 
b) 

Fig. 2. Same as fig. 1 with the baryon loop replaced by' a chain of type 1- type 2 dimcrs (polymerl. ]here 
arc two possibilities for such a replacement. The first one is shown in (a), the second in (b). 

N _(C) and Nt(C)  are the number  of  links on C in the negative direction and in the 

(positive or negative) time direction, respectively. 
For  Polyakov loops C a, winding around the lattice k-times in the time direction, 

we find 

p(  C k ) = o ( ( 'k)  r 3'%(c' ) c o s h ( 3 k p . / T  ) .  (4.3) 

a(C'k = - ( - 1 )  k-' ' '{( '} 1-[ { { x , y ) "  (4.4) 

N t is the number  of  sites m time direction and /.t is the chemical potential. In the 
following, we will call Wilson loops C and Polyakov loops Ca positive (negative), 

if* 

, , ( C )  = +_ I ,  , , ( C , )  = -4-_1. 

The sign of  a loop only depends on its geometry. Some examples are shown in fig. 3. 

We now address the crucial question of how to deal with negative baryon loops in 
a simulation. The following observation will be helpful. We can associate to each 

conf igurat ion with one baryon loop (like the one shown in fig. 1) two "pu re  
m o n o m e r - d i m e r "  configurations, as shown in figs. 2a, b. There, we have substituted 
the baryon  loop of fig. 1 by a chain of type 1- type 2 dimers following C. We call 
such a chain a polymer. Instead of summing over the three configurations in figs. 1, 
2a, 2b, we can consider as well the sum of the pure monomcr -d in l e r  configurations 

* The different ovcra.ll sign for Wilson and Polyakov loop.~ originates from the antipcriodic boundary 
conditions in tile time direction. 
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[ 

a) 

b) 

Fig. 3. Typical forms of selfavoiding loops: (a) with positive sign o(C)= 1" (b) with negative sign 
o(C) = - 1. 

of figs. 2a, b, but  with a new weight for the polymer C 

r2,%,(C)w(C) = r2:VD,(C)(1 + r",'c;o(C)), (4.5) 

where 

n t ( C  ) = 3Nt(C ) - 2Nt) t (C ) = 0, _+2. (4.6) 

Here, NDt(C) is the number  of dimer lines in the time direction on the polymer C. 
Note,  that for a negative loop (o(C) = - 1) eq. (4.5) is zero, if either r = a/a t = 1 or 
n t ( C ) = 0 .  The latter is the case for all loops with a number  of links in the time 

direction, which is a multiple of  four. 
In a quite analogous fashion we can associate to each configurat ion with a 

baryonic  Polyakov loop C k, two pure m o n o m e r - d i m e r  configurations with a poly- 

mer along C k carrying a weight 

r2N:C*)w( Cj, ) = r 2'v'(c')(l + o(C k )cosh(3k~/T )). (4.7) 

For  negative Polyakov loops C k, o(Ck) = - 1, this weight is zero if ~ = 0. 
It is now straightforward to map the m o n o m e r - d i m e r  baryon-loop system onto a 

monomer-d imer -po lymer  (MDP) system with partition function 

Z(Zma,  ts, r) = ~, wK, 
K 
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and a weight for the MDP configuration K 
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w,, = (2,na ) / 3 )  x'" + x ' " l - I w (  x ) C ),  
A ( "  

(4.s) 

where N M, Not and NDs, j = l, 2 are the numbers of monomers and dimer lines in 
the time direction and type j dimers, respectively. The equivalence of the 
monomer-dimer baryon system and the MDP system is obvious for r = 1. Each 
polymer carries a weight l in the monomer-dimer baryon-loop system and a weight 
[1 + a(C)] in the MDP system. The additional contribution o(C) is just half of the 
baryon-loop contribution. Therefore, by construction the partition functions with 
weights given by eq. (3.9) and eq. (4.8) are equal*. 

In the transition region to a quark-gluon plasma the quantities of physical 
interest are the chiral condensate ~/4 ' ) ,  the baryon-number density n and the 
internal energy density c. In the strong-coupling l imit-considered in this 
paper -these quantities can be easily measured, making use of the equivalence of 
the quark-gluon system to the monomer- dimer -polymer (MDP) system 

(a) The chiral condensate (~,ff) is obtained from the monomer density V-l(N.,a) 

0 | (~+)=V- O2malOgZ(2rna,txat, r)=(2maV) t(NM). (4.9) 

(b) The baryon-number density n can be extracted from the density V- ~(N(('~)} 
of polymers C k (winding around the lattice k times in the time direction) 

0 1 
n=(3VN,) -  ~atlog Z(2rna,l~at. r) 

0 
= (3VNt)-- l '~-'~ - ~  a log w(Cj, ){N(Ck))  . (4.10) 

(c) The internal energy density % is determined by the average number of dinner 
lines in the time direction (Nr),) and the average numbers ( N ( n t ( C ) =  +2, 

* In principle one can map the bad 'on  loop C also onto other dimer configurations which have the 
same geomet D" and are "isolated" as the baryon loop C, e.g. chains of type-three dimers. However. 
with this prescription, the resulting new weights, including the baD, on-loo p contributions, become 
v e ~  complicated, if the type-three dimer,,, cluster in such a way. that differem occupations with 
self-avoiding loops are possible. This problem does not occur w'ith the mapping of baD'on loops onto 
polymers. 
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o(C)  = __+ 1)) of polymers C with fixed n , ( C ) =  +2 and o = +_1 

0 
{~, = - ( VN, ) -  i ~ log Z(2ma,  iza,, r = a far )  

=2(VNta ,)-'[(ND' )+(1 +r2) '(N(2,1))-(1 +r -2) l(N(_2,1)) 

- ( 1  - r 2 ) - i ( N ( 2 , - 1 ) )  + (1 _ / . - 2 )  i ( N ( - 2 , -  1))1. (4.11) 

The derivative in eq. (4.11) has to be taken at fixed fugacity, i.e. fixed /.ta t. We note 
that on an isotropic lattice, r = 1, only the first term in eq. (4.11) contributes. All 
other contributions add up to zero. 

Eqs. (4.9) and (4.11) yield the chiral condensate and the internal energy for fixed 
chemical potential p., i.e. in the grand canonical ensemble. The above quantities can 
also be studied in a canonical ensemble, i.e. at fixed baryon number B. As was 
shown in ref. {3], the canonical partition function Z(T.  B) with fixed bar3,on 
number B, can be computed from the grand canonical partition function with 
imaginary chemical potential ,~ = ~iTep 

Z ( T ,  B) = (2~r)- ' f0Z '~d~exp(- iB,~)Z(T,  ~) .  (4.12) 

Therefore, we have to substitute in eq. (4.8) the weights for the ,V~ ~. (,~,~) positive 
(negative) Polyakov loops C k (cf. eq. (4.7) 

I - Iw(G)  = [ I (1  + cosh(3klz/T))'v' (1 - cosh(3k~t/T)),v, ( 4 . 1 3 )  
C a k 

by its Fourier projection on states with definite baryon number B 

w ~ I N i . , N , _ ,  .] ( 2 ~ r ) - i f  2" .. = dq5 exp(- iBq})  
ao 

x M ( 1  + coskq~)v~(l  - coskq5) & (4.14) 
k 

These weights have a simple form for configurations which contain only Polyakov 
loops C 1 with winding number 1. In this case the weight turns out to be 

(-1)" ( ) (  ( _  2N, _ t4.15) 2NI~ ) 
w~[N l ~ , N  1 ] 4 N I , N I -  ~=o k . N i , + N  2 - k - B . "  
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In fact only these type of configurations showed up in our simulation of the MDP 
system at fixed baryon number. 

5. The simulation of the M D P  system 

The Boltzmann weights in the MDP system, as they are given by eqs. (4.7) and 
(4.8) are non-negative for # = 0 and r = 1. For p. > 0. configurations with negative 
weights can occur, if the type- l - type-2  dimers create an odd number of polymers 
along negative Polyakov loops C k. A typical example of such a loop is shown in 
fig. 3b. 

We can associate to each configuration K a sign o~. In our simulation, we will 
perform the update with positive Boltzmann weight Iwt,.I. Let us denote averages of 
observables O with positive weight by <O> ,. The quantity in which we are 
interested is <0>, the average weighted with w x. The latter can be computed from 

<oKO>. 
<0> (5.1) 

if the average sign <o,~), of the configurations turns out to be non-zcro. 
Previous attempts to simulate the full QCD partition function for # ~ 0 failed just 

for this reason [10]; the rapid oscillations of the sign of the Boltzmann weights could 
not be controlled with sufficient accuracy. Moreover. cancellations between positive 
and negative contributions were extremely important as zeros of the fermion 
determinant  had to cancel poles in the fermion propagators [l 1 ]. In the present case 
we expect to be in a much better situation for two reasons. Firstly. of all the gauge 
fields have been integrated out exactly in the strong coupling l imi t -  and with them 
a large part of the oscillations are already gone. The remaining oscillations do not 
seem to play an important role and are mainly of geometrical origin. Secondly. by 
handling the baryonic loops in the way discussed in sect. 4 we create a system that 
still allows for configurations with negative weights. However, at least in important 
limiting cases it is easy to see that the dominant contributions arise from configura- 
tions with only positive weights. The important point here is that the leading 
contribution at p. 4= 0 comes from loops of minimal length, i.e. Polyakov loops of 
length N,. These loops have positive weights. In addition the weights are strictly 
non-negative for the important limiting cases # ~ 0 an # ~ oc. 

Thus. there is some hope that an algorithm based on the MDP representation of 
the strong-coupling partition function can handle the remaining fluctuating signs of 
the Boltzmann factors. Of course, as this is a global factor, we expect the perfor- 
mance of any algorithm to become worse with increasing lattice size. Results from 
simulations on 44 and 834 lattices for ma = 0.l, r = a/a~ = 1 and various values of 
ga  are shown in fig. 4a. Indeed we observe a drop in <%.) with increasing lattice 
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Fig. 4. The average sign of the Boltzmann weights on lattices of size 44 (e) and 834 (O) in the grand 
canonical (a) and canonical (b) ensemble. 

size. As expected (oK) approaches one in the limiting cases p, --, 0 and g ~ o¢, It 
has a minimum at the critical value tt,,. 

The algorithm thus seems to work quite well on lattices of this size. A detailed 
presentation of results will be given in sect. 6. Let us here briefly discuss the actual 
algorithm used to simulate the MDP partition function. Starting from a given 
configuration of monomers and dimers we try to update a given link in the lattice 
either by replacing two monomers by a dimer or a dimer by two monomers. Of 
course this is not always possible; a given link has to be occupied either by a dimcr 
or the two sites connected by the link have to be occupied by monomers. A 
conflicting situation occurs, if both of the above cases are true. In order to handle 
these cases and ensure detailed balance we define a transition matrix, which for 
every given (site, link) occupation suggests a unique new configuration. This config- 
uration is then accepted or rejected according to the standard Metropolis algorithm. 
The possible, allowed transitions are given in table 2. 

We found that in a typical configuration the fraction of links that could be 
updated was always between 30% and 50%, depending on the value of the quark 
mass and to a smaller extent also on the chemical potential. Although it is difficult 
to prove ergodicity for our algorithm, we think it is flexible enough to create all 
possible configurations. 

The acceptance rate in the Metropolis part of the update, of course, depends 
strongly on m a  and ga.  It varies between 20% and 60% for 0.1 < ma < 0.7 and 
g < go, but drops to less than 1% for # > go- This is related to the exponentially 
large weights in this case. We note, however, that updates of the lattice involve only 
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TABt.I; 2 

T r a n s i t i o n  m a t r i x  be tween  new a n d  old conf igu ra t ions .  All o the r  o c c u p a t i o n s  of  sites a n d  l inks 

d o  no t  lead to a l lowed t rans i t ions .  The  n u m b e r s  d e n o t e  the node  type o n  the site (of. table  1 ) 

and  the d imer  lines o n  the link c o n n e c t i n g  site I a n d  2. 
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old  con f igu ra t i on  ¢~ nev,' c o n f i g u r a t i o n  

site 1 site 2 link ¢~ site 1 site 2 l ink 

0 0 I ~ 4 4 0 

0 0 2 ~ 1 1 1 

1 0 ~ ~ 2 4 0 

2 0 1 ~, 3 4 0 

4 0 2 ~ 2 1 1 

5 0 1 '=. l 4 0 

1 l 0 ' ~  5 5 1 

2 1 0 ~ I 5 1 

3 1 0 ~ 2 5 1 

2 2 1 .~ 3 3 (} 

4 4 2 ~ 6 6 3 

4 4 0 ~ (I 0 l 

1 1 t ,~. 0 0 2 

4 2 0 ~ 0 1 1 

4 3 0 ¢~ 0 2 1 

4 1 0 ,~ 0 5 1 

5 5 1 ~ 1 1 0 

5 I 1 ~ 1 2 0 

5 2 1 ,=, 1 3 0 

3 3 0 ~ 2 2 1 

6 6 3 ~,  4 4 2 

3 2 0 ~ 2 1 1 

2 1 1 ,~ 3 2 0 

simple integer operations and are thus very fast. In typical simulations on a 834 
lattice we thus could easily perform several million updates per parameter set. 

The situation is similar for the MDP system at finite baryon number. In fig. 4b 
we show the average sign of the configurations for ma = 0.1 as a function of the 
baryon number density n = B / V .  

6. Numerical results 

It has been shown that QCD at finite temperature undergoes a first-order chiral 
phase transition [1]. The same is expected to happen at finite baryon-number 
density. So far this could only be studied in the strong-coupling limit by mean-field 
techniques [8] or numerical simulations for SU(N.), with N even. In fact, simula- 
tions for SU(4) [8] have shown that the numerical results agree quite well with 
mean-field predictions. 
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Fig. 5. The chiral condensate (~,~) and baryon number density na ~ versus iLa obtained from simula- 
tions on a 8~4 lattice. Lines are drawn to guide lhe eve. Nole the change of scale for na 3 below and above 

the critical point. 

Using the M D P  algorithm, described in sect. 5, we have studied the chiral phase 
transition for strong-coupling QCD, i.e. with SU(3)-gauge fields and 4 light quark 

flavours. We find a signal for a strong first-order chiral transition• Results for the 
chiral condensate  and the baryon-number  density are shown in fig. 5 for our  
smallest quark mass m a  = 0.1. Data  points on this figure are based on (2 4) × l0  t' 

i terations on a 834 lattice. Observables have been calculated according to eq. (5.1) 

on blocks o f  200000 iterations. Errors have then been determined as statistical from 
these blocked measurements• Simulations with the same parameters have been 
performed on a 44 lattice• No  significant size effects have been found• From this wc 
can deduce the critical baryon-number  density at the transition point. We find for 
rna = 0.1 

gca  = 0.69 + 0.015, n~a 3 = 0.045 + 0.005, (6.1) 

The quark-mass  dependence of the critical parameters has been studied by us in 
detail on the 44 lattice. Fig. 6 shows the phase diagram in the m a - ~ a  plane• As can 

be seen, it agrees quite well with mean-field predictions [4, 12]. In fig. 7 we show the 
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Fig. 6. Quark-mass  dependence of the critical chemical potential obtained from simulations on a 4 4 
lattice. The mean-field prediction of ref. [41 is also s h o w n  

0.10 

O.OS 

• nc a3 

• 10 nc/m"lN 

+ + 

• • • • 

I 
0 0.5 1.0 

ma 

Fig. 7. Quark-mass  dependencc of the critical bar , ,on-numbcr  dcnsit?, n~a ~ obtained from simulations 
(m a 4 4 lattice. The critical density in units of the nucleon mass i.,, also shown. 
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dependence  of  the critical density as a function of ma. The critical density decreases 
in units of the lattice spacing when the quark mass is lowered. However,  it stays 
roughly  constant  if we eliminate the lattice spacing in favour of the s t rong-coupling 

nucleon mass  [13] 

t u N a = I n [  1 3 ~,/1+ ~i~: ] ,  2c + I ,6 (6.2) 

c =  m + ! f i +  m 2 . (6.3) 

In the chiral limit we find f rom fig. 6 the critical chemical potential,  ~ a  = 0.63 + 
0.02. Using eqs. (6.2) and (6.3) we can express this and the critical density in units 
of  the s t rong coupling nucleon mass 

P-c = 0-21rnN, n ,  = (0.0017 + 0.0002) m 3 
• - -  N "  

(6.4) 

Though  we are here in the strong-coupling limit (/3 = 0) and therefore far away from 
the con t inuum limit, a compar ison with the yet unknown critical values in the 
con t inuum theory might nevertheless be instructive. For  this purpose we replace the 
s t rong-coupl ing  nucleon mass by the physical one*.  This gives for the critical 
pa ramete r s  in physical units 

~c -- 200 MeV,  nc = (0.22 + 0.02) fm 3 

Not ice  that  the critical density is only slightly larger than that to ordinary nuclear 
matter ,  n o = 0 . ] 7 / f r o  3. We have also calculated the energy per  baryon,  which in the 

b roken  phase  turns out to be close to the nucleon mass 

E / B = n  l ( q , _ c 0  ) = 3  for / t</ . t  c. (6.5) 

While  the pa ramete r  of that broken phase up to the critical point  looks quite 
reasonable ,  the nature of the symmetr ic  phase is quite obscure in the strong- 
coupl ing limit. Immedia te ly  after  the transit ion the number  density saturates the 
maximal  value possible on a lattice, i.e. one baryon per site. In addit ion the energy 
densi ty  drops  across the transition, E / B  = 2.25 for ~ > ~,.  

In order  to understand the chiral transition in the s t rong-coupling limit better, it 
would be helpful to study the propert ies of  the system in a mixed phase. This can be 
achieved by fixing the baryon number  rather than the chemical potential  [3]. In the 
f r amework  of the M D P  representat ion this requires only a minor  modificat ion of 
the Bol tzmann weights, as discussed in sect. 4. The signal for the phase transition, 
however,  becomes  weaker in this case. The strong first-order signal shown in fig. 5 

* In other words, we fix the lattice cut-off a using the physical nucleon mass as input. Using this scale. 
the effective temperature for our lattices with N t = 4 is T = 83 McV. 
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Fig. 8. Schematic behaviour of the chiral condensate (~4 . )  in the grand canonical (a) and canonical (b) 
ensemble. A first-order phase transition leads to discontinuity of ( ~ 4 )  at ~.¢ in the grand canonical 
picture, whereas it only yields discontinuities in the slope of (4'~P) at the onset {nt~) and end (n O) of the 

mixed phase in the canonical ensemble. 

0.5 

I 

I 

0 0.5 1.0 
n~ 

Fig. 9. (~,,~} versus na 3. Results from simulations at fixed bar'von number  on a 44 latticc. Each data 
point is based on 2 × 106 iterations. Errors are of the size of the symbols. 
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at finite # transforms into two cusps at non-zero baryon number  B. The expected 
dependence of  ~,q~) as a function of n is shown schematically in fig. 8. Onset and 

end of the mixed phase leads to cusps rather than to discontinuities as in the grand 
canonical  ensemble. Restoration of chiral symmetry is completed only at the end of  

the mixed phase. 
In fig. 9 we show results for ( ~ )  from a simulation on a 4 4 lattice in the entire 

density regime. Like in the / z ~ 0  simulations, we find that the mixed phase 

essentially covers the whole region from na  3 = 0 up to n a  3 = 1. A detailed study of 

the low-density region on a 634 lattice is shown in fig. 10. For comparison,  we also 

present  some data from our ~ ~ 0 simulation. This demonstrates the equivalence of 

simulations in the canonical and grand canonical ensemble. Moreover, the canonical 
simulation gives indications for a cusp in ( ~ )  v e r s u s  n a  3 at r t a  3 =  0.046 (i.e. 

B = 10 on a 634 lattice). This is in good agreement with the results quoted in eq. 

(6.2) for the grand canonical ensemble. 

0 . 6 3  
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3 -  0 . 6 0  

' J ' l ~ w , i 1 ' 

K< 

x 

0 5 6  l , I I [ , i , J I , 
0 . 0 5  0 . 1 0  

n a  3 

Fig. 10. As fig. 9 but on a 634 lattice (B). Some data from simulations with fixed chemical potential (×) 
on 834 lattices are also shown. Data points are based on 10 ~' iterations. 
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7. Conclusions 

We have studied the phase structure of strong coupling QCD at finite baryon- 
number density. Monte Carlo algorithms based on the MDP representation of the 
strong-coupling partition function turn out to be able to handle the remaining 
oscillations in the Boltzmann weights quite well. This enabled us to perform 
simulations both for the grand canonical (~ 4: 0) and canonical (B ~ 0) ensembles. 

We find evidence for a first-order phase transition at #~.a = 0.63. The critical 
baryon-number density turned out to be only slightly higher than ordinary nuclear- 
matter density. The analysis of the chiral condensate showed that chiral symmetry 
gets restored during this transition. It would be interesting to see whether this 
transition is also deconfining. For this purpose one needs the Polyakov loop 
expectation value ( L )  or the heavy-quark potential at finite density. 

Quite contrary to standard simulations of QCD the measurement of observables 
depending on the quark fields (like (~,~} or hadron-hadron correlation functions) 
can be rather easily done in the MDP representation. On the other hand. the 
measurement of observables depending on the gauge fields (like Wilson and 
Polyakov loops) seems to be quite complicated in the MDP system, as these degrees 
of freedom have to be integrated out explicitly. 

A preliminary and incomplete analysis of ( L )  indicates that it is large in the 
chiral-symmetric phase, which would mean that this phase is also deconfining. A 
more detailed analysis of this. as well as the temperature dependence of the 
transition, is planned for the future. 
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